
Oracle® Database
Security Guide

19c
E96299-04
February 2019

Oracle Database Security Guide, 19c

E96299-04

Copyright © 1996, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Patricia Huey

Contributing Authors: Sumit Jeloka

Contributors: Suraj Adhikari, Thomas Baby, Tammy Bednar, Todd Bottger, Sanjay Bharadwaj, Leo Cloutier,
Sudha Duraiswamy, Naveen Gopal, Rishabh Gupta, Yong Hu, Srinidhi Kayoor , Peter Knaggs, Andre
Kruklikov, Sanjay Kulhari, Anup A. Kumar, Bryn Llewellyn, Dah-Yoh Lim, Rahil Mir, Hari Mohankumar, Gopal
Mulagund, Abhishek Munnolimath, Paul Needham, Robert Pang, Dilip Raj, Kumar Rajamani, Kathy Rich,
Saikat Saha, Vipin Samar, Saravana Soundararajan, James Spiller, Srividya Tata, Kamal Tbeileh, Can Tuzla,
Anand Verma, Patrick Wheeler, Peter H. Wong

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xlvii

Documentation Accessibility xlvii

Related Documents xlviii

Conventions xlviii

 Changes in This Release for Oracle Database Security Guide

Changes in Oracle Database Security 19c xlix

Changes in Oracle Database Security 18c liv

1 Introduction to Oracle Database Security

About Oracle Database Security 1-1

Additional Oracle Database Security Resources 1-3

Part I Managing User Authentication and Authorization

2 Managing Security for Oracle Database Users

About User Security 2-1

Creating User Accounts 2-2

About Common Users and Local Users 2-3

About Common Users 2-3

How Plugging in PDBs Affects CDB Common Users 2-5

About Local Users 2-5

Who Can Create User Accounts? 2-6

Creating a New User Account That Has Minimum Database Privileges 2-7

Restrictions on Creating the User Name for a New Account 2-8

Uniqueness of User Names 2-8

User Names in a Multitenant Environment 2-8

Case Sensitivity for User Names 2-9

iii

Assignment of User Passwords 2-10

Default Tablespace for the User 2-10

About Assigning a Default Tablespace for a User 2-10

DEFAULT TABLESPACE Clause for Assigning a Default Tablespace 2-11

Tablespace Quotas for a User 2-11

About Assigning a Tablespace Quota for a User 2-12

CREATE USER Statement for Assigning a Tablespace Quota 2-12

Restriction of the Quota Limits for User Objects in a Tablespace 2-13

Grants to Users for the UNLIMITED TABLESPACE System Privilege 2-13

Temporary Tablespaces for the User 2-13

About Assigning a Temporary Tablespace for a User 2-13

TEMPORARY TABLESPACE Clause for Assigning a Temporary
Tablespace 2-14

Profiles for the User 2-14

Creation of a Common User or a Local User 2-15

About Creating Common User Accounts 2-16

CREATE USER Statement for Creating a Common User Account 2-17

About Creating Local User Accounts 2-18

CREATE USER Statement for Creating a Local User Account 2-18

Creating a Default Role for the User 2-19

Altering User Accounts 2-19

About Altering User Accounts 2-19

ALTER USER Statement for Altering Common or Local User Accounts 2-20

Changing Non-SYS User Passwords 2-20

About Changing Non-SYS User Passwords 2-21

Using the PASSWORD Command or ALTER USER Statement to Change a
Password 2-21

Changing the SYS User Password 2-22

About Changing the SYS User Password 2-22

ORAPWD Utility for Changing the SYS User Password 2-23

Configuring User Resource Limits 2-23

About User Resource Limits 2-24

Types of System Resources and Limits 2-24

Limits to the User Session Level 2-24

Limits to Database Call Levels 2-25

Limits to CPU Time 2-25

Limits to Logical Reads 2-25

Limits to Other Resources 2-25

Values for Resource Limits of Profiles 2-26

Managing Resources with Profiles 2-27

About Profiles 2-27

ora_stig_profile User Profile 2-28

iv

Creating a Profile 2-28

Creating a CDB Profile or an Application Profile 2-29

Assigning a Profile to a User 2-29

Dropping Profiles 2-30

Dropping User Accounts 2-30

About Dropping User Accounts 2-30

Terminating a User Session 2-31

About Dropping a User After the User Is No Longer Connected to the Database 2-31

Dropping a User Whose Schema Contains Objects 2-32

Predefined Schema User Accounts Provided by Oracle Database 2-32

About the Predefined Schema User Accounts 2-32

Predefined Administrative Accounts 2-33

Predefined Non-Administrative User Accounts 2-36

Predefined Sample Schema User Accounts 2-37

Database User and Profile Data Dictionary Views 2-38

Data Dictionary Views That List Information About Users and Profiles 2-38

Query to Find All Users and Associated Information 2-40

Query to List All Tablespace Quotas 2-40

Query to List All Profiles and Assigned Limits 2-40

Query to View Memory Use for Each User Session 2-42

3 Configuring Authentication

About Authentication 3-2

Configuring Password Protection 3-2

What Are the Oracle Database Built-in Password Protections? 3-3

Minimum Requirements for Passwords 3-4

Creating a Password by Using the IDENTIFIED BY Clause 3-4

Using a Password Management Policy 3-5

About Managing Passwords 3-6

Finding User Accounts That Have Default Passwords 3-6

Password Settings in the Default Profile 3-7

Using the ALTER PROFILE Statement to Set Profile Limits 3-8

Disabling and Enabling the Default Password Security Settings 3-8

Automatically Locking Inactive Database User Accounts 3-9

Automatically Locking User Accounts After Failed Logins 3-10

Example: Locking an Account with the CREATE PROFILE Statement 3-10

Explicitly Locking a User Account 3-11

Controlling the User Ability to Reuse Previous Passwords 3-11

About Controlling Password Aging and Expiration 3-12

Using the CREATE PROFILE or ALTER PROFILE Statement to Set a
Password Lifetime 3-13

v

Checking the Status of a User Account 3-13

Password Change Life Cycle 3-13

PASSWORD_LIFE_TIME Profile Parameter Low Value 3-15

Managing the Complexity of Passwords 3-16

About Password Complexity Verification 3-17

How Oracle Database Checks the Complexity of Passwords 3-17

Who Can Use the Password Complexity Functions? 3-17

verify_function_11G Function Password Requirements 3-17

ora12c_verify_function Password Requirements 3-18

ora12c_strong_verify_function Function Password Requirements 3-18

ora12c_stig_verify_function Password Requirements 3-19

About Customizing Password Complexity Verification 3-19

Enabling Password Complexity Verification 3-20

Managing Password Case Sensitivity 3-21

SEC_CASE_SENSITIVE_LOGON Parameter and Password Case
Sensitivity 3-21

Using the ALTER SYSTEM Statement to Enable Password Case Sensitivity 3-22

Management of Case Sensitivity for Secure Role Passwords 3-22

Management of Password Versions of Users 3-23

Finding and Resetting User Passwords That Use the 10G Password
Version 3-25

How Case Sensitivity Affects Password Files 3-27

How Case Sensitivity Affects Passwords Used in Database Link
Connections 3-28

Ensuring Against Password Security Threats by Using the 12C Password
Version 3-28

About the 12C Version of the Password Hash 3-29

Oracle Database 12C Password Version Configuration Guidelines 3-30

Configuring Oracle Database to Use the 12C Password Version Exclusively 3-32

How Server and Client Logon Versions Affect Database Links 3-34

Configuring Oracle Database Clients to Use the 12C Password Version
Exclusively 3-35

Managing the Secure External Password Store for Password Credentials 3-36

About the Secure External Password Store 3-36

How Does the External Password Store Work? 3-37

About Configuring Clients to Use the External Password Store 3-38

Configuring a Client to Use the External Password Store 3-38

Example: Sample SQLNET.ORA File with Wallet Parameters Set 3-40

Managing External Password Store Credentials 3-40

Managing Passwords for Administrative Users 3-42

About Managing Passwords for Administrative Users 3-43

Setting the LOCK and EXPIRED Status of Administrative Users 3-43

vi

Password Profile Settings for Administrative Users 3-43

Last Successful Login Time for Administrative Users 3-43

Management of the Password File of Administrative Users 3-44

Migration of the Password File of Administrative Users 3-44

How the Multitenant Option Affects Password Files for Administrative Users 3-45

Password Complexity Verification Functions for Administrative Users 3-45

Authentication of Database Administrators 3-46

About Authentication of Database Administrators 3-46

Strong Authentication, Centralized Management for Administrators 3-46

About Strong Authentication for Database Administrators 3-47

Configuring Directory Authentication for Administrative Users 3-47

Configuring Kerberos Authentication for Administrative Users 3-48

Configuring Secure Sockets Layer Authentication for Administrative Users 3-49

Authentication of Database Administrators by Using the Operating System 3-50

Authentication of Database Administrators by Using Their Passwords 3-50

Risks of Using Password Files for Database Administrator Authentication 3-52

Database Authentication of Users 3-52

About Database Authentication 3-52

Advantages of Database Authentication 3-54

Creating Users Who Are Authenticated by the Database 3-54

Schema-Only Accounts 3-54

About Schema-Only Accounts 3-55

Creating a Schema-Only Account 3-56

Altering a Schema-Only Account 3-56

Operating System Authentication of Users 3-56

Network Authentication of Users 3-58

Authentication with Secure Sockets Layer 3-58

Authentication with Third-Party Services 3-58

About Authentication Using Third-Party Services 3-58

Authentication with Kerberos 3-59

Authentication with RADIUS 3-59

Authentication with Directory-Based Services 3-59

Authentication with Public Key Infrastructure 3-60

Configuring Operating System Users for a PDB 3-60

About Configuring Operating System Users for a PDB 3-61

Configuring an Operating System User for a PDB 3-61

Global User Authentication and Authorization 3-62

About Configuring Global User Authentication and Authorization 3-62

Configuration of Users Who Are Authorized by a Directory Service 3-63

Creating a Global User Who Has a Private Schema 3-63

Creating Multiple Enterprise Users Who Share Schemas 3-64

vii

Advantages of Global Authentication and Global Authorization 3-64

Configuring an External Service to Authenticate Users and Passwords 3-65

About External Authentication 3-65

Advantages of External Authentication 3-66

Enabling External Authentication 3-66

Creating a User Who Is Authenticated Externally 3-67

Authentication of User Logins By Using the Operating System 3-67

Authentication of User Logins Using Network Authentication 3-68

Multitier Authentication and Authorization 3-68

Administration and Security in Clients, Application Servers, and Database Servers 3-68

Preserving User Identity in Multitiered Environments 3-70

Middle Tier Server Use for Proxy Authentication 3-70

About Proxy Authentication 3-71

Advantages of Proxy Authentication 3-72

Who Can Create Proxy User Accounts? 3-72

Guidelines for Creating Proxy User Accounts 3-73

Creating Proxy User Accounts and Authorizing Users to Connect Through
Them 3-73

Proxy User Accounts and the Authorization of Users to Connect Through
Them 3-74

Using Proxy Authentication with the Secure External Password Store 3-75

How the Identity of the Real User Is Passed with Proxy Authentication 3-75

Limits to the Privileges of the Middle Tier 3-76

Authorizing a Middle Tier to Proxy and Authenticate a User 3-77

Authorizing a Middle Tier to Proxy a User Authenticated by Other Means 3-78

Reauthenticating a User Through the Middle Tier to the Database 3-78

Using Password-Based Proxy Authentication 3-79

Using Proxy Authentication with Enterprise Users 3-79

Using Client Identifiers to Identify Application Users Unknown to the Database 3-80

About Client Identifiers 3-81

How Client Identifiers Work in Middle Tier Systems 3-81

Use of the CLIENT_IDENTIFIER Attribute to Preserve User Identity 3-81

Use of the CLIENT_IDENTIFIER Independent of Global Application Context 3-82

Setting the CLIENT_IDENTIFIER Independent of Global Application
Context 3-83

Use of the DBMS_SESSION PL/SQL Package to Set and Clear the Client
Identifier 3-83

Enabling the CLIENTID_OVERWRITE Event System-Wide 3-84

Enabling the CLIENTID_OVERWRITE Event for the Current Session 3-84

Disabling the CLIENTID_OVERWRITE Event 3-85

User Authentication Data Dictionary Views 3-85

viii

4 Configuring Privilege and Role Authorization

About Privileges and Roles 4-2

Who Should Be Granted Privileges? 4-3

How the Oracle Multitenant Option Affects Privileges 4-4

Managing Administrative Privileges 4-4

About Administrative Privileges 4-5

Grants of Administrative Privileges to Users 4-5

SYSDBA and SYSOPER Privileges for Standard Database Operations 4-6

SYSBACKUP Administrative Privilege for Backup and Recovery Operations 4-6

SYSDG Administrative Privilege for Oracle Data Guard Operations 4-8

SYSKM Administrative Privilege for Transparent Data Encryption 4-9

SYSRAC Administrative Privilege for Oracle Real Application Clusters 4-9

Managing System Privileges 4-11

About System Privileges 4-11

Why Is It Important to Restrict System Privileges? 4-11

About the Importance of Restricting System Privileges 4-12

Restricting System Privileges by Securing the Data Dictionary 4-12

User Access to Objects in the SYS Schema 4-13

Grants and Revokes of System Privileges 4-13

Who Can Grant or Revoke System Privileges? 4-14

About ANY Privileges and the PUBLIC Role 4-14

Managing Commonly and Locally Granted Privileges 4-15

About Commonly and Locally Granted Privileges 4-15

How Commonly Granted System Privileges Work 4-16

How Commonly Granted Object Privileges Work 4-17

Granting or Revoking Privileges to Access a PDB 4-17

Example: Granting a Privilege in a Multitenant Environment 4-18

Enabling Common Users to View CONTAINER_DATA Object Information 4-18

Viewing Data About the Root, CDB, and PDBs While Connected to the Root
4-18

Enabling Common Users to Query Data in Specific PDBs 4-19

Managing Common Roles and Local Roles 4-20

About Common Roles and Local Roles 4-21

How Common Roles Work 4-21

How the PUBLIC Role Works in a Multitenant Environment 4-22

Privileges Required to Create, Modify, or Drop a Common Role 4-22

Rules for Creating Common Roles 4-22

Creating a Common Role 4-22

Rules for Creating Local Roles 4-23

Creating a Local Role 4-23

Role Grants and Revokes for Common Users and Local Users 4-24

ix

Managing User Roles 4-24

About User Roles 4-25

What Are User Roles? 4-26

The Functionality of Roles 4-26

Properties of Roles and Why They Are Advantageous 4-27

Typical Uses of Roles 4-28

Common Uses of Application Roles 4-29

Common Uses of User Roles 4-29

How Roles Affect the Scope of a User's Privileges 4-29

How Roles Work in PL/SQL Blocks 4-29

How Roles Aid or Restrict DDL Usage 4-30

How Operating Systems Can Aid Roles 4-31

How Roles Work in a Distributed Environment 4-31

Predefined Roles in an Oracle Database Installation 4-32

Creating a Role 4-39

About the Creation of Roles 4-39

Creating a Role That Is Authenticated With a Password 4-40

Creating a Role That Has No Password Authentication 4-41

Creating a Role That Is External or Global 4-41

Altering a Role 4-42

Specifying the Type of Role Authorization 4-42

Authorizing a Role by Using the Database 4-43

Authorizing a Role by Using an Application 4-43

Authorizing a Role by Using an External Source 4-44

Authorizing a Role by Using the Operating System 4-44

Authorizing a Role by Using a Network Client 4-44

Authorizing a Global Role by an Enterprise Directory Service 4-45

Granting and Revoking Roles 4-45

About Granting and Revoking Roles 4-46

Who Can Grant or Revoke Roles? 4-46

Granting and Revoking Roles to and from Program Units 4-46

Dropping Roles 4-47

Restricting SQL*Plus Users from Using Database Roles 4-47

Potential Security Problems of Using Ad Hoc Tools 4-48

How the PRODUCT_USER_PROFILE System Table Can Limit Roles 4-48

How Stored Procedures Can Encapsulate Business Logic 4-49

Role Privileges and Secure Application Roles 4-49

Restricting Operations on PDBs Using PDB Lockdown Profiles 4-50

About PDB Lockdown Profiles 4-50

PDB Lockdown Profile Inheritance 4-52

Default PDB Lockdown Profiles 4-52

x

Creating a PDB Lockdown Profile 4-53

Enabling or Disabling a PDB Lockdown Profile 4-54

Dropping a PDB Lockdown Profile 4-56

Managing Object Privileges 4-57

About Object Privileges 4-58

Who Can Grant Object Privileges? 4-58

Grants and Revokes of Object Privileges 4-59

About Granting and Revoking Object Privileges 4-59

How the ALL Clause Grants or Revokes All Available Object Privileges 4-59

READ and SELECT Object Privileges 4-59

About Managing READ and SELECT Object Privileges 4-60

Enabling Users to Use the READ Object Privilege to Query Any Table in the
Database 4-60

Restrictions on the READ and READ ANY TABLE Privileges 4-61

Object Privilege Use with Synonyms 4-61

Sharing Application Common Objects 4-62

Metadata-Linked Application Common Objects 4-62

Data-Linked Application Common Objects 4-63

Extended Data-Linked Application Common Objects 4-64

Table Privileges 4-65

How Table Privileges Affect Data Manipulation Language Operations 4-65

How Table Privileges Affect Data Definition Language Operations 4-66

View Privileges 4-66

Privileges Required to Create Views 4-66

The Use of Views to Increase Table Security 4-67

Procedure Privileges 4-68

The Use of the EXECUTE Privilege for Procedure Privileges 4-68

Procedure Execution and Security Domains 4-69

System Privileges Required to Create or Replace a Procedure 4-69

System Privileges Required to Compile a Procedure 4-69

How Procedure Privileges Affect Packages and Package Objects 4-70

About the Effect of Procedure Privileges on Packages and Package Objects
4-70

Example: Procedure Privileges Used in One Package 4-70

Example: Procedure Privileges and Package Objects 4-71

Type Privileges 4-72

System Privileges for Named Types 4-72

Object Privileges for Named Types 4-73

Method Execution Model for Named Types 4-73

Privileges Required to Create Types and Tables Using Types 4-73

Example: Privileges for Creating Types and Tables Using Types 4-74

Privileges on Type Access and Object Access 4-75

xi

Type Dependencies 4-76

Grants of User Privileges and Roles 4-77

Granting System Privileges and Roles to Users and Roles 4-77

Privileges for Grants of System Privileges and Roles to Users and Roles 4-77

Example: Granting a System Privilege and a Role to a User 4-78

Example: Granting the EXECUTE Privilege on a Directory Object 4-78

Use of the ADMIN Option to Enable Grantee Users to Grant the Privilege 4-78

Creating a New User with the GRANT Statement 4-78

Granting Object Privileges to Users and Roles 4-79

About Granting Object Privileges to Users and Roles 4-79

How the WITH GRANT OPTION Clause Works 4-80

Grants of Object Privileges on Behalf of the Object Owner 4-81

Grants of Privileges on Columns 4-82

Row-Level Access Control 4-82

Revokes of Privileges and Roles from a User 4-83

Revokes of System Privileges and Roles 4-83

Revokes of Object Privileges 4-83

About Revokes of Object Privileges 4-84

Revokes of Multiple Object Privileges 4-84

Revokes of Object Privileges on Behalf of the Object Owner 4-84

Revokes of Column-Selective Object Privileges 4-85

Revokes of the REFERENCES Object Privilege 4-86

Cascading Effects of Revoking Privileges 4-86

Cascading Effects When Revoking System Privileges 4-86

Cascading Effects When Revoking Object Privileges 4-87

Grants and Revokes of Privileges to and from the PUBLIC Role 4-87

Grants of Roles Using the Operating System or Network 4-88

About Granting Roles Using the Operating System or Network 4-88

Operating System Role Identification 4-89

Operating System Role Management 4-90

Role Grants and Revokes When OS_ROLES Is Set to TRUE 4-90

Role Enablements and Disablements When OS_ROLES Is Set to TRUE 4-91

Network Connections with Operating System Role Management 4-91

How Grants and Revokes Work with SET ROLE and Default Role Settings 4-91

When Grants and Revokes Take Effect 4-92

How the SET ROLE Statement Affects Grants and Revokes 4-92

Specifying the Default Role for a User 4-92

The Maximum Number of Roles That a User Can Have Enabled 4-93

User Privilege and Role Data Dictionary Views 4-93

Data Dictionary Views to Find Information about Privilege and Role Grants 4-94

Query to List All System Privilege Grants 4-96

xii

Query to List All Role Grants 4-96

Query to List Object Privileges Granted to a User 4-97

Query to List the Current Privilege Domain of Your Session 4-97

Query to List Roles of the Database 4-98

Query to List Information About the Privilege Domains of Roles 4-99

5 Performing Privilege Analysis to Find Privilege Use

What Is Privilege Analysis? 5-1

About Privilege Analysis 5-2

Benefits and Use Cases of Privilege Analysis 5-2

Least Privileges Best Practice 5-2

Development of Secure Applications 5-3

Who Can Perform Privilege Analysis? 5-3

Types of Privilege Analysis 5-3

How Does a Multitenant Environment Affect Privilege Analysis? 5-4

How Privilege Analysis Works with Pre-Compiled Database Objects 5-4

Creating and Managing Privilege Analysis Policies 5-5

About Creating and Managing Privilege Analysis Policies 5-5

General Steps for Managing Privilege Analysis 5-5

Creating a Privilege Analysis Policy 5-6

Enabling a Privilege Analysis Policy 5-8

Examples of Creating and Enabling Privilege Analysis Policies 5-8

Example: Privilege Analysis of Database-Wide Privileges 5-9

Example: Privilege Analysis of Privilege Usage of Two Roles 5-9

Example: Privilege Analysis of Privileges During SQL*Plus Use 5-9

Example: Privilege Analysis of PSMITH Privileges During SQL*Plus Access 5-10

Disabling a Privilege Analysis Policy 5-10

Generating a Privilege Analysis Report 5-10

About Generating a Privilege Analysis Report 5-11

General Process for Managing Multiple Named Capture Runs 5-11

Generating a Privilege Analysis Report Using
DBMS_PRIVILEGE_CAPTURE 5-12

Generating a Privilege Analysis Report Using Cloud Control 5-13

Accessing Privilege Analysis Reports Using Cloud Control 5-13

Dropping a Privilege Analysis Policy 5-14

Creating Roles and Managing Privileges Using Cloud Control 5-14

Creating a Role from a Privilege Analysis Report in Cloud Control 5-15

Revoking and Regranting Roles and Privileges Using Cloud Control 5-15

Generating a Revoke or Regrant Script Using Cloud Control 5-16

About Generating Revoke and Regrant Scripts 5-16

Generating a Revoke Script 5-16

xiii

Generating a Regrant Script 5-17

Tutorial: Using Capture Runs to Analyze ANY Privilege Use 5-18

Step 1: Create User Accounts 5-18

Step 2: Create and Enable a Privilege Analysis Policy 5-19

Step 3: Use the READ ANY TABLE System Privilege 5-20

Step 4: Disable the Privilege Analysis Policy 5-20

Step 5: Generate and View a Privilege Analysis Report 5-21

Step 6: Create a Second Capture Run 5-21

Step 7: Remove the Components for This Tutorial 5-22

Tutorial: Analyzing Privilege Use by a User Who Has the DBA Role 5-23

Step 1: Create User Accounts 5-23

Step 2: Create and Enable a Privilege Analysis Policy 5-24

Step 3: Perform the Database Tuning Operations 5-25

Step 4: Disable the Privilege Analysis Policy 5-25

Step 5: Generate and View Privilege Analysis Reports 5-26

Step 6: Remove the Components for This Tutorial 5-27

Privilege Analysis Policy and Report Data Dictionary Views 5-28

6 Configuring Centrally Managed Users with Microsoft Active
Directory

Introduction to Centrally Managed Users with Microsoft Active Directory 6-1

About the Oracle Database-Microsoft Active Directory Integration 6-2

How Centrally Managed Users with Microsoft Active Directory Works 6-3

Centrally Managed User-Microsoft Active Directory Architecture 6-3

Supported Authentication Methods 6-4

Users Supported by Centrally Managed Users with Microsoft Active Directory 6-4

How the Oracle Multitenant Option Affects Centrally Managed Users 6-5

Configuring the Oracle Database-Microsoft Active Directory Integration 6-6

About Configuring the Oracle Database-Microsoft Active Directory Connection 6-6

Connecting to Microsoft Active Directory 6-6

Step 1: Create an Oracle Service Directory User Account on Microsoft
Active Directory 6-7

Step 2: For Password Authentication, Install the Password Filter and Extend
the Microsoft Active Directory Schema 6-8

Step 3: If Necessary, Install the Oracle Database Software 6-10

Step 4: Create the dsi.ora or ldap.ora File 6-10

Step 5: Request an Active Directory Certificate for a Secure Connection 6-14

Step 6: Create the Wallet for a Secure Connection 6-14

Step 7: Configure the Microsoft Active Directory Connection 6-16

Step 8: Verify the Oracle Wallet 6-20

Step 9: Test the Integration 6-21

xiv

Configuring Authentication for Centrally Managed Users 6-21

Configuring Password Authentication for Centrally Managed Users 6-22

About Configuring Password Authentication for Centrally Managed Users 6-22

Configuring Password Authentication for a Centrally Managed User 6-23

Logging in to an Oracle Database Using Password Authentication 6-24

Configuring Kerberos Authentication for Centrally Managed Users 6-25

Configuring Authentication Using PKI Certificates for Centrally Managed Users 6-25

Configuring Authorization for Centrally Managed Users 6-26

About Configuring Authorization for Centrally Managed Users 6-27

Mapping a Directory Group to a Shared Database Global User 6-28

Mapping a Directory Group to a Global Role 6-28

Exclusively Mapping a Directory User to a Database Global User 6-29

Altering or Migrating a User Mapping Definition 6-29

Configuring Administrative Users 6-30

Configuring Database Administrative Users with Shared Access Accounts 6-30

Configuring Database Administrative Users Using Exclusive Mapping 6-30

Verifying the Centrally Managed User Logon Information 6-31

Integration of Oracle Database with Microsoft Active Directory Account Policies 6-34

7 Managing Security for Definer's Rights and Invoker's Rights

About Definer's Rights and Invoker's Rights 7-1

How Procedure Privileges Affect Definer's Rights 7-2

How Procedure Privileges Affect Invoker's Rights 7-3

When You Should Create Invoker's Rights Procedures 7-4

Controlling Invoker's Rights Privileges for Procedure Calls and View Access 7-4

How the Privileges of a Schema Affect the Use of Invoker's Rights Procedures 7-5

How the INHERIT [ANY] PRIVILEGES Privileges Control Privilege Access 7-6

Grants of the INHERIT PRIVILEGES Privilege to Other Users 7-6

Example: Granting INHERIT PRIVILEGES on an Invoking User 7-7

Example: Revoking INHERIT PRIVILEGES 7-7

Grants of the INHERIT ANY PRIVILEGES Privilege to Other Users 7-7

Example: Granting INHERIT ANY PRIVILEGES to a Trusted Procedure Owner 7-8

Managing INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES 7-8

Definer's Rights and Invoker's Rights in Views 7-9

About Controlling Definer's Rights and Invoker's Rights in Views 7-9

Using the BEQUEATH Clause in the CREATE VIEW Statement 7-10

Finding the User Name or User ID of the Invoking User 7-10

Finding BEQUEATH DEFINER and BEQUEATH_CURRENT_USER Views 7-11

Using Code Based Access Control for Definer's Rights and Invoker's Rights 7-12

About Using Code Based Access Control for Applications 7-12

xv

Who Can Grant Code Based Access Control Roles to a Program Unit? 7-13

How Code Based Access Control Works with Invoker's Rights Program Units 7-13

How Code Based Access Control Works with Definer's Rights Program Units 7-15

Grants of Database Roles to Users for Their CBAC Grants 7-17

Grants and Revokes of Database Roles to a Program Unit 7-18

Tutorial: Controlling Access to Sensitive Data Using Code Based Access
Control 7-19

About This Tutorial 7-19

Step 1: Create the User and Grant HR the CREATE ROLE Privilege 7-20

Step 2: Create the print_employees Invoker's Rights Procedure 7-20

Step 3: Create the hr_clerk Role and Grant Privileges for It 7-21

Step 4: Test the Code Based Access Control HR.print_employees
Procedure 7-21

Step 5: Create the view_emp_role Role and Grant Privileges for It 7-22

Step 6: Test the HR.print_employees Procedure Again 7-22

Step 7: Remove the Components of This Tutorial 7-23

Controlling Definer's Rights Privileges for Database Links 7-23

About Controlling Definer's Rights Privileges for Database Links 7-24

Grants of the INHERIT REMOTE PRIVILEGES Privilege to Other Users 7-25

Example: Granting INHERIT REMOTE PRIVILEGES on a Connected User 7-25

Grants of the INHERIT ANY REMOTE PRIVILEGES Privilege to Other Users 7-26

Revokes of the INHERIT [ANY] REMOTE PRIVILEGES Privilege 7-26

Example: Revoking the INHERIT REMOTE PRIVILEGES Privilege 7-27

Example: Revoking the INHERIT REMOTE PRIVILEGES Privilege from
PUBLIC 7-27

Tutorial: Using a Database Link in a Definer's Rights Procedure 7-27

About This Tutorial 7-28

Step 1: Create User Accounts 7-28

Step 2: As User dbuser2, Create a Table to Store User IDs 7-28

Step 3: As User dbuser1, Create a Database Link and Definer's Rights
Procedure 7-29

Step 4: Test the Definer's Rights Procedure 7-29

Step 5: Remove the Components of This Tutorial 7-30

8 Managing Fine-Grained Access in PL/SQL Packages and Types

About Managing Fine-Grained Access in PL/SQL Packages and Types 8-2

About Fine-Grained Access Control to External Network Services 8-2

About Access Control to Oracle Wallets 8-3

Upgraded Applications That Depend on Packages That Use External Network
Services 8-3

Configuring Access Control for External Network Services 8-4

Syntax for Configuring Access Control for External Network Services 8-4

xvi

Example: Configuring Access Control for External Network Services 8-6

Revoking Access Control Privileges for External Network Services 8-6

Example: Revoking External Network Services Privileges 8-7

Configuring Access Control to an Oracle Wallet 8-7

About Configuring Access Control to an Oracle Wallet 8-7

Step 1: Create an Oracle Wallet 8-8

Step 2: Configure Access Control Privileges for the Oracle Wallet 8-8

Step 3: Make the HTTP Request with the Passwords and Client Certificates 8-9

Making the HTTPS Request with the Passwords and Client Certificates 8-10

Using a Request Context to Hold the Wallet When Sharing the Session with
Other Applications 8-11

Use of Only a Client Certificate to Authenticate 8-11

Use of a Password to Authenticate 8-11

Revoking Access Control Privileges for Oracle Wallets 8-12

Examples of Configuring Access Control for External Network Services 8-13

Example: Configuring Access Control for a Single Role and Network Connection
8-13

Example: Configuring Access Control for a User and Role 8-14

Example: Using the DBA_HOST_ACES View to Show Granted Privileges 8-14

Example: Configuring ACL Access Using Passwords in a Non-Shared Wallet 8-15

Example: Configuring ACL Access for a Wallet in a Shared Database Session 8-16

Specifying a Group of Network Host Computers 8-17

Precedence Order for a Host Computer in Multiple Access Control List Assignments 8-17

Precedence Order for a Host in Access Control List Assignments with Port Ranges 8-18

Checking Privilege Assignments That Affect User Access to Network Hosts 8-18

About Privilege Assignments that Affect User Access to Network Hosts 8-19

How to Check User Network Connection and Domain Privileges 8-20

Example: Administrator Checking User Network Access Control Permissions 8-20

How Users Can Check Their Network Connection and Domain Privileges 8-21

Example: User Checking Network Access Control Permissions 8-21

Configuring Network Access for Java Debug Wire Protocol Operations 8-21

Data Dictionary Views for Access Control Lists Configured for User Access 8-22

9 Managing Security for a Multitenant Environment in Enterprise
Manager

About Managing Security for a Multitenant Environment in Enterprise Manager 9-1

Logging into a Multitenant Environment in Enterprise Manager 9-1

Logging into a CDB or a PDB 9-2

Switching to a Different PDB or to the Root 9-3

Managing Common and Local Users in Enterprise Manager 9-3

Creating a Common User Account in Enterprise Manager 9-4

xvii

Editing a Common User Account in Enterprise Manager 9-4

Dropping a Common User Account in Enterprise Manager 9-5

Creating a Local User Account in Enterprise Manager 9-6

Editing a Local User Account in Enterprise Manager 9-6

Dropping a Local User Account in Enterprise Manager 9-7

Managing Common and Local Roles and Privileges in Enterprise Manager 9-7

Creating a Common Role in Enterprise Manager 9-8

Editing a Common Role in Enterprise Manager 9-8

Dropping a Common Role in Enterprise Manager 9-9

Revoking Common Privilege Grants in Enterprise Manager 9-9

Creating a Local Role in Enterprise Manager 9-10

Editing a Local Role in Enterprise Manager 9-10

Dropping a Local Role in Enterprise Manager 9-11

Revoking Local Privilege Grants in Enterprise Manager 9-11

Part II Application Development Security

10

Managing Security for Application Developers

About Application Security Policies 10-2

Considerations for Using Application-Based Security 10-2

Are Application Users Also Database Users? 10-2

Is Security Better Enforced in the Application or in the Database? 10-3

Securing Passwords in Application Design 10-4

General Guidelines for Securing Passwords in Applications 10-4

Platform-Specific Security Threats 10-4

Guidelines for Designing Applications to Handle Password Input 10-5

Guidelines for Configuring Password Formats and Behavior 10-6

Guidelines for Handling Passwords in SQL Scripts 10-6

Use of an External Password Store to Secure Passwords 10-8

Securing Passwords Using the ORAPWD Utility 10-8

Example: Java Code for Reading Passwords 10-8

Securing External Procedures 10-13

About Securing External Procedures 10-13

General Process for Configuring extproc for a Credential Authentication 10-13

extproc Process Authentication and Impersonation Expected Behaviors 10-14

Configuring Authentication for External Procedures 10-15

External Procedures for Legacy Applications 10-17

Securing LOBs with LOB Locator Signatures 10-17

About Securing LOBs with LOB Locator Signatures 10-17

Managing the Encryption of a LOB Locator Signature Key 10-18

xviii

Managing Application Privileges 10-19

Advantages of Using Roles to Manage Application Privileges 10-19

Creating Secure Application Roles to Control Access to Applications 10-20

Step 1: Create the Secure Application Role 10-20

Step 2: Create a PL/SQL Package to Define the Access Policy for the
Application 10-21

About Creating a PL/SQL Package to Define the Access Policy for an
Application 10-21

Creating a PL/SQL Package or Procedure to Define the Access Policy for
an Application 10-22

Testing the Secure Application Role 10-23

Association of Privileges with User Database Roles 10-23

Why Users Should Only Have the Privileges of the Current Database Role 10-23

Use of the SET ROLE Statement to Automatically Enable or Disable Roles 10-24

Protecting Database Objects by Using Schemas 10-24

Protecting Database Objects in a Unique Schema 10-24

Protection of Database Objects in a Shared Schema 10-25

Object Privileges in an Application 10-25

What Application Developers Must Know About Object Privileges 10-25

SQL Statements Permitted by Object Privileges 10-26

Parameters for Enhanced Security of Database Communication 10-27

Bad Packets Received on the Database from Protocol Errors 10-27

Controlling Server Execution After Receiving a Bad Packet 10-28

Configuration of the Maximum Number of Authentication Attempts 10-29

Configuring the Display of the Database Version Banner 10-29

Configuring Banners for Unauthorized Access and Auditing User Actions 10-30

Part III Controlling Access to Data

11

Using Application Contexts to Retrieve User Information

About Application Contexts 11-1

What Is an Application Context? 11-2

Components of the Application Context 11-2

Where Are the Application Context Values Stored? 11-2

Benefits of Using Application Contexts 11-3

How Editions Affects Application Context Values 11-3

Application Contexts in a Multitenant Environment 11-4

Types of Application Contexts 11-5

Using Database Session-Based Application Contexts 11-6

About Database Session-Based Application Contexts 11-7

xix

Components of a Database Session-Based Application Context 11-7

Creating Database Session-Based Application Contexts 11-8

About Creating Database Session-Based Application Contexts 11-8

Creating a Database Session-Based Application Context 11-9

Database Session-Based Application Contexts for Multiple Applications 11-10

Creating a Package to Set a Database Session-Based Application Context 11-10

About the Package That Manages the Database Session-Based Application
Context 11-11

Using the SYS_CONTEXT Function to Retrieve Session Information 11-12

Checking the SYS_CONTEXT Settings 11-12

Dynamic SQL with SYS_CONTEXT 11-13

SYS_CONTEXT in a Parallel Query 11-13

SYS_CONTEXT with Database Links 11-14

DBMS_SESSION.SET_CONTEXT for Setting Session Information 11-14

Example: Simple Procedure to Create an Application Context Value 11-15

Logon Triggers to Run a Database Session Application Context Package 11-16

Example: Creating a Simple Logon Trigger 11-17

Example: Creating a Logon Trigger for a Production Environment 11-17

Example: Creating a Logon Trigger for a Development Environment 11-17

Tutorial: Creating and Using a Database Session-Based Application Context 11-18

Step 1: Create User Accounts and Ensure the User SCOTT Is Active 11-18

Step 2: Create the Database Session-Based Application Context 11-19

Step 3: Create a Package to Retrieve Session Data and Set the Application
Context 11-20

Step 4: Create a Logon Trigger for the Package 11-21

Step 5: Test the Application Context 11-21

Step 6: Remove the Components of This Tutorial 11-22

Initializing Database Session-Based Application Contexts Externally 11-22

About Initializing Database Session-Based Application Contexts Externally 11-23

Default Values from Users 11-23

Values from Other External Resources 11-23

Example: Creating an Externalized Database Session-based Application
Context 11-24

Initialization of Application Context Values from a Middle-Tier Server 11-24

Initializing Database Session-Based Application Contexts Globally 11-25

About Initializing Database Session-Based Application Contexts Globally 11-25

Database Session-Based Application Contexts with LDAP 11-25

How Globally Initialized Database Session-Based Application Contexts
Work 11-26

Initializing a Database Session-Based Application Context Globally 11-27

Externalized Database Session-Based Application Contexts 11-29

Global Application Contexts 11-29

xx

About Global Application Contexts 11-30

Uses for Global Application Contexts 11-30

Components of a Global Application Context 11-30

Global Application Contexts in an Oracle Real Application Clusters Environment 11-31

Creating Global Application Contexts 11-32

Ownership of the Global Application Context 11-32

Creating a Global Application Context 11-32

PL/SQL Package to Manage a Global Application Context 11-32

About the Package That Manages the Global Application Context 11-33

How Editions Affects the Results of a Global Application Context PL/SQL
Package 11-34

DBMS_SESSION.SET_CONTEXT username and client_id Parameters 11-34

Sharing Global Application Context Values for All Database Users 11-35

Example: Package to Manage Global Application Values for All Database
Users 11-35

Global Contexts for Database Users Who Move Between Applications 11-37

Global Application Context for Nondatabase Users 11-38

Example: Package to Manage Global Application Context Values for
Nondatabase Users 11-39

Clearing Session Data When the Session Closes 11-41

Embedding Calls in Middle-Tier Applications to Manage the Client Session ID 11-42

About Managing Client Session IDs Using a Middle-Tier Application 11-42

Step 1: Retrieve the Client Session ID Using a Middle-Tier Application 11-42

Step 2: Set the Client Session ID Using a Middle-Tier Application 11-43

Step 3: Clear the Session Data Using a Middle-Tier Application 11-45

Tutorial: Creating a Global Application Context That Uses a Client Session ID 11-45

About This Tutorial 11-46

Step 1: Create User Accounts 11-46

Step 2: Create the Global Application Context 11-47

Step 3: Create a Package for the Global Application Context 11-47

Step 4: Test the Newly Created Global Application Context 11-48

Step 5: Modify the Session ID and Test the Global Application Context
Again 11-49

Step 6: Remove the Components of This Tutorial 11-50

Global Application Context Processes 11-50

Simple Global Application Context Process 11-51

Global Application Context Process for Lightweight Users 11-52

Using Client Session-Based Application Contexts 11-54

About Client Session-Based Application Contexts 11-54

Setting a Value in the CLIENTCONTEXT Namespace 11-55

Retrieving the CLIENTCONTEXT Namespace 11-56

xxi

Example: Retrieving a Client Session ID Value for Client Session-Based
Contexts 11-56

Clearing a Setting in the CLIENTCONTEXT Namespace 11-57

Clearing All Settings in the CLIENTCONTEXT Namespace 11-57

Application Context Data Dictionary Views 11-57

12

Using Oracle Virtual Private Database to Control Data Access

About Oracle Virtual Private Database 12-1

What Is Oracle Virtual Private Database? 12-2

Benefits of Using Oracle Virtual Private Database Policies 12-3

Security Policies Based on Database Objects Rather Than Applications 12-3

Control Over How Oracle Database Evaluates Policy Functions 12-3

Who Can Create Oracle Virtual Private Database Policies? 12-4

Privileges to Run Oracle Virtual Private Database Policy Functions 12-4

Oracle Virtual Private Database Use with an Application Context 12-4

Oracle Virtual Private Database in a Multitenant Environment 12-5

Components of an Oracle Virtual Private Database Policy 12-6

Function to Generate the Dynamic WHERE Clause 12-7

Policies to Attach the Function to the Objects You Want to Protect 12-8

Configuration of Oracle Virtual Private Database Policies 12-8

About Oracle Virtual Private Database Policies 12-9

Attaching a Policy to a Database Table, View, or Synonym 12-10

Example: Attaching a Simple Oracle Virtual Private Database Policy to a Table 12-11

Enforcing Policies on Specific SQL Statement Types 12-11

Example: Specifying SQL Statement Types with DBMS_RLS.ADD_POLICY 12-12

Control of the Display of Column Data with Policies 12-12

Policies for Column-Level Oracle Virtual Private Database 12-13

Example: Creating a Column-Level Oracle Virtual Private Database Policy 12-13

Display of Only the Column Rows Relevant to the Query 12-14

Column Masking to Display Sensitive Columns as NULL Values 12-14

Example: Adding Column Masking to an Oracle Virtual Private Database
Policy 12-15

Oracle Virtual Private Database Policy Groups 12-16

About Oracle Virtual Private Database Policy Groups 12-16

Creation of a New Oracle Virtual Private Database Policy Group 12-17

Default Policy Group with the SYS_DEFAULT Policy Group 12-17

Multiple Policies for Each Table, View, or Synonym 12-18

Validation of the Application Used to Connect to the Database 12-18

Optimizing Performance by Using Oracle Virtual Private Database Policy Types 12-19

About Oracle Virtual Private Database Policy Types 12-20

Dynamic Policy Type to Automatically Rerun Policy Functions 12-20

xxii

Example: Creating a DYNAMIC Policy with DBMS_RLS.ADD_POLICY 12-21

Static Policy to Prevent Policy Functions from Rerunning for Each Query 12-21

Example: Creating a Static Policy with DBMS_RLS.ADD_POLICY 12-22

Example: Shared Static Policy to Share a Policy with Multiple Objects 12-22

When to Use Static and Shared Static Policies 12-23

Context-Sensitive Policy for Application Context Attributes That Change 12-23

Example: Creating a Context-Sensitive Policy with
DBMS_RLS.ADD_POLICY 12-24

Example: Refreshing Cached Statements for a VPD Context-Sensitive
Policy 12-25

Example: Altering an Existing Context-Sensitive Policy 12-25

Example: Using a Shared Context Sensitive Policy to Share a Policy with
Multiple Objects 12-25

When to Use Context-Sensitive and Shared Context-Sensitive Policies 12-26

Summary of the Five Oracle Virtual Private Database Policy Types 12-27

Tutorials: Creating Oracle Virtual Private Database Policies 12-27

Tutorial: Creating a Simple Oracle Virtual Private Database Policy 12-28

About This Tutorial 12-28

Step 1: Ensure That the OE User Account Is Active 12-28

Step 2: Create a Policy Function 12-29

Step 3: Create the Oracle Virtual Private Database Policy 12-30

Step 4: Test the Policy 12-30

Step 5: Remove the Components of This Tutorial 12-31

Tutorial: Implementing a Session-Based Application Context Policy 12-31

About This Tutorial 12-32

Step 1: Create User Accounts and Sample Tables 12-32

Step 2: Create a Database Session-Based Application Context 12-34

Step 3: Create a PL/SQL Package to Set the Application Context 12-34

Step 4: Create a Logon Trigger to Run the Application Context PL/SQL
Package 12-35

Step 5: Test the Logon Trigger 12-35

Step 6: Create a PL/SQL Policy Function to Limit User Access to Their
Orders 12-36

Step 7: Create the New Security Policy 12-36

Step 8: Test the New Policy 12-37

Step 9: Remove the Components of This Tutorial 12-38

Tutorial: Implementing an Oracle Virtual Private Database Policy Group 12-39

About This Tutorial 12-39

Step 1: Create User Accounts and Other Components for This Tutorial 12-40

Step 2: Create the Two Policy Groups 12-41

Step 3: Create PL/SQL Functions to Control the Policy Groups 12-41

Step 4: Create the Driving Application Context 12-42

xxiii

Step 5: Add the PL/SQL Functions to the Policy Groups 12-43

Step 6: Test the Policy Groups 12-44

Step 7: Remove the Components of This Tutorial 12-45

How Oracle Virtual Private Database Works with Other Oracle Features 12-45

Oracle Virtual Private Database Policies with Editions 12-46

SELECT FOR UPDATE Statement in User Queries on VPD-Protected Tables 12-46

Oracle Virtual Private Database Policies and Outer or ANSI Joins 12-46

Oracle Virtual Private Database Security Policies and Applications 12-47

Automatic Reparsing for Fine-Grained Access Control Policies Functions 12-47

Oracle Virtual Private Database Policies and Flashback Queries 12-48

Oracle Virtual Private Database and Oracle Label Security 12-48

Using Oracle Virtual Private Database to Enforce Oracle Label Security
Policies 12-48

Oracle Virtual Private Database and Oracle Label Security Exceptions 12-49

Export of Data Using the EXPDP Utility access_method Parameter 12-50

User Models and Oracle Virtual Private Database 12-51

Oracle Virtual Private Database Data Dictionary Views 12-52

13

Using Transparent Sensitive Data Protection

About Transparent Sensitive Data Protection 13-2

General Steps for Using Transparent Sensitive Data Protection 13-2

Use Cases for Transparent Sensitive Data Protection Policies 13-3

Privileges Required for Using Transparent Sensitive Data Protection 13-4

How a Multitenant Environment Affects Transparent Sensitive Data Protection 13-4

Creating Transparent Sensitive Data Protection Policies 13-5

Step 1: Create a Sensitive Type 13-6

Step 2: Identify the Sensitive Columns to Protect 13-6

Step 3: Import the Sensitive Columns List from ADM into Your Database 13-7

Step 4: Create the Transparent Sensitive Data Protection Policy 13-8

About Creating the Transparent Sensitive Data Protection Policy 13-8

Creating the Transparent Sensitive Data Protection Policy 13-9

Setting the Oracle Data Redaction or Virtual Private Database Feature
Options 13-10

Setting Conditions for the Transparent Sensitive Data Protection Policy 13-10

Specifying the DBMS_TSDP_PROTECT.ADD_POLICY Procedure 13-11

Step 5: Associate the Policy with a Sensitive Type 13-12

Step 6: Enable the Transparent Sensitive Data Protection Policy 13-12

Enabling Protection for the Current Database in a Protected Source 13-13

Enabling Protection for a Specific Table Column 13-13

Enabling Protection for a Specific Column Type 13-13

Step 7: Optionally, Export the Policy to Other Databases 13-14

xxiv

Altering Transparent Sensitive Data Protection Policies 13-14

Disabling Transparent Sensitive Data Protection Policies 13-15

Dropping Transparent Sensitive Data Protection Policies 13-16

Using the Predefined REDACT_AUDIT Policy to Mask Bind Values 13-17

About the REDACT_AUDIT Policy 13-18

Variables Associated with Sensitive Columns 13-18

About Variables Associated with Sensitive Columns 13-19

Bind Variables and Sensitive Columns in the Expressions of Conditions 13-19

A Bind Variable and a Sensitive Column Appearing in the Same SELECT
Item 13-20

Bind Variables in Expressions Assigned to Sensitive Columns in INSERT or
UPDATE Operations 13-20

How Bind Variables on Sensitive Columns Behave with Views 13-21

Disabling the REDACT_AUDIT Policy 13-21

Enabling the REDACT_AUDIT Policy 13-22

Transparent Sensitive Data Protection Policies with Data Redaction 13-22

Using Transparent Sensitive Data Protection Policies with Oracle VPD Policies 13-23

About Using TSDP Policies with Oracle Virtual Private Database Policies 13-23

DBMS_RLS.ADD_POLICY Parameters That Are Used for TSDP Policies 13-24

Tutorial: Creating a TSDP Policy That Uses Virtual Private Database Protection 13-25

Step 1: Create the hr_appuser User Account 13-26

Step 2: Identify the Sensitive Columns 13-26

Step 3: Create an Oracle Virtual Private Database Function 13-27

Step 4: Create and Enable a Transparent Sensitive Data Protection Policy 13-27

Step 5: Test the Transparent Sensitive Data Protection Policy 13-28

Step 6: Remove the Components of This Tutorial 13-29

Using Transparent Sensitive Data Protection Policies with Unified Auditing 13-30

About Using TSDP Policies with Unified Audit Policies 13-30

Unified Audit Policy Settings That Are Used with TSDP Policies 13-31

Using Transparent Sensitive Data Protection Policies with Fine-Grained Auditing 13-32

About Using TSDP Policies with Fine-Grained Auditing 13-32

Fine-Grained Auditing Parameters That Are Used with TSDP Policies 13-33

Using Transparent Sensitive Data Protection Policies with TDE Column Encryption 13-34

About Using TSDP Policies with TDE Column Encryption 13-35

TDE Column Encryption ENCRYPT Clause Settings Used with TSDP Policies 13-36

Transparent Sensitive Data Protection Data Dictionary Views 13-36

14

Encryption of Sensitive Credential Data in the Data Dictionary

About Encrypting Sensitive Credential Data in the Data Dictionary 14-1

How the Multitenant Option Affects the Encryption of Sensitive Data 14-2

Encrypting Sensitive Credential Data in System Tables 14-2

xxv

Rekeying Sensitive Credential Data in the SYS.LINK$ System Table 14-3

Deleting Sensitive Credential Data in System Tables 14-4

Restoring the Functioning of Database Links After a Lost Keystore 14-5

Data Dictionary Views for Encrypted Data Dictionary Credentials 14-6

15

Manually Encrypting Data

Security Problems That Encryption Does Not Solve 15-1

Principle 1: Encryption Does Not Solve Access Control Problems 15-1

Principle 2: Encryption Does Not Protect Against a Malicious Administrator 15-2

Principle 3: Encrypting Everything Does Not Make Data Secure 15-3

Data Encryption Challenges 15-4

Encrypted Indexed Data 15-4

Generated Encryption Keys 15-5

Transmitted Encryption Keys 15-5

Storing Encryption Keys 15-6

About Storing Encryption Keys 15-6

Storage of Encryption Keys in the Database 15-6

Storage of Encryption Keys in the Operating System 15-8

Users Managing Their Own Encryption Keys 15-8

Manual Encryption with Transparent Database Encryption and Tablespace
Encryption 15-8

Importance of Changing Encryption Keys 15-9

Encryption of Binary Large Objects 15-9

Data Encryption Storage with the DBMS_CRYPTO Package 15-9

Using Ciphertexts Encrypted in OFB Mode in Oracle Database Release 11g 15-11

Examples of Using the Data Encryption API 15-14

Example: Data Encryption Procedure 15-14

Example: AES 256-Bit Data Encryption and Decryption Procedures 15-15

Example: Encryption and Decryption Procedures for BLOB Data 15-16

Data Dictionary Views for Encrypted Data 15-19

Part IV Securing Data on the Network

16

Configuring Oracle Database Native Network Encryption and Data
Integrity

About Oracle Database Native Network Encryption and Data Integrity 16-1

How Oracle Database Native Network Encryption and Integrity Works 16-2

Advanced Encryption Standard 16-2

ARIA 16-2

xxvi

GOST 16-2

SEED 16-2

Triple-DES Support 16-3

Oracle Database Native Network Encryption Data Integrity 16-3

Data Integrity Algorithms Support 16-3

Diffie-Hellman Based Key Negotiation 16-4

Configuration of Data Encryption and Integrity 16-4

About Activating Encryption and Integrity 16-5

About Negotiating Encryption and Integrity 16-5

About the Values for Negotiating Encryption and Integrity 16-6

REJECTED Configuration Parameter 16-7

ACCEPTED Configuration Parameter 16-7

REQUESTED Configuration Parameter 16-7

REQUIRED Configuration Parameter 16-8

Configuring Encryption and Integrity Parameters Using Oracle Net Manager 16-8

Configuring Encryption on the Client and the Server 16-8

Configuring Integrity on the Client and the Server 16-10

Enabling Both Oracle Native Encryption and SSL Authentication for
Different Users Concurrently 16-11

17

Configuring the Thin JDBC Client Network

About the Java Implementation 17-1

Java Database Connectivity Support 17-2

Thin JDBC Features 17-2

Implementation Overview 17-3

Obfuscation of the Java Cryptography Code 17-3

Configuration Parameters for the Thin JDBC Network Implementation 17-4

About the Thin JDBC Network Implementation Configuration Parameters 17-4

Client Encryption Level Parameter 17-5

Client Encryption Selected List Parameter 17-5

Client Integrity Level Parameter 17-6

Client Integrity Selected List Parameter 17-6

Client Authentication Service Parameter 17-7

AnoServices Constants 17-7

Part V Managing Strong Authentication

xxvii

18

Introduction to Strong Authentication

What Is Strong Authentication? 18-1

Centralized Authentication and Single Sign-On 18-2

How Centralized Network Authentication Works 18-2

Supported Strong Authentication Methods 18-3

About Kerberos 18-4

About Remote Authentication Dial-In User Service (RADIUS) 18-4

About Secure Sockets Layer 18-5

Oracle Database Native Network Encryption/Strong Authentication Architecture 18-5

System Requirements for Strong Authentication 18-7

Oracle Database Native Network Encryption and Strong Authentication Restrictions 18-8

19

Strong Authentication Administration Tools

About the Configuration and Administration Tools 19-1

Native Network Encryption and Strong Authentication Configuration Tools 19-1

About Oracle Net Manager 19-1

Kerberos Adapter Command-Line Utilities 19-2

Public Key Infrastructure Credentials Management Tools 19-2

About Oracle Wallet Manager 19-3

About the orapki Utility 19-3

Duties of Strong Authentication Administrators 19-4

20

Configuring Kerberos Authentication

Enabling Kerberos Authentication 20-1

Step 1: Install Kerberos 20-2

Step 2: Configure a Service Principal for an Oracle Database Server 20-3

Step 3: Extract a Service Key Table from Kerberos 20-4

Step 4: Install an Oracle Database Server and an Oracle Client 20-4

Step 5: Configure Oracle Net Services and Oracle Database 20-5

Step 6: Configure Kerberos Authentication 20-5

Step 6A: Configure Kerberos on the Client and on the Database Server 20-5

Step 6B: Set the Initialization Parameters 20-7

Step 6C: Set sqlnet.ora Parameters (Optional) 20-8

Step 7: Create a Kerberos User 20-10

Step 8: Create an Externally Authenticated Oracle User 20-11

Step 9: Get an Initial Ticket for the Kerberos/Oracle User 20-11

Utilities for the Kerberos Authentication Adapter 20-11

okinit Utility Options for Obtaining the Initial Ticket 20-12

oklist Utility Options for Displaying Credentials 20-14

xxviii

okdstry Utility Options for Removing Credentials from the Cache File 20-15

okcreate Utility Options for Automatic Keytab Creation 20-15

Connecting to an Oracle Database Server Authenticated by Kerberos 20-16

Configuring Interoperability with a Windows 2008 Domain Controller KDC 20-16

About Configuring Interoperability with a Windows 2008 Domain Controller KDC 20-17

Step 1: Configure Oracle Kerberos Client for Windows 2008 Domain Controller 20-17

Step 1A: Create the Client Kerberos Configuration Files 20-17

Step 1B: Specify the Oracle Configuration Parameters in the sqlnet.ora File 20-18

Step 1C: Specify the Listening Port Number 20-18

Step 2: Configure a Windows 2008 Domain Controller KDC for the Oracle Client 20-18

Step 2A: Create the User Account 20-19

Step 2B: Create the Oracle Database Principal User Account and Keytab 20-19

Step 3: Configure Oracle Database for a Windows 2008 Domain Controller KDC
20-20

Step 3A: Set Configuration Parameters in the sqlnet.ora File 20-20

Step 3B: Create an Externally Authenticated Oracle User 20-21

Step 4: Obtain an Initial Ticket for the Kerberos/Oracle User 20-21

Configuring Kerberos Authentication Fallback Behavior 20-21

Troubleshooting the Oracle Kerberos Authentication Configuration 20-22

21

Configuring Secure Sockets Layer Authentication

Secure Sockets Layer and Transport Layer Security 21-1

The Difference Between Secure Sockets Layer and Transport Layer Security 21-2

Using Transport Layer Security in a Multitenant Environment 21-2

How Oracle Database Uses Secure Sockets Layer for Authentication 21-3

How Secure Sockets Layer Works in an Oracle Environment: The SSL Handshake 21-3

Public Key Infrastructure in an Oracle Environment 21-4

About Public Key Cryptography 21-4

Public Key Infrastructure Components in an Oracle Environment 21-5

Certificate Authority 21-5

Certificates 21-6

Certificate Revocation Lists 21-6

Wallets 21-7

Hardware Security Modules 21-7

Secure Sockets Layer Combined with Other Authentication Methods 21-8

Architecture: Oracle Database and Secure Sockets Layer 21-8

How Secure Sockets Layer Works with Other Authentication Methods 21-9

Secure Sockets Layer and Firewalls 21-9

Secure Sockets Layer Usage Issues 21-10

Enabling Secure Sockets Layer 21-10

Step 1: Configure Secure Sockets Layer on the Server 21-11

xxix

Step 1A: Confirm Wallet Creation on the Server 21-11

Step 1B: Specify the Database Wallet Location on the Server 21-12

Step 1C: Set the Secure Sockets Layer Cipher Suites on the Server
(Optional) 21-13

Step 1D: Set the Required Secure Sockets Layer Version on the Server
(Optional) 21-16

Step 1E: Set SSL Client Authentication on the Server (Optional) 21-17

Step 1F: Set SSL as an Authentication Service on the Server (Optional) 21-18

Step 1G: Disable SSLv3 on the Server and Client (Optional) 21-19

Step 1H: Create a Listening Endpoint that Uses TCP/IP with SSL on the
Server 21-19

Step 2: Configure Secure Sockets Layer on the Client 21-19

Step 2A: Confirm Client Wallet Creation 21-20

Step 2B: Configure Server DN Matching and Use TCP/IP with SSL on the
Client 21-20

Step 2C: Specify Required Client SSL Configuration (Wallet Location) 21-22

Step 2D: Set the Client Secure Sockets Layer Cipher Suites (Optional) 21-24

Step 2E: Set the Required SSL Version on the Client (Optional) 21-26

Step 2F: Set SSL as an Authentication Service on the Client (Optional) 21-27

Step 2G: Specify the Certificate to Use for Authentication on the Client
(Optional) 21-27

Step 3: Log in to the Database Instance 21-28

Troubleshooting the Secure Sockets Layer Configuration 21-29

Certificate Validation with Certificate Revocation Lists 21-32

About Certificate Validation with Certificate Revocation Lists 21-32

What CRLs Should You Use? 21-32

How CRL Checking Works 21-33

Configuring Certificate Validation with Certificate Revocation Lists 21-33

About Configuring Certificate Validation with Certificate Revocation Lists 21-34

Enabling Certificate Revocation Status Checking for the Client or Server 21-34

Disabling Certificate Revocation Status Checking 21-36

Certificate Revocation List Management 21-37

About Certificate Revocation List Management 21-37

Displaying orapki Help for Commands That Manage CRLs 21-38

Renaming CRLs with a Hash Value for Certificate Validation 21-38

Uploading CRLs to Oracle Internet Directory 21-39

Listing CRLs Stored in Oracle Internet Directory 21-39

Viewing CRLs in Oracle Internet Directory 21-40

Deleting CRLs from Oracle Internet Directory 21-41

Troubleshooting CRL Certificate Validation 21-41

Oracle Net Tracing File Error Messages Associated with Certificate Validation 21-42

Configuring Your System to Use Hardware Security Modules 21-43

xxx

General Guidelines for Using Hardware Security Modules for SSL 21-44

Configuring Your System to Use nCipher Hardware Security Modules 21-44

About Configuring Your System to Use nCipher Hardware Security Modules 21-45

Oracle Components Required To Use an nCipher Hardware Security
Module 21-45

Directory Path Requirements for Installing an nCipher Hardware Security
Module 21-46

Configuring Your System to Use SafeNET Hardware Security Modules 21-46

About Configuring Your System to Use SafeNET Hardware Security
Modules 21-46

Oracle Components Required for SafeNET Luna SA Hardware Security
Modules 21-47

Directory Path Requirements for Installing a SafeNET Hardware Security
Module 21-47

Troubleshooting Using Hardware Security Modules 21-48

Errors in the Oracle Net Trace Files 21-48

Error Messages Associated with Using Hardware Security Modules 21-48

22

Configuring RADIUS Authentication

About Configuring RADIUS Authentication 22-1

RADIUS Components 22-3

RADIUS Authentication Modes 22-3

Synchronous Authentication Mode 22-3

Sequence for Synchronous Authentication Mode 22-3

Example: Synchronous Authentication with SecurID Token Cards 22-4

Challenge-Response (Asynchronous) Authentication Mode 22-5

Sequence for Challenge-Response (Asynchronous) Authentication Mode 22-5

Example: Asynchronous Authentication with Smart Cards 22-7

Example: Asynchronous Authentication with ActivCard Tokens 22-7

Enabling RADIUS Authentication, Authorization, and Accounting 22-8

Step 1: Configure RADIUS Authentication 22-8

Step 1A: Configure RADIUS on the Oracle Client 22-9

Step 1B: Configure RADIUS on the Oracle Database Server 22-10

Step 1C: Configure Additional RADIUS Features 22-13

Step 2: Create a User and Grant Access 22-16

Step 3: Configure External RADIUS Authorization (Optional) 22-17

Step 3A: Configure the Oracle Server (RADIUS Client) 22-17

Step 3B: Configure the Oracle Client Where Users Log In 22-17

Step 3C: Configure the RADIUS Server 22-17

Step 4: Configure RADIUS Accounting 22-18

Step 4A: Set RADIUS Accounting on the Oracle Database Server 22-19

Step 4B: Configure the RADIUS Accounting Server 22-19

xxxi

Step 5: Add the RADIUS Client Name to the RADIUS Server Database 22-19

Step 6: Configure the Authentication Server for Use with RADIUS 22-20

Step 7: Configure the RADIUS Server for Use with the Authentication Server 22-20

Step 8: Configure Mapping Roles 22-20

Using RADIUS to Log in to a Database 22-21

RSA ACE/Server Configuration Checklist 22-22

23

Customizing the Use of Strong Authentication

Connecting to a Database Using Strong Authentication 23-1

Disabling Strong Authentication and Native Network Encryption 23-2

Configuring Multiple Authentication Methods 23-4

Configuring Oracle Database for External Authentication 23-5

Setting the SQLNET.AUTHENTICATION_SERVICES Parameter in sqlnet.ora 23-5

Setting OS_AUTHENT_PREFIX to a Null Value 23-6

Part VI Monitoring Database Activity with Auditing

24

Introduction to Auditing

What Is Auditing? 24-2

Why Is Auditing Used? 24-3

Best Practices for Auditing 24-3

What Is Unified Auditing? 24-4

Benefits of the Unified Audit Trail 24-4

Checking if Your Database Has Migrated to Unified Auditing 24-5

Mixed Mode Auditing 24-5

About Mixed Mode Auditing 24-6

Enablement of Unified Auditing 24-7

How Database Creation Determines the Type of Auditing You Have Enabled 24-7

Capabilities of Mixed Mode Auditing 24-7

Who Can Perform Auditing? 24-8

About Auditing in a Multitenant Environment 24-9

Auditing in a Distributed Database 24-9

25

Configuring Audit Policies

Selecting an Auditing Type 25-1

Auditing SQL Statements, Privileges, and Other General Activities 25-1

Auditing Commonly Used Security-Relevant Activities 25-2

Auditing Specific, Fine-Grained Activities 25-2

xxxii

Auditing Activities with Unified Audit Policies and the AUDIT Statement 25-3

About Auditing Activities with Unified Audit Policies and AUDIT 25-4

Best Practices for Creating Unified Audit Policies 25-5

Syntax for Creating a Unified Audit Policy 25-5

Auditing Roles 25-7

About Role Auditing 25-7

Configuring Role Unified Audit Policies 25-8

Example: Auditing the DBA Role in a Multitenant Environment 25-8

Auditing System Privileges 25-8

About System Privilege Auditing 25-9

System Privileges That Can Be Audited 25-9

System Privileges That Cannot Be Audited 25-10

Configuring a Unified Audit Policy to Capture System Privilege Use 25-10

Example: Auditing a User Who Has ANY Privileges 25-11

Example: Using a Condition to Audit a System Privilege 25-11

How System Privilege Unified Audit Policies Appear in the Audit Trail 25-11

Auditing Administrative Users 25-12

Administrative User Accounts That Can Be Audited 25-12

Configuring a Unified Audit Policy to Capture Administrator Activities 25-12

Example: Auditing the SYS User 25-13

Auditing Object Actions 25-13

About Auditing Object Actions 25-14

Object Actions That Can Be Audited 25-14

Configuring an Object Action Unified Audit Policy 25-15

Example: Auditing Actions on SYS Objects 25-15

Example: Auditing Multiple Actions on One Object 25-15

Example: Auditing Both Actions and Privileges on an Object 25-16

Example: Auditing All Actions on a Table 25-16

Example: Auditing All Actions in the Database 25-16

How Object Action Unified Audit Policies Appear in the Audit Trail 25-16

Auditing Functions, Procedures, Packages, and Triggers 25-17

Auditing of Oracle Virtual Private Database Predicates 25-17

Audit Policies for Oracle Virtual Private Database Policy Functions 25-19

Unified Auditing with Editioned Objects 25-19

Auditing the READ ANY TABLE and SELECT ANY TABLE Privileges 25-20

About Auditing the READ ANY TABLE and SELECT ANY TABLE Privileges 25-20

Creating a Unified Audit Policy to Capture READ Object Privilege
Operations 25-20

How the Unified Audit Trail Captures READ ANY TABLE and SELECT ANY
TABLE 25-21

Auditing SQL Statements and Privileges in a Multitier Environment 25-23

Creating a Condition for a Unified Audit Policy 25-25

xxxiii

About Conditions in Unified Audit Policies 25-26

Configuring a Unified Audit Policy with a Condition 25-26

Example: Auditing Access to SQL*Plus 25-28

Example: Auditing Actions Not in Specific Hosts 25-28

Example: Auditing Both a System-Wide and a Schema-Specific Action 25-28

Example: Auditing a Condition Per Statement Occurrence 25-29

Example: Unified Audit Session ID of a Current Administrative User Session 25-29

Example: Unified Audit Session ID of a Current Non-Administrative User
Session 25-29

How Audit Records from Conditions Appear in the Audit Trail 25-30

Auditing Application Context Values 25-30

About Auditing Application Context Values 25-30

Configuring Application Context Audit Settings 25-31

Disabling Application Context Audit Settings 25-32

Example: Auditing Application Context Values in a Default Database 25-32

Example: Auditing Application Context Values from Oracle Label Security 25-32

How Audited Application Contexts Appear in the Audit Trail 25-32

Auditing Oracle Database Real Application Security Events 25-33

About Auditing Oracle Database Real Application Security Events 25-33

Oracle Database Real Application Security Auditable Events 25-34

Oracle Database Real Application Security User, Privilege, and Role Audit
Events 25-35

Oracle Database Real Application Security Security Class and ACL Audit
Events 25-36

Oracle Database Real Application Security Session Audit Events 25-37

Oracle Database Real Application Security ALL Events 25-39

Configuring a Unified Audit Policy for Oracle Database Real Application
Security 25-39

Example: Auditing Real Application Security User Account Modifications 25-39

Example: Using a Condition in a Real Application Security Unified Audit
Policy 25-40

How Oracle Database Real Application Security Events Appear in the Audit
Trail 25-40

Auditing Oracle Recovery Manager Events 25-40

About Auditing Oracle Recovery Manager Events 25-40

Oracle Recovery Manager Unified Audit Trail Events 25-41

How Oracle Recovery Manager Audited Events Appear in the Audit Trail 25-42

Auditing Oracle Database Vault Events 25-42

About Auditing Oracle Database Vault Events 25-44

Who Is Audited in Oracle Database Vault? 25-44

About Oracle Database Vault Unified Audit Trail Events 25-45

Oracle Database Vault Realm Audit Events 25-45

Oracle Database Vault Rule Set and Rule Audit Events 25-46

xxxiv

Oracle Database Vault Command Rule Audit Events 25-47

Oracle Database Vault Factor Audit Events 25-47

Oracle Database Vault Secure Application Role Audit Events 25-49

Oracle Database Vault Oracle Label Security Audit Events 25-49

Oracle Database Vault Oracle Data Pump Audit Events 25-50

Oracle Database Vault Enable and Disable Audit Events 25-50

Configuring a Unified Audit Policy for Oracle Database Vault 25-51

Example: Auditing an Oracle Database Vault Realm 25-51

Example: Auditing an Oracle Database Vault Rule Set 25-52

Example: Auditing Two Oracle Database Vault Events 25-52

Example: Auditing Oracle Database Vault Factors 25-52

How Oracle Database Vault Audited Events Appear in the Audit Trail 25-52

Auditing Oracle Label Security Events 25-53

About Auditing Oracle Label Security Events 25-53

Oracle Label Security Unified Audit Trail Events 25-54

Oracle Label Security Auditable User Session Labels 25-56

Configuring a Unified Audit Policy for Oracle Label Security 25-56

Example: Auditing Oracle Label Security Session Label Attributes 25-57

Example: Excluding a User from an Oracle Label Security Policy 25-57

Example: Auditing Oracle Label Security Policy Actions 25-57

Example: Querying for Audited OLS Session Labels 25-58

How Oracle Label Security Audit Events Appear in the Audit Trail 25-58

Auditing Oracle Data Mining Events 25-59

About Auditing Oracle Data Mining Events 25-59

Oracle Data Mining Unified Audit Trail Events 25-59

Configuring a Unified Audit Policy for Oracle Data Mining 25-60

Example: Auditing Multiple Oracle Data Mining Operations by a User 25-60

Example: Auditing All Failed Oracle Data Mining Operations by a User 25-60

How Oracle Data Mining Events Appear in the Audit Trail 25-61

Auditing Oracle Data Pump Events 25-61

About Auditing Oracle Data Pump Events 25-62

Oracle Data Pump Unified Audit Trail Events 25-62

Configuring a Unified Audit Policy for Oracle Data Pump 25-62

Example: Auditing Oracle Data Pump Import Operations 25-63

Example: Auditing All Oracle Data Pump Operations 25-63

How Oracle Data Pump Audited Events Appear in the Audit Trail 25-63

Auditing Oracle SQL*Loader Direct Load Path Events 25-64

About Auditing in Oracle SQL*Loader Direct Path Load Events 25-64

Oracle SQL*Loader Direct Load Path Unified Audit Trail Events 25-64

Configuring a Unified Audit Trail Policy for Oracle SQL*Loader Direct Path
Events 25-65

xxxv

Example: Auditing Oracle SQL*Loader Direct Path Load Operations 25-65

How SQL*Loader Direct Path Load Audited Events Appear in the Audit Trail 25-65

Auditing Only Top-Level Statements 25-66

About Auditing Only Top-Level SQL Statements 25-66

Configuring a Unified Audit Policy to Capture Only Top-Level Statements 25-67

Example: Auditing Top-Level Statements 25-67

How the Unified Audit Trail Captures Top-Level SQL Statements 25-67

Unified Audit Policies or AUDIT Settings in a Multitenant Environment 25-67

About Local, CDB Common, and Application Common Audit Policies 25-68

Traditional Auditing in a Multitenant Environment 25-69

Configuring a Local Unified Audit Policy or Common Unified Audit Policy 25-70

Example: Local Unified Audit Policy 25-72

Example: CDB Common Unified Audit Policy 25-72

Example: Application Common Unified Audit Policy 25-73

How Local or Common Audit Policies or Settings Appear in the Audit Trail 25-73

Altering Unified Audit Policies 25-74

About Altering Unified Audit Policies 25-74

Altering a Unified Audit Policy 25-75

Example: Altering a Condition in a Unified Audit Policy 25-76

Example: Altering an Oracle Label Security Component in a Unified Audit
Policy 25-76

Example: Altering Roles in a Unified Audit Policy 25-76

Example: Dropping a Condition from a Unified Audit Policy 25-77

Example: Altering an Existing Unified Audit Policy Top-Level Statement
Audits 25-77

Enabling and Applying Unified Audit Policies to Users and Roles 25-77

About Enabling Unified Audit Policies 25-77

Enabling a Unified Audit Policy 25-79

Example: Enabling a Unified Audit Policy 25-80

Disabling Unified Audit Policies 25-80

About Disabling Unified Audit Policies 25-80

Disabling a Unified Audit Policy 25-80

Example: Disabling a Unified Audit Policy 25-81

Dropping Unified Audit Policies 25-81

About Dropping Unified Audit Policies 25-81

Dropping a Unified Audit Policy 25-82

Example: Disabling and Dropping a Unified Audit Policy 25-82

Tutorial: Auditing Nondatabase Users 25-82

Step 1: Create the User Accounts and Ensure the User OE Is Active 25-83

Step 2: Create the Unified Audit Policy 25-83

Step 3: Test the Policy 25-84

Step 4: Remove the Components of This Tutorial 25-85

xxxvi

Auditing Activities with the Predefined Unified Audit Policies 25-85

Logon Failures Predefined Unified Audit Policy 25-86

Secure Options Predefined Unified Audit Policy 25-87

Oracle Database Parameter Changes Predefined Unified Audit Policy 25-87

User Account and Privilege Management Predefined Unified Audit Policy 25-88

Center for Internet Security Recommendations Predefined Unified Audit Policy 25-88

Oracle Database Real Application Security Predfined Audit Policies 25-89

System Administrator Operations Predefined Unified Audit Policy 25-89

Session Operations Predefined Unified Audit Policy 25-90

Oracle Database Vault Predefined Unified Audit Policy for DVSYS and
LBACSYS Schemas 25-90

Oracle Database Vault Predefined Unified Audit Policy for Default Realms and
Command Rules 25-91

Auditing Specific Activities with Fine-Grained Auditing 25-91

About Fine-Grained Auditing 25-92

Where Are Fine-Grained Audit Records Stored? 25-93

Who Can Perform Fine-Grained Auditing? 25-93

Fine-Grained Auditing on Tables or Views That Have Oracle VPD Policies 25-94

Fine-Grained Auditing in a Multitenant Environment 25-94

Fine-Grained Audit Policies with Editions 25-95

Using the DBMS_FGA PL/SQL Package to Manage Fine-Grained Audit Policies 25-96

About the DBMS_FGA PL/SQL PL/SQL Package 25-96

The DBMS_FGA PL/SQL Package with Editions 25-97

The DBMS_FGA PL/SQL Package in a Multitenant Environment 25-97

Creating a Fine-Grained Audit Policy 25-97

Example: Using DBMS_FGA.ADD_POLICY to Create a Fine-Grained Audit
Policy 25-100

Disabling a Fine-Grained Audit Policy 25-101

Enabling a Fine-Grained Audit Policy 25-102

Dropping a Fine-Grained Audit Policy 25-102

Tutorial: Adding an Email Alert to a Fine-Grained Audit Policy 25-103

About This Tutorial 25-103

Step 1: Install and Configure the UTL_MAIL PL/SQL Package 25-104

Step 2: Create User Accounts 25-105

Step 3: Configure an Access Control List File for Network Services 25-106

Step 4: Create the Email Security Alert PL/SQL Procedure 25-107

Step 5: Create and Test the Fine-Grained Audit Policy Settings 25-108

Step 6: Test the Alert 25-108

Step 7: Remove the Components of This Tutorial 25-109

Audit Policy Data Dictionary Views 25-110

xxxvii

26

Administering the Audit Trail

Managing the Unified Audit Trail 26-1

When and Where Are Audit Records Created? 26-2

Activities That Are Mandatorily Audited 26-3

How Do Cursors Affect Auditing? 26-4

Writing the Unified Audit Trail Records to the AUDSYS Schema 26-4

Writing the Unified Audit Trail Records to SYSLOG or the Windows Event
Viewer 26-5

About Writing the Unified Audit Trail Records to SYSLOG or the Windows
Event Viewer 26-5

Enabling syslog and Windows Event Viewer Captures for the Unified Audit
Trail 26-6

When Audit Records Are Written to the Operating System 26-7

Moving Operating System Audit Records into the Unified Audit Trail 26-8

Disabling Unified Auditing 26-9

Exporting and Importing the Unified Audit Trail Using Oracle Data Pump 26-10

Archiving the Audit Trail 26-10

Archiving the Traditional Operating System Audit Trail 26-11

Archiving the Unified and Traditional Database Audit Trails 26-11

Purging Audit Trail Records 26-12

About Purging Audit Trail Records 26-12

Selecting an Audit Trail Purge Method 26-13

Purging the Audit Trail on a Regularly Scheduled Basis 26-13

Manually Purging the Audit Trail at a Specific Time 26-13

Scheduling an Automatic Purge Job for the Audit Trail 26-14

About Scheduling an Automatic Purge Job 26-14

Step 1: If Necessary, Tune Online and Archive Redo Log Sizes 26-15

Step 2: Plan a Timestamp and Archive Strategy 26-15

Step 3: Optionally, Set an Archive Timestamp for Audit Records 26-15

Step 4: Create and Schedule the Purge Job 26-17

Manually Purging the Audit Trail 26-18

About Manually Purging the Audit Trail 26-18

Using DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL to Manually Purge the
Audit Trail 26-19

Other Audit Trail Purge Operations 26-20

Enabling or Disabling an Audit Trail Purge Job 26-21

Setting the Default Audit Trail Purge Job Interval for a Specified Purge Job 26-21

Deleting an Audit Trail Purge Job 26-22

Clearing the Archive Timestamp Setting 26-23

Example: Directly Calling a Unified Audit Trail Purge Operation 26-23

xxxviii

Audit Trail Management Data Dictionary Views 26-24

Part VII Appendixes

A Keeping Your Oracle Database Secure

About the Oracle Database Security Guidelines A-1

Downloading Security Patches and Contacting Oracle Regarding Vulnerabilities A-2

Downloading Security Patches and Workaround Solutions A-2

Contacting Oracle Security Regarding Vulnerabilities in Oracle Database A-2

Guidelines for Securing User Accounts and Privileges A-3

Guidelines for Securing Roles A-7

Guidelines for Securing Passwords A-8

Guidelines for Securing Data A-11

Guidelines for Securing the ORACLE_LOADER Access Driver A-12

Guidelines for Securing a Database Installation and Configuration A-14

Guidelines for Securing the Network A-14

Client Connection Security A-15

Network Connection Security A-16

Secure Sockets Layer Connection Security A-19

Guideline for Securing External Procedures A-20

Guidelines for Auditing A-20

Manageability of Audited Information A-21

Audits of Typical Database Activity A-22

Audits of Suspicious Database Activity A-22

Recommended Audit Settings A-23

Best Practices for Querying the UNIFIED_AUDIT_TRAIL Data Dictionary View A-24

Addressing the CONNECT Role Change A-24

Why Was the CONNECT Role Changed? A-25

How the CONNNECT Role Change Affects Applications A-25

How the CONNECT Role Change Affects Database Upgrades A-26

How the CONNECT Role Change Affects Account Provisioning A-26

How the CONNECT Role Change Affects Applications Using New
Databases A-26

How the CONNECT Role Change Affects Users A-26

How the CONNECT Role Change Affects General Users A-27

How the CONNECT Role Change Affects Application Developers A-27

How the CONNECT Role Change Affects Client Server Applications A-27

Approaches to Addressing the CONNECT Role Change A-27

Creating a New Database Role A-28

Restoring the CONNECT Privilege A-29

xxxix

Data Dictionary View to Show CONNECT Grantees A-30

Least Privilege Analysis Studies A-30

B Data Encryption and Integrity Parameters

About Using sqlnet.ora for Data Encryption and Integrity B-1

Sample sqlnet.ora File B-1

Data Encryption and Integrity Parameters B-3

About the Data Encryption and Integrity Parameters B-3

SQLNET.ENCRYPTION_SERVER B-4

SQLNET.ENCRYPTION_CLIENT B-5

SQLNET.CRYPTO_CHECKSUM_SERVER B-5

SQLNET.CRYPTO_CHECKSUM_CLIENT B-6

SQLNET.ENCRYPTION_TYPES_SERVER B-6

SQLNET.ENCRYPTION_TYPES_CLIENT B-7

SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER B-7

SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT B-8

C Kerberos, SSL, and RADIUS Authentication Parameters

Parameters for Clients and Servers Using Kerberos Authentication C-1

Parameters for Clients and Servers Using Secure Sockets Layer C-1

Ways to Configure a Parameter for Secure Sockets Layer C-2

Secure Sockets Layer Authentication Parameters for Clients and Servers C-2

Cipher Suite Parameters for Secure Sockets Layer C-3

Supported Secure Sockets Layer Cipher Suites C-4

Secure Sockets Layer Version Parameters C-4

Secure Sockets Layer Client Authentication Parameters C-5

Secure Sockets Layer X.509 Server Match Parameters C-6

SSL_SERVER_DN_MATCH C-6

SSL_SERVER_CERT_DN C-7

Oracle Wallet Location C-7

Parameters for Clients and Servers Using RADIUS Authentication C-8

sqlnet.ora File Parameters C-8

SQLNET.AUTHENTICATION_SERVICES C-9

SQLNET.RADIUS_ALTERNATE C-10

SQLNET.RADIUS_ALTERNATE_PORT C-10

SQLNET.RADIUS_ALTERNATE_TIMEOUT C-10

SQLNET.RADIUS_ALTERNATE_RETRIES C-10

SQLNET.RADIUS_AUTHENTICATION C-11

SQLNET.RADIUS_AUTHENTICATION_INTERFACE C-11

xl

SQLNET.RADIUS_AUTHENTICATION_PORT C-11

SQLNET.RADIUS_AUTHENTICATION_TIMEOUT C-12

SQLNET.RADIUS_AUTHENTICATION_RETRIES C-12

SQLNET.RADIUS_CHALLENGE_RESPONSE C-12

SQLNET.RADIUS_CHALLENGE_KEYWORD C-13

SQLNET.RADIUS_CLASSPATH C-13

SQLNET.RADIUS_SECRET C-13

SQLNET.RADIUS_SEND_ACCOUNTING C-14

Minimum RADIUS Parameters C-14

Initialization File Parameter for RADIUS C-14

D Integrating Authentication Devices Using RADIUS

About the RADIUS Challenge-Response User Interface D-1

Customizing the RADIUS Challenge-Response User Interface D-1

Example: Using the OracleRadiusInterface Interface D-2

E Oracle Database FIPS 140-2 Settings

About the Oracle Database FIPS 140-2 Settings E-1

Configuring FIPS 140-2 for Transparent Data Encryption and DBMS_CRYPTO E-1

Configuration of FIPS 140-2 for Secure Sockets Layer E-2

Configuring the SSLFIPS_140 Parameter for Secure Sockets Layer E-3

Approved SSL Cipher Suites for FIPS 140-2 E-3

Postinstallation Checks for FIPS 140-2 E-4

Verifying FIPS 140-2 Connections E-4

F Managing Public Key Infrastructure (PKI) Elements

Uses of the orapki Utility F-1

orapki Utility Syntax F-2

Creating Signed Certificates for Testing Purposes F-2

Viewing a Certificate F-3

Controlling MD5 and SHA-1 Certificate Use F-3

Managing Oracle Wallets with orapki Utility F-3

About Managing Wallets with orapki F-4

Creating, Viewing, and Modifying Wallets with orapki F-4

Creating a PKCS#12 Wallet F-4

Creating an Auto-Login Wallet F-5

Creating an Auto-Login Wallet That Is Associated with a PKCS#12 Wallet F-5

Creating an Auto-Login Wallet That Is Local to the Computer and User Who
Created It F-6

xli

Viewing a Wallet F-6

Modifying the Password for a Wallet F-6

Converting an Oracle Wallet to Use the AES256 Algorithm F-7

Adding Certificates and Certificate Requests to Oracle Wallets with orapki F-7

Adding a Certificate Request to an Oracle Wallet F-7

Adding a Trusted Certificate to an Oracle Wallet F-8

Adding a Root Certificate to an Oracle Wallet F-8

Adding a User Certificate to an Oracle Wallet F-8

Verifying Credentials on the Hardware Device That Uses a PKCS#11 Wallet
F-9

Adding PKCS#11 Information to an Oracle Wallet F-9

Exporting Certificates and Certificate Requests from Oracle Wallets with orapki F-9

Management of Certificate Revocation Lists (CRLs) with orapki Utility F-10

orapki Usage F-10

Example: Wallet with a Self-Signed Certificate and Export of the Certificate F-10

Example: Creating a Wallet and a User Certificate F-11

orapki Utility Commands Summary F-12

orapki cert create F-13

orapki cert display F-13

orapki crl delete Command F-14

orapki crl display F-14

orapki crl hash F-15

orapki crl list F-15

orapki crl upload F-16

orapki wallet add F-16

orapki wallet convert F-17

orapki wallet create F-17

orapki wallet display F-18

orapki wallet export F-18

G How the Unified Auditing Migration Affects Individual Audit Features

Glossary

Index

xlii

List of Tables

2-1 Predefined Oracle Database Administrative User Accounts 2-34

2-2 Predefined Oracle Database Non-Administrative User Accounts 2-36

2-3 Default Sample Schema User Accounts 2-37

2-4 Data Dictionary Views That Display Information about Users and Profiles 2-38

3-1 Password-Specific Settings in the Default Profile 3-7

3-2 Parameters Controlling Reuse of a Previous Password 3-11

3-3 Effect of SQLNET.ALLOWED_LOGON_VERSION_SERVER on Password Version

Generation 3-33

3-4 Data Dictionary Views That Describe User Authentication 3-85

4-1 Roles to Allow Access to SYS Schema Objects 4-13

4-2 Properties of Roles and Their Description 4-27

4-3 Oracle Database Predefined Roles 4-32

4-4 System Privileges for Named Types 4-72

4-5 Privileges for Object Tables 4-75

4-6 Data Dictionary Views That Display Privilege and Role Information 4-94

5-1 Data Dictionary Views That Display Privilege Analysis Information 5-28

8-1 Data Dictionary Views That Display Information about Access Control Lists 8-23

10-1 Features Affected by the One Big Application User Model 10-3

10-2 Expected Behaviors for extproc Process Authentication and Impersonation Settings 10-14

10-3 How Privileges Relate to Schema Objects 10-25

10-4 SQL Statements Permitted by Database Object Privileges 10-26

11-1 Types of Application Contexts 11-5

11-2 Setting the DBMS_SESSION.SET_CONTEXT username and client_id Parameters 11-35

11-3 Data Dictionary Views That Display Information about Application Contexts 11-57

12-1 DBMS_RLS Procedures 12-9

12-2 DBMS_RLS.ADD_POLICY Policy Types 12-27

12-3 Oracle Virtual Private Database in Different User Models 12-52

12-4 Data Dictionary Views That Display Information about VPD Policies 12-53

13-1 DBMS_RLS.ADD_POLICY Parameters Used for TSDP Policies 13-24

13-2 Unified Audit Policy Settings Used for TSDP Policies 13-31

13-3 Fine-Grained Audit Policy Settings Used for TSDP Policies 13-33

13-4 TDE Column Encryption ENCRYPT Settings Used for TSDP Policies 13-36

13-5 Transparent Sensitive Data Protection Views 13-36

14-1 Data Dictionary Views for Encrypted Data Dictionary Credentials 14-6

15-1 DBMS_CRYPTO Package Feature Summary 15-10

xliii

15-2 Data Dictionary Views That Display Information about Encrypted Data 15-19

16-1 Two Forms of Network Attacks 16-3

16-2 Encryption and Data Integrity Negotiations 16-6

16-3 Valid Encryption Algorithms 16-10

17-1 CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL Attributes 17-5

17-2 CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES Attributes 17-5

17-3 CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL Attributes 17-6

17-4 CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES Attributes 17-6

17-5 CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERVICES Attributes 17-7

18-1 Authentication Methods and System Requirements 18-7

19-1 Kerberos Adapter Command-Line Utilities 19-2

19-2 Common Security Administrator/DBA Configuration and Administrative Tasks 19-4

20-1 Kerberos-Specific sqlnet.ora Parameters 20-9

20-2 Options for the okinit Utility 20-12

20-3 Options for the oklist Utility 20-14

20-4 Options for the okdstry Utility 20-15

20-5 okcreate Utility Options for Automatic Keytab Creation 20-15

21-1 Secure Sockets Layer Cipher Suites 21-14

21-2 SSL_DH Secure Sockets Layer Cipher Suites 21-15

22-1 RADIUS Authentication Components 22-3

24-1 Differences Between MIxed Mode Audting and Pure Unified Auditing 24-6

25-1 Administrative Users and Administrative Privileges 25-12

25-2 Object-Level Standard Database Action Audit Option 25-14

25-3 Auditing Behavior for READ ANY TABLE and SELECT ANY TABLE 25-21

25-4 Oracle Database Real Application Security User, Privilege, and Role Audit Events 25-35

25-5 Oracle Database Real Application Security Security Class and ACL Audit Events 25-36

25-6 Oracle Database Real Application Security Session Audit Events 25-37

25-7 Oracle Database Real Application Security ALL Events 25-39

25-8 Oracle Recovery Manager Columns in UNIFIED_AUDIT_TRAIL View 25-41

25-9 Oracle Database Vault Realm Audit Events 25-45

25-10 Oracle Database Vault Rule Set and Rule Audit Events 25-46

25-11 Oracle Database Vault Command Rule Audit Events 25-47

25-12 Oracle Database Vault Factor Audit Events 25-47

25-13 Oracle Database Vault Secure Application Role Audit Events 25-49

25-14 Oracle Database Vault Oracle Label Security Audit Events 25-50

25-15 Oracle Database Vault Oracle Data Pump Audit Events 25-50

25-16 Oracle Database Vault Enable and Disable Audit Events 25-51

xliv

25-17 Oracle Label Security Audit Events 25-54

25-18 Oracle Data Mining Audit Events 25-59

25-19 How Audit Policies Apply to the CDB Root, Application Root, and Individual PDBs 25-69

25-20 Views That Display Information about Audited Activities 25-110

26-1 Audit Record Field Names for SYSLOG and the Windows Event Viewer 26-5

26-2 Views That Display Information about Audit Trail Management Settings 26-25

A-1 Columns and Contents for DBA_CONNECT_ROLE_GRANTEES A-30

B-1 Algorithm Type Selection B-4

B-2 SQLNET.ENCRYPTION_SERVER Parameter Attributes B-4

B-3 SQLNET.ENCRYPTION_CLIENT Parameter Attributes B-5

B-4 SQLNET.CRYPTO_CHECKSUM_SERVER Parameter Attributes B-5

B-5 SQLNET.CRYPTO_CHECKSUM_CLIENT Parameter Attributes B-6

B-6 SQLNET.ENCRYPTION_TYPES_SERVER Parameter Attributes B-6

B-7 SQLNET.ENCRYPTION_TYPES_CLIENT Parameter Attributes B-7

B-8 SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER Parameter Attributes B-8

B-9 SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT Parameter Attributes B-8

C-1 Kerberos Authentication Parameters C-1

C-2 SSL Authentication Parameters for Clients and Servers C-2

C-3 Cipher Suite Parameters for Secure Sockets Layer C-3

C-4 Secure Sockets Layer Version Parameters C-4

C-5 Secure Sockets Layer Client Authentication Parameters C-5

C-6 SSL_SERVER_DN_MATCH Parameter C-6

C-7 SSL_SERVER_CERT_DN Parameter C-7

C-8 Wallet Location Parameters C-8

C-9 SQLNET.AUTHENTICATION_SERVICES Parameter Attributes C-9

C-10 SQLNET.RADIUS_ALTERNATE Parameter Attributes C-10

C-11 SQLNET.RADIUS_ALTERNATE_PORT Parameter Attributes C-10

C-12 SQLNET.RADIUS_ALTERNATE_TIMEOUT Parameter Attributes C-10

C-13 SQLNET.RADIUS_ALTERNATE_RETRIES Parameter Attributes C-11

C-14 SQLNET.RADIUS_AUTHENTICATION Parameter Attributes C-11

C-15 SQLNET.RADIUS_AUTHENTICATION_INTERFACE Parameter Attributes C-11

C-16 SQLNET.RADIUS_AUTHENTICATION_PORT Parameter Attributes C-12

C-17 SQLNET.RADIUS_AUTHENTICATION_TIMEOUT Parameter Attributes C-12

C-18 SQLNET.RADIUS_AUTHENTICATION_RETRIES Parameter Attributes C-12

C-19 SQLNET.RADIUS_CHALLENGE_RESPONSE Parameter Attributes C-12

C-20 SQLNET.RADIUS_CHALLENGE_KEYWORD Parameter Attributes C-13

C-21 SQLNET.RADIUS_CLASSPATH Parameter Attributes C-13

xlv

C-22 SQLNET.RADIUS_SECRET Parameter Attributes C-14

C-23 SQLNET.RADIUS_SEND_ACCOUNTING Parameter Attributes C-14

E-1 How the DBFIPS_140 Initialization Parameter Affects Platforms E-2

G-1 Availability of Unified Auditing Features Before and After Migration G-1

xlvi

Preface

Welcome to Oracle Database Security Guide. This guide describes how you can
configure security for Oracle Database by using the default database features.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
Oracle Database Security Guide is intended for database administrators (DBAs),
security administrators, application developers, and others tasked with performing the
following operations securely and efficiently.

It covers these areas:

• Designing and implementing security policies to protect the data of an
organization, users, and applications from accidental, inappropriate, or
unauthorized actions

• Creating and enforcing policies and practices of auditing and accountability for
inappropriate or unauthorized actions

• Creating, maintaining, and terminating user accounts, passwords, roles, and
privileges

• Developing applications that provide desired services securely in a variety of
computational models, leveraging database and directory services to maximize
both efficiency and ease of use

To use this document, you need a basic understanding of how and why a database is
used, and basic familiarity with SQL.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

xlvii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documents
For more security-related information, see these Oracle resources:

• Oracle Database Administrator’s Guide

• Oracle Database 2 Day DBA

• Oracle Database Concepts

• Oracle Database Reference

• Oracle Multitenant Administrator's Guide

Many of the examples in this guide use the sample schemas of the seed PDB, which
you can create when you install Oracle Database. See Oracle Database Sample
Schemas for information about how these schemas were created and how you can
use them yourself.

Oracle Technology Network (OTN)

You can download free release notes, installation documentation, updated versions of
this guide, white papers, or other collateral from the Oracle Technology Network
(OTN). Visit

http://www.oracle.com/technetwork/index.html

For security-specific information on OTN, visit

http://www.oracle.com/technetwork/topics/security/whatsnew/index.html

For the latest version of the Oracle documentation, including this guide, visit

http://www.oracle.com/technetwork/documentation/index.html

My Oracle Support

You can find information about security patches, certifications, and the support
knowledge base by visiting My Oracle Support (formerly OracleMetaLink) at

https://support.oracle.com

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xlviii

http://www.oracle.com/technetwork/index.html
http://www.oracle.com/technetwork/topics/security/whatsnew/index.html
http://www.oracle.com/technetwork/documentation/index.html
https://support.oracle.com

Changes in This Release for
Oracle Database Security Guide

This preface contains:

• Changes in Oracle Database Security 19c

• Changes in Oracle Database Security 18c

Changes in Oracle Database Security 19c
Oracle Database Security Guide for Oracle Database 19c has new security features.

• Signature-Based Security for LOB Locators
Starting with this release, you can configure signature-based security for large
object (LOB) locators.

• Default User Accounts Now Schema Only
Using the schema only account feature from Oracle Database release 18c, most
of the Oracle Database supplied schemas (users) now have their passwords
removed to prevent users from authenticating to these accounts.

• Privilege Analysis Now Available in Oracle Database Enterprise Edition
Privilege analysis is now available as part of Oracle Database Enterprise Edition.

• Ability to Grant or Revoke Administrative Privileges to and from Schema-Only
Accounts
Administrative privileges such as SYSOPER and SYSBACKUP can now be granted to
schema-only (passwordless) accounts.

• Automatic Support for Both SASL and Non-SASL Active Directory Connections
Starting with this release, both Simple Authentication and Security Layer (SASL)
and Transport Layer Security (TLS) binds are supported for Microsoft Active
Directory connections.

• Support for Oracle Native Encryption and SSL Authentication for Different Users
Concurrently
In previous releases, Oracle Database prevented the use of both Oracle native
encryption (also called Advanced Networking Option (ANO) encryption) and
Secure Sockets Layer (SSL) authentication together.

• Support for Host Name-Based Partial DN Matching for Matching for Server
Certificates
This new support for partial DN matching adds the ability for the client to further
verify the server certificate.

• Ability to Audit Only Top-Level SQL Statements
The unified auditing top-level statements feature enables you to audit top level
user (or, direct user) activities in the database but without collecting indirect user
activity audit data.

xlix

• Improved Read Performance for the Unified Audit Trial
The AUDSYS.AUD$UNIFIED system table, which stores the unified audit trail records,
has been redesigned to use partition pruning to improve read performance.

• PDB_GUID as Audit Record Field Name for SYSLOG and the Windows Event
Viewer
The audit record fields for SYSLOG and the Windows Event Viewer now have a new
field, PDB_GUID, to identify the pluggable database associated with a unified audit
trail record.

Signature-Based Security for LOB Locators
Starting with this release, you can configure signature-based security for large object
(LOB) locators.

This feature strengthens the security of Oracle Database LOBs, particularly when
instances of LOB data types (CLOB and BLOB) are used in distributed environments.

LOB signature keys can be in both multitenant PDBs or in standalone, non-multitenant
databases. You can enable the encryption of the LOB signature key credentials by
executing the ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS SQL statement;
otherwise, the credentials are stored in obfuscated format. If you choose to store the
LOB signature key in encrypted format, then the database or PDB must have an open
TDE keystore.

Related Topics

• Securing LOBs with LOB Locator Signatures
You can secure large objects (LOB) by regenerating their LOB locator signatures.

Default User Accounts Now Schema Only
Using the schema only account feature from Oracle Database release 18c, most of the
Oracle Database supplied schemas (users) now have their passwords removed to
prevent users from authenticating to these accounts.

This enhancement does not affect the sample schemas. Sample schemas are still
installed with their default passwords.

For the default schemas that are schema only, administrators can still alter these
accounts with passwords if they need to authenticate to the schema, but Oracle
recommends changing the schemas back to a schema-only account afterward.

The benefit of this feature is that administrators no longer have to periodically rotate
the passwords for these Oracle Database-provided schemas. This feature also
reduces the security risk of attackers using default passwords to hack into these
accounts.

Related Topics

• Predefined Schema User Accounts Provided by Oracle Database
The Oracle Database installation process creates predefined administrative, non-
administrative, and sample schema user accounts in the database.

• Schema-Only Accounts
You can create schema-only accounts, that is, the schema user has no password.

Changes in This Release for Oracle Database Security Guide

l

Privilege Analysis Now Available in Oracle Database Enterprise
Edition

Privilege analysis is now available as part of Oracle Database Enterprise Edition.

Privilege analysis runs dynamic analysis of users and applications to find privileges
and roles that are used and unused. Privilege analysis reduces the work to implement
least privilege best practices by showing you exactly what privileges are used and not
used by each account. Privilege analysis is highly performant and designed to work in
test, development, and production databases.

As part of this change, the documentation for privilege analysis has moved from
Oracle Database Vault Administrator’s Guide to Oracle Database Security Guide.

Related Topics

• Performing Privilege Analysis to Find Privilege Use
Privilege analysis dynamically analyzes the privileges and roles that users use and
do not use.

Ability to Grant or Revoke Administrative Privileges to and from
Schema-Only Accounts

Administrative privileges such as SYSOPER and SYSBACKUP can now be granted to
schema-only (passwordless) accounts.

Existing user accounts (active, rarely accessed, and unused users) that are currently
granted administrative privileges can be altered to be schema-only accounts. This
enhancement prevents administrators from having to manage the passwords of these
accounts.

Related Topics

• About Schema-Only Accounts
A schema-only account cannot log in to the database but can proxy in a single
session proxy.

Automatic Support for Both SASL and Non-SASL Active Directory
Connections

Starting with this release, both Simple Authentication and Security Layer (SASL) and
Transport Layer Security (TLS) binds are supported for Microsoft Active Directory
connections.

For centrally managed users, the Oracle database will initially try to connect to Active
Directory using SASL bind. If the Active Directory server rejects the SASL bind
connection, then the Oracle database will automatically attempt the connection again
without SASL bind but still secured with TLS.

The Active Directory administrator is responsible for configuring the connection
parameters for Active Directory server, but does not need to configure the database to
match this new Active Directory connection enhancement. The database will
automatically adjust from using SASL to not using SASL bind.

Changes in This Release for Oracle Database Security Guide

li

Related Topics

• About Configuring the Oracle Database-Microsoft Active Directory Connection
Before you configure this connection, you must have Microsoft Active Directory
installed and configured.

Support for Oracle Native Encryption and SSL Authentication for
Different Users Concurrently

In previous releases, Oracle Database prevented the use of both Oracle native
encryption (also called Advanced Networking Option (ANO) encryption) and Secure
Sockets Layer (SSL) authentication together.

For example, if you set the SQLNET.ENCRYPTION_CLIENT parameter on the client to
required and SQLNET.ENCRYPTION_SERVER on the server to required, and if a TCPS
listener is used, then the ORA-12696 Double Encryption Turned On, login
disallowed error appeared. Starting with this release, you can set a new parameter,
SQLNET.IGNORE_ANO_ENCRYPTION_FOR_TCPS, to TRUE to ignore the
SQLNET.ENCRYPTION_CLIENT or SQLNET.ENCRYPTION_SERVER when there is a conflict
between the use of a TCPS client and either of these two parameters are set to
required.

Related Topics

• Enabling Both Oracle Native Encryption and SSL Authentication for Different
Users Concurrently
Depending on the SQLNET.ENCRYPTION_CLIENT and SQLNET.ENCRYPTION_SERVER
settings, you can configure Oracle Database to allow both Oracle native
encryption and SSL authentication for different users concurrently.

Support for Host Name-Based Partial DN Matching for Matching for
Server Certificates

This new support for partial DN matching adds the ability for the client to further verify
the server certificate.

The earlier ability to perform a full DN match with the server certificate during the
Secure Sockets Layer (SSL) handshake is still supported. The client supports both full
and partial DN matching. If the server DN matching is enabled, then partial DN
matching is the default.

Allowing partial and full DN matching for certificate verification enables more flexibility
based on how the certificates were created.

Related Topics

• About Configuring the Server DN Matching and Using TCP/IP with SSL on the
Client
In addition to validating the server certificate's certificate chain, you can perform an
extra check through server DN matching.

Changes in This Release for Oracle Database Security Guide

lii

Ability to Audit Only Top-Level SQL Statements
The unified auditing top-level statements feature enables you to audit top level user
(or, direct user) activities in the database but without collecting indirect user activity
audit data.

You can use this feature to audit only the top-level user directly issued events, without
the overhead of indirect SQL statements. Top-level statements are SQL statements
that users directly issue. These statements can be important for both security and
compliance. SQL statements run from within PL/SQL procedures or functions are not
considered top level, so they may be less relevant for auditing purposes.

Related Topics

• Auditing Only Top-Level Statements
A top-level statement audit refers to filtering audit records so that only a single
audit record for a specified audited statement.

Improved Read Performance for the Unified Audit Trial
The AUDSYS.AUD$UNIFIED system table, which stores the unified audit trail records, has
been redesigned to use partition pruning to improve read performance.

This redesign entailed the addition of a new column to the AUDSYS.AUD$UNIFIED table.
The UNIFIED_AUDIT_TRAIL data dictionary view, which enables you to query the
AUDSYS.AUD$UNIFIED table audit records, now has the EVENT_TIMESTAMP_UTC column
to correspond with the new AUDSYS.AUD$UNIFIED table column. As part of this
enhancement, the data type of the EVENT_TIMESTAMP column in the
GV$UNIFIED_AUDIT_TRAIL view has changed TIMESTAMP(6).

Oracle recommends that when you query the UNIFIED_AUDIT_TRAIL view, to include
the EVENT_TIMESTAMP_UTC column in the WHERE clause to achieve partitioning pruning.

Related Topics

• Best Practices for Querying the UNIFIED_AUDIT_TRAIL Data Dictionary View
To get the best results from querying the UNIFIED_AUDIT_TRAIL data dictionary
view, you should follow these guidelines.

PDB_GUID as Audit Record Field Name for SYSLOG and the
Windows Event Viewer

The audit record fields for SYSLOG and the Windows Event Viewer now have a new
field, PDB_GUID, to identify the pluggable database associated with a unified audit trail
record.

In a multitenant database deployment, the pluggable database that generated a
unified audit trail record must be identified in the audit trail. Starting with this release,
the SYSLOG and Windows Event Viewer will have a new field, PDB_GUID, to capture this
information. The data type is VARCHAR2.

Changes in This Release for Oracle Database Security Guide

liii

Related Topics

• About Writing the Unified Audit Trail Records to SYSLOG or the Windows Event
Viewer
With this feature, you can write some of the key Unified Audit fields to SYSLOG or
the Windows Event Viewer.

Changes in Oracle Database Security 18c
Oracle Database Security Guide for Oracle Database 18c has new security features.

• Ability to Create Schema Only Accounts
You now can create schema only accounts, for object ownership without allowing
clients to log in to the schema.

• Integration of Active Directory Services with Oracle Database
Starting with this release, you can authenticate and authorize users directly with
Microsoft Active Directory.

• Ability to Encrypt Sensitive Credential Data in the Data Dictionary
Starting with this release, you can encrypt sensitive credential data that is stored in
the data dictionary SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL system tables.

• PDB Lockdown Profile Enhancements
This release introduces several enhancements for PDB lockdown profiles.

• New Authentication and Certification Parameters
This release introduces four new parameters that can be used to strengthen
security on the database.

• Ability to Write Unified Audit Trail Records to SYSLOG or the Windows Event
Viewer
Starting with this release you can write unified audit trail records to SYSLOG on
UNIX or the Windows Event Viewer on Microsoft Windows.

• Ability to Use Oracle Data Pump to Export and Import the Unified Audit Trail
Starting with this release, you can include the unified audit trail in either full or
partial export and import operations using Oracle Data Pump.

Ability to Create Schema Only Accounts
You now can create schema only accounts, for object ownership without allowing
clients to log in to the schema.

A user (or other client) cannot log in to the database schema unless the account is
modified to accept an authentication method. However, this type of schema user can
proxy in a single session proxy.

Related Topics

• Schema-Only Accounts
You can create schema-only accounts, that is, the schema user has no password.

Integration of Active Directory Services with Oracle Database
Starting with this release, you can authenticate and authorize users directly with
Microsoft Active Directory.

Changes in This Release for Oracle Database Security Guide

liv

With centrally managed users (CMU) Oracle database users and roles can map
directly to Active Directory users and groups without using Oracle Enterprise User
Security (EUS) or another intermediate directory service. EUS is not being replaced or
deprecated; this new feature is another simpler option if you only want to authenticate
and authorize users with Active Directory. Centrally managed users is designed to be
extended to work with other LDAP version 3–compliant directory services, but
Microsoft Active Directory is the only service that is supported in this release.

The direct integration with directory services supports better security through simpler
configuration with the enterprise identity management architecture. In the past, users
may have avoided the security practice of integrating the database with directory
services due to the difficulty and complexity. With the direct integration, you can
improve your security posture by more easily integrating the Database to the
enterprise directory service.

Related Topics

• Configuring Centrally Managed Users with Microsoft Active Directory
Oracle Database can authenticate and authorize Microsoft Active Directory users
with the database directly without intermediate directories or Oracle Enterprise
User Security.

Ability to Encrypt Sensitive Credential Data in the Data Dictionary
Starting with this release, you can encrypt sensitive credential data that is stored in the
data dictionary SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL system tables.

In previous releases, and by default in this release, the data in these tables is
obfuscated. However, because of the rise of de-obfuscation algorithms that are
available on the Internet, it is important to use a more secure solution to protect this
type of sensitive data. You can manually encrypt this data by using the ALTER
DATABASE DICTIONARY SQL statement.

Related Topics

• Encryption of Sensitive Credential Data in the Data Dictionary
You can encrypt sensitive credential information, such as passwords that are
stored in the data dictionary.

PDB Lockdown Profile Enhancements
This release introduces several enhancements for PDB lockdown profiles.

These enhancements are as follows:

• You now can create PDB lockdown profiles in the application root, as well as in the
CDB root. In previous releases, you only could create the profile in the CDB root.
The ability to create a PDB lockdown profile in an application container enables
you to more finely control access to the applications that are associated with the
application container.

• You now can create a PDB lockdown profile that is based on another PDB
lockdown profile, either a static base profile or a dynamic base profile. You can
control whether subsequent changes to the base profile are reflected in the newly
created profile that uses the base profile.

Changes in This Release for Oracle Database Security Guide

lv

• Three default PDB lockown profiles have been added for this release:
PRIVATE_DBAAS, SAAS, and PUBLIC_DBAAS. These profiles benefit Cloud
environments.

• A new dynamic data dictionary view, V$LOCKDOWN_RULES, is available. This view
enables the local user to see the lockdown rules that are applicable in the PDB.

This feature benefits environments that need enforced security and isolation in PDB
provisioning.

Related Topics

• Restricting Operations on PDBs Using PDB Lockdown Profiles
You can use PDB lockdown profiles in a multitenant environment to restrict sets of
user operations in pluggable databases (PDBs).

New Authentication and Certification Parameters
This release introduces four new parameters that can be used to strengthen security
on the database.

The new parameters are as follows:

• The ADD_SSLV3_TO_DEFAULT sqlnet.ora parameter controls the use of the Secure
Sockets Layer version 3, which can be vulnerable to Padding Oracle On
Downgraded Legacy Encryption (POODLE) attacks

• The ADG_ACCOUNT_INFO_TRACKING initialization parameter controls login attempts
on Oracle Data Guard standby databases by enabling you to maintain a single
global copy of user account information across all Data Guard primary and
standby databases.

The ACCEPT_MD5_CERTS sqlnet.ora parameter enables or disables the MD5
algorithm.

• The ACCEPT_SHA1_CERTS sqlnet.ora parameter enables or disables the SHA-1
algorithm.

Related Topics

• Step 1G: Disable SSLv3 on the Server and Client (Optional)
SSLv3 refers to Secure Sockets Layer version 3.

• Controlling MD5 and SHA-1 Certificate Use
You can use the sqlnet.ora file to control whether MD5 and SHA-1 signed
certificates are accepted.

• Oracle Database Reference

Ability to Write Unified Audit Trail Records to SYSLOG or the Windows
Event Viewer

Starting with this release you can write unified audit trail records to SYSLOG on UNIX
or the Windows Event Viewer on Microsoft Windows.

On Microsoft Windows, you can enable or disable this behavior. On UNIX systems,
you can specify the SYSLOG facility to use and the type logging category for the
unified audit record, such as whether it is an alert or for an emergency. To configure
this behavior, you can set the UNIFIED_AUDIT_SYSTEMLOG initialization parameter.

Changes in This Release for Oracle Database Security Guide

lvi

Related Topics

• Writing the Unified Audit Trail Records to SYSLOG or the Windows Event Viewer
You can write the unified audit trail records to SYSLOG or the Windows Event
Viewer by setting an initialization parameter.

Ability to Use Oracle Data Pump to Export and Import the Unified Audit
Trail

Starting with this release, you can include the unified audit trail in either full or partial
export and import operations using Oracle Data Pump.

There is no change to the user interface. When you perform the export or import
operation of a database, the unified audit trail is automatically included in the Data
Pump dump files.

This feature benefits users who, as in previous releases, must create dump files of
audit records.

Related Topics

• Exporting and Importing the Unified Audit Trail Using Oracle Data Pump
You can include the unified audit trail in Oracle Database Pump export and import
dump files.

Changes in This Release for Oracle Database Security Guide

lvii

1
Introduction to Oracle Database Security

Oracle Database provides a rich set of default security features to manage user
accounts, authentication, privileges, application security, encryption, network traffic,
and auditing.

• About Oracle Database Security
You can use the default Oracle Database features to configure security in several
areas for your Oracle Database installation.

• Additional Oracle Database Security Resources
In addition to the security resources described in this guide, Oracle Database
provides several other database security products.

About Oracle Database Security
You can use the default Oracle Database features to configure security in several
areas for your Oracle Database installation.

The areas in which you can configure security are as follows:

• User accounts. When you create user accounts, you can secure them in a variety
of ways. You can also create password profiles to better secure password policies
for your site. Managing Security for Oracle Database Users, describes how to
manage user accounts.

• Authentication methods. Oracle Database provides several ways to configure
authentication for users and database administrators. For example, you can
authenticate users on the database level, from the operating system, and on the
network. Configuring Authentication, describes how authentication in Oracle
Database works. See also Configuring Centrally Managed Users with Microsoft
Active Directory.

• Privileges and roles. You can use privileges and roles to restrict user access to
data. The following chapters describe how to manage privileges and roles:

– Configuring Privilege and Role Authorization

– Performing Privilege Analysis to Find Privilege Use

– Managing Security for Definer's Rights and Invoker's Rights

– Managing Fine-Grained Access in PL/SQL Packages and Types

– Managing Security for a Multitenant Environment in Enterprise Manager

• Application security. The first step to creating a database application is to ensure
that it is properly secure. Managing Security for Application Developers, discusses
how to incorporate application security into your application security policies.

• User session information using application context. An application context is a
name-value pair that holds the session information. You can retrieve session
information about a user, such as the user name or terminal, and restrict database
and application access for that user based on this information. Using Application
Contexts to Retrieve User Information, describes how to use application contexts.

1-1

• Database access on the row and column level using Virtual Private
Database. A Virtual Private Database policy dynamically imbeds a WHERE
predicate into SQL statements the user issues. Using Oracle Virtual Private
Database to Control Data Access, describes how to create and manage Virtual
Private Database policies.

• Classify and protect data in different categories. You can find all table columns
in a database that hold sensitive data (such as credit card or Social Security
numbers), classify this data, and then create a policy that protects this data as a
whole for a given class. Using Transparent Sensitive Data Protection , explains
how to create Transparent Sensitive Data Protection policies.

• Network data encryption. Manually Encrypting Data, explains how to use the
DBMS_CRYPTO PL/SQL package to encrypt data as it travels on the network to
prevent unauthorized access to that data. You can configure native Oracle Net
Services data encryption and integrity for both servers and clients, which are
described in Configuring Oracle Database Native Network Encryption and Data
Integrity.

• Thin JDBC client network configuration. You can configure thin Java Database
Connectivity (JDBC) clients to securely connect to Oracle databases. Configuring
the Thin JDBC Client Network, provides detailed information.

• Strong authentication. You can configure your databases to use strong
authentication with Oracle authentication adapters that support various third-party
authentication services, including SSL with digital certificates. Oracle Database
provides the following strong authentication support:

– Centralized authentication and single sign-on.

– Kerberos

– Remote Authentication Dial-in User Service (RADIUS)

– Secure Sockets Layer (SSL)

The following chapters cover strong authentication:

– Introduction to Strong Authentication

– Strong Authentication Administration Tools

– Configuring Kerberos Authentication

– Configuring Secure Sockets Layer Authentication

– Configuring RADIUS Authentication

– Customizing the Use of Strong Authentication

• Auditing database activities. You can audit database activities in general terms,
such as auditing all SQL statements, SQL privileges, schema objects, and network
activity. Or, you can audit in a granular manner, such as when the IP addresses
from outside the corporate network is being used. This chapter also explains how
to purge the database audit trail. The following chapters describe how to configure
and administer database auditing.

– Introduction to Auditing

– Configuring Audit Policies

– Administering the Audit Trail

In addition, Keeping Your Oracle Database Secure, provides guidelines that you
should follow when you secure your Oracle Database installation.

Chapter 1
About Oracle Database Security

1-2

Additional Oracle Database Security Resources
In addition to the security resources described in this guide, Oracle Database provides
several other database security products.

These products are as follows:

• Oracle Advanced Security. See Oracle Database Advanced Security Guide for
information about Transparent Data Encryption and Oracle Data Redaction.

• Oracle Label Security. Oracle Label Security applies classification labels to data,
allowing you to filter user access to data at the row level. See Oracle Label
Security Administrator’s Guide for detailed information about Oracle Label
Security.

• Oracle Database Vault. Oracle Database Vault provides fine-grained access
control to your sensitive data, including protecting data from privileged users.
Oracle Database Vault Administrator’s Guide describes how to use Oracle
Database Vault.

• Oracle Audit Vault and Database Firewall. Oracle Audit Vault and Database
Firewall collects database audit data from sources such as Oracle Database audit
trail tables, database operating system audit files, and database redo logs. Using
Oracle Audit Vault and Database Firewall, you can create alerts on suspicious
activities, and create reports on the history of privileged user changes, schema
modifications, and even data-level access.

• Oracle Enterprise User Security. Oracle Enterprise User Security enables you to
manage user security at the enterprise level. Oracle Database Enterprise User
Security Administrator's Guide explains how to configure Oracle Enterprise User
Security.

• Oracle Enterprise Manager Data Masking and Subsetting Pack. Data Masking
and Subsetting Pack helps reduce this risk by irreversibly replacing the original
sensitive data with fictitious data so that production data can be shared safely with
IT developers or offshore business partners. See Oracle Database Testing Guide
for additional information.

In addition to these products, you can find the latest information about Oracle
Database security, such as new products and important information about security
patches and alerts, by visiting the Security Technology Center on Oracle Technology
Network at

http://www.oracle.com/technetwork/topics/security/whatsnew/index.html

Chapter 1
Additional Oracle Database Security Resources

1-3

http://www.oracle.com/technetwork/topics/security/whatsnew/index.html

Part I
Managing User Authentication
and Authorization

Part I describes how to manage user authentication and authorization.

• Managing Security for Oracle Database Users
You can manage the security for Oracle Database users in many ways, such as
enforcing restrictions on the way that passwords are created.

• Configuring Authentication
Authentication means to verify the identity of users or other entities that connect to
the database.

• Configuring Privilege and Role Authorization
Privilege and role authorization controls the permissions that users have to
perform day-to-day tasks.

• Performing Privilege Analysis to Find Privilege Use
Privilege analysis dynamically analyzes the privileges and roles that users use and
do not use.

• Configuring Centrally Managed Users with Microsoft Active Directory
Oracle Database can authenticate and authorize Microsoft Active Directory users
with the database directly without intermediate directories or Oracle Enterprise
User Security.

• Managing Security for Definer's Rights and Invoker's Rights
Invoker’s rights and definer’s rights have several security advantages when used
to control access to privileges to run user-created procedures.

• Managing Fine-Grained Access in PL/SQL Packages and Types
Oracle Database provides PL/SQL packages and types for fine-grained access to
control access to external network services and wallets.

• Managing Security for a Multitenant Environment in Enterprise Manager
You can manage common and local users and roles for a multitenant environment
by using Oracle Enterprise Manager.

2
Managing Security for Oracle Database
Users

You can manage the security for Oracle Database users in many ways, such as
enforcing restrictions on the way that passwords are created.

• About User Security
You can secure users accounts through strong passwords and by specifying
special limits for the users.

• Creating User Accounts
A user account can have restrictions such as profiles, a default role, and
tablespace restrictions.

• Altering User Accounts
The ALTER USER statement modifies user accounts, such their default tablespace
or profile, or changing a user's password.

• Configuring User Resource Limits
A resource limit defines the amount of system resources that are available for a
user.

• Dropping User Accounts
You can drop user accounts if the user is not in a session, and if the user has
objects in the user’s schema.

• Predefined Schema User Accounts Provided by Oracle Database
The Oracle Database installation process creates predefined administrative, non-
administrative, and sample schema user accounts in the database.

• Database User and Profile Data Dictionary Views
Oracle Database provides a set of data dictionary views that provide information
about the settings that you used to create users and profiles.

About User Security
You can secure users accounts through strong passwords and by specifying special
limits for the users.

Each Oracle database has a list of valid database users. To access a database, a user
must run a database application, and connect to the database instance using a valid
user name defined in the database.

When you create user accounts, you can specify limits to the user account. You can
also set limits on the amount of various system resources available to each user as
part of the security domain of that user. Oracle Database provides a set of database
views that you can query to find information such as resource and session information.
This chapter also describes profiles. A profile is collection of attributes that apply to a
user. It enables a single point of reference for any of multiple users that share those
exact attributes.

2-1

Oracle Database provides a set of predefined administrative, non-administrative, and
sample schema accounts. The Oracle Database installation guides provide a listing of
these accounts. To find the status of these accounts, query the USERNAME and
ACCOUNT_STATUS columns of the DBA_USERS data dictionary view.

Related Topics

• Configuring Privilege and Role Authorization
Privilege and role authorization controls the permissions that users have to
perform day-to-day tasks.

Creating User Accounts
A user account can have restrictions such as profiles, a default role, and tablespace
restrictions.

• About Common Users and Local Users
In a multitenant environment, CDB common users and application common have
access to their respective containers, and local users are specific to a PDB.

• Who Can Create User Accounts?
Users who has been granted the CREATE USER system privilege can create user
accounts, including user accounts to be used as proxy users.

• Creating a New User Account That Has Minimum Database Privileges
When you create a new user account, you should enable this user to access the
database.

• Restrictions on Creating the User Name for a New Account
When you specify a name for a user account, be aware of restrictions such as
naming conventions and whether the name is unique.

• Assignment of User Passwords
The IDENTIFIED BY clause of the CREATE USER statement assigns the user a
password.

• Default Tablespace for the User
A default tablespace stores objects that users create.

• Tablespace Quotas for a User
The tablespace quota defines how much space to provide for a user's tablespace.

• Temporary Tablespaces for the User
A temporary tablespace contains transient data that persists only for the duration
of a user session.

• Profiles for the User
A profile is a set of limits, defined by attributes, on database resources and
password access to the database.

• Creation of a Common User or a Local User
The CREATE USER SQL statement can be used to create both common (CDB and
application) users and local users.

• Creating a Default Role for the User
A default role is automatically enabled for a user when the user creates a session.

Chapter 2
Creating User Accounts

2-2

About Common Users and Local Users
In a multitenant environment, CDB common users and application common have
access to their respective containers, and local users are specific to a PDB.

• About Common Users
Oracle provides two types of common users: CDB common users and application
common users.

• How Plugging in PDBs Affects CDB Common Users
Plugging a non-CDB into a CDB as a PDB affects both Oracle-supplied
administrative and user-created accounts and privileges.

• About Local Users
In a multitenant environment, a local user is a database user that exists only in a
single PDB.

About Common Users
Oracle provides two types of common users: CDB common users and application
common users.

A CDB common user is a database user whose single identity and password are
known in the CDB root and in every existing and future pluggable database (PDB),
including any application roots. All Oracle-supplied administrative user accounts, such
as SYS and SYSTEM, are CDB common users and can navigate across the system
container. CDB common users can have different privileges in different PDBs. For
example, the user SYSTEM can switch between PDBs and use the privileges that are
granted to SYSTEM in the current PDB. However, if one of the PDBs is Oracle Database
Vault-enabled, then the Database Vault restrictions, such as SYSTEM not being allowed
to create user accounts, apply to SYSTEM when this user is connected to that PDB.
Oracle does not recommend that you change the privileges of the Oracle-supplied
CDB common users.

A CDB common user can perform all tasks that an application common user can
perform, provided that appropriate privileges have been granted to that user.

An application common user is a user account that is created in an application root,
and is common only within this application container. In other words, the application
common user does not have access to the entire CDB environment like CDB common
users. An application common user is responsible for activities such as creating (which
includes plugging), opening, closing, unplugging, and dropping application PDBs. This
user can create application common objects in the application root. You can create an
application common user only when you are connected to an application root. The
ability for users to access the application common objects is subject to the same
privileges as local and CDB common objects. For example, a local user in a PDB that
is associated with an application root has access to only the objects in that PDB for
which the user has privileges. In the application root itself, you can commonly grant a
privilege on a CDB common object that will apply across the application container.

Both of these types of common users are responsible for managing the common
objects in their respective roots. If the CDB common user or the application common
user has the appropriate privileges, then this user can perform operations in PDBs as
well, such as granting privileges to local users. These users can also locally grant
common users different privileges in each container.

Chapter 2
Creating User Accounts

2-3

Both CDB and application common users can perform the following activities:

• Granting privileges to common users or common roles. That is, a CDB common
user can grant a privilege to a common user or role, and the scope within which
this privilege applies is determined by the container (CDB root, application root, or
PDB) in which the statement is issued and whether the privilege is granted
commonly (in the CDB root or the application root). A CDB common user
connected to an application root can commonly grant a privilege on a CDB
common object, and that privilege will apply across the application container.

The following diagram illustrates the access hierarchy with CDB common users,
application common users, and local users:

CDB

Application PDBs

Application Root

PDBs

Root (CDB$ROOT)

CDB common users are defined in the CDB root and may be able to access all
PDBs within the CDB, including application roots and their application PDBs.
Application common users are defined in the application root and have access to
the PDBs that belong to the application container. Local users in either the CDB
PDBs or the application PDBs have access only to the PDBs in which the local
user resides.

• The state of a PDB can be altered by a suitably privileged user who can issue the
ALTER PLUGGABLE DATABASE statement from the CDB root, from an application root
(if a PDB is an application PDB that belongs to the application container), or from
a PDB itself.

One difference between CDB common users and application common users is that
only a CDB common user can run an ALTER DATABASE statement that specifies the
recovery clauses that apply to the entire CDB.

Chapter 2
Creating User Accounts

2-4

See Also:

• About Creating Common User Accounts

• About Commonly and Locally Granted Privileges for more information
about how privileges work in with PDBs

• Oracle Database Concepts for more conceptual information about CDB
common users and application common users

How Plugging in PDBs Affects CDB Common Users
Plugging a non-CDB into a CDB as a PDB affects both Oracle-supplied administrative
and user-created accounts and privileges.

This affects the passwords of these CDB common user accounts, and privileges of all
accounts in the newly plugged-in database.

The following actions take place:

• The Oracle-supplied administrative accounts are merged with the existing
common user accounts.

• User-created accounts are merged with the existing user-created common user
accounts.

• The passwords of the existing CDB common user accounts take precedence over
the passwords for the accounts from the non-CDB.

• If you had modified the privileges of a user account in its original non-CDB, then
these privileges are saved, but they only apply to the PDB that was created when
the PDB was plugged into the CDB, as locally granted privileges. For example,
suppose you had granted the user SYSTEM a role called hr_mgr in the non-CDB
db1. After the db1 database has been added to a CDB, then SYSTEM can only use
the hr_mgr role in the db1 PDB, and not in any other PDBs.

The following two scenarios are possible when you plug a PDB (for example, pdb_1)
from one CDB (cdb_1) to a another CDB (cdb_2):

• cdb_1 has the common user c##cdb1_user. cdb_2 does not have this user.

c##cdb1_user remains in PDB_1 but this account is locked. To resurrect this
account, you must close pdb_1, recreate common user c##cdb1_user in the root of
cdb_2, and then re-open pdb_1.

• cdb_1 and cdb_2 both have common user c##common_user.

Both c##common_user accounts are merged. c##common_user retains its password
in cdb_2. Any privileges assigned to it in cdb_2 but not in cdb_1 are retained locally
in pdb_1.

About Local Users
In a multitenant environment, a local user is a database user that exists only in a
single PDB.

Chapter 2
Creating User Accounts

2-5

Local users can have administrative privileges, but these privileges apply only in the
PDB in which the local user account was created. A local user account has the
following characteristics, which distinguishes it from common user accounts:

• Local user accounts cannot create common user accounts or commonly grant
them privileges. A common user with the appropriate privileges can create and
modify common or local user accounts and grant and revoke privileges, commonly
or locally. A local user can create and modify local user accounts or locally grant
privileges to common or local users in a given PDB.

• You can grant local user accounts common roles. However, the privileges
associated with the common role only apply to the local user's PDB.

• The local user account must be unique only within its PDB.

• With the appropriate privileges, a local user can access objects in a common
user's schema. For example, a local user can access a table within the schema of
a common user if the common user has granted the local user privileges to access
it.

• You can editions-enable a local user account but not a common user account.

Related Topics

• About Creating Local User Accounts
Be aware of local user account restrictions such as where they can be created,
naming conventions, and objects stored in their schemas.

• Oracle Database Concepts

Who Can Create User Accounts?
Users who has been granted the CREATE USER system privilege can create user
accounts, including user accounts to be used as proxy users.

Because the CREATE USER system privilege is a powerful privilege, a database
administrator or security administrator is usually the only user who has this system
privilege.

If you want to create users who themselves have the privilege to create users, then
include the WITH ADMIN OPTION clause in the GRANT statement. For example:

GRANT CREATE SESSION TO lbrown WITH ADMIN OPTION;

As with all user accounts to whom you grant privileges, grant these privileges to
trusted users only.

In a multitenant environment, you must have the commonly granted CREATE USER
system privilege to create common user accounts. To create local user accounts, you
must have a commonly granted CREATE USER privilege or a locally granted CREATE
USER privilege in the PDB in which the local user account will be created.

Chapter 2
Creating User Accounts

2-6

Note:

As a security administrator, you should create your own roles and assign
only those privileges that are needed. For example, many users formerly
granted the CONNECT privilege did not need the additional privileges CONNECT
used to provide. Instead, only CREATE SESSION was actually needed. By
default, the SET CONTAINER privilege is granted to CONNECT role.

Creating organization-specific roles gives an organization detailed control of
the privileges it assigns, and protects it in case Oracle Database changes the
roles that it defines in future releases.

Related Topics

• Configuring Privilege and Role Authorization
Privilege and role authorization controls the permissions that users have to
perform day-to-day tasks.

Creating a New User Account That Has Minimum Database Privileges
When you create a new user account, you should enable this user to access the
database.

1. Use the CREATE USER statement to create a new user account.

For example:

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE example
 QUOTA 10M ON example
 TEMPORARY TABLESPACE temp
 QUOTA 5M ON system
 PASSWORD EXPIRE;

Follow the guidelines in Minimum Requirements for Passwords to replace
password with a password that is secure.

This example creates a local user account and specifies the user password,
default tablespace, temporary tablespace where temporary segments are created,
tablespace quotas, and profile.

2. At minimum, grant the user the CREATE SESSION privilege so that the user can
access the database instance.

GRANT CREATE SESSION TO jward;

A newly created user cannot connect to the database until he or she has the
CREATE SESSION privilege. If the user must access Oracle Enterprise Manager,
then you should also grant the user the SELECT ANY DICTIONARY privilege.

Related Topics

• Restrictions on Creating the User Name for a New Account
When you specify a name for a user account, be aware of restrictions such as
naming conventions and whether the name is unique.

Chapter 2
Creating User Accounts

2-7

• Assignment of User Passwords
The IDENTIFIED BY clause of the CREATE USER statement assigns the user a
password.

• Default Tablespace for the User
A default tablespace stores objects that users create.

• Tablespace Quotas for a User
The tablespace quota defines how much space to provide for a user's tablespace.

• Temporary Tablespaces for the User
A temporary tablespace contains transient data that persists only for the duration
of a user session.

• Profiles for the User
A profile is a set of limits, defined by attributes, on database resources and
password access to the database.

• Creation of a Common User or a Local User
The CREATE USER SQL statement can be used to create both common (CDB and
application) users and local users.

Restrictions on Creating the User Name for a New Account
When you specify a name for a user account, be aware of restrictions such as naming
conventions and whether the name is unique.

• Uniqueness of User Names
Each user has an associated schema; within a schema, each schema object must
have a unique name.

• User Names in a Multitenant Environment
Within each PDB, a user name must be unique with respect to other user names
and roles in that PDB.

• Case Sensitivity for User Names
How you create a user name controls the case sensitivity in which the user name
is stored in the database.

Uniqueness of User Names
Each user has an associated schema; within a schema, each schema object must
have a unique name.

Oracle Database will prevent you from creating a user name if it is already exists. You
can check existing names by querying the USERNAME column of the DBA_USERS data
dictionary view.

User Names in a Multitenant Environment
Within each PDB, a user name must be unique with respect to other user names and
roles in that PDB.

Note the following restrictions:

• For common user names, names for user-created common users must begin with
a common user prefix. By default, for CDB common users, this prefix is C##. For
application common users, this prefix is an empty string. This means that there are
no restrictions on the name that can be assigned to an application common user

Chapter 2
Creating User Accounts

2-8

other than that it cannot start with the prefix reserved for CDB common users. For
example, you could name a CDB common user c##hr_admin and an application
common user hr_admin.

The COMMON_USER_PREFIX parameter in CDB$ROOT defines the common user prefix.
You can change this setting, but do so only with great care.

• For local user names, the name cannot start with C## (or c##)

• A user and a role cannot have the same name.

Case Sensitivity for User Names
How you create a user name controls the case sensitivity in which the user name is
stored in the database.

For example:

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk
 CONTAINER = CURRENT;

User jward is stored in the database in upper-case letters. For example:

SELECT USERNAME FROM ALL_USERS;

USERNAME

JWARD
...

However, if you enclose the user name in double quotation marks, then the name is
stored using the case sensitivity that you used for the name. For example:

CREATE USER "jward" IDENTIFIED BY password;

So, when you query the ALL_USERS data dictionary view, you will find that the user
account is stored using the case that you used to create it.

SELECT USERNAME FROM ALL_USERS;

USERNAME

jward
...

User JWARD and user jward are both stored in the database as separate user
accounts. Later on, if you must modify or drop the user that you had created using
double quotation marks, then you must enclose the user name in double quotation
marks.

For example:

DROP USER "jward";

Chapter 2
Creating User Accounts

2-9

Assignment of User Passwords
The IDENTIFIED BY clause of the CREATE USER statement assigns the user a
password.

Ensure that you create a secure password.

In the example in Creating a New User Account That Has Minimum Database
Privileges, the new local user is authenticated using the database. In this case, the
connecting user must supply the correct password to the database to connect
successfully.

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk
 CONTAINER = CURRENT;

Related Topics

• Minimum Requirements for Passwords
Oracle provides a set of minimum requirements for passwords.

• Guidelines for Securing Passwords
Oracle provides guidelines for securing passwords.

Default Tablespace for the User
A default tablespace stores objects that users create.

• About Assigning a Default Tablespace for a User
Each user should have a default tablespace.

• DEFAULT TABLESPACE Clause for Assigning a Default Tablespace
The DEFAULT TABLESPACE clause in the CREATE USER statement assigns a default
tablespace to the user.

About Assigning a Default Tablespace for a User
Each user should have a default tablespace.

When a schema object is created in the user's schema and the DDL statement does
not specify a tablespace to contain the object, the Oracle Database stores the object in
the user's default tablespace.

Tablespaces enable you to separate user data from system data, such as the data that
is stored in the SYSTEM tablespace. You use the CREATE USER or ALTER USER statement
to assign a default tablespace to a user. The default setting for the default tablespaces
of all users is the SYSTEM tablespace. If a user does not create objects, and has no
privileges to do so, then this default setting is fine. However, if a user is likely to create
any type of object, then you should specifically assign the user a default tablespace,
such as the USERS tablespace. Using a tablespace other than SYSTEM reduces
contention between data dictionary objects and user objects for the same data files. In
general, do not store user data in the SYSTEM tablespace.

Chapter 2
Creating User Accounts

2-10

You can use the CREATE TABLESPACE SQL statement to create a permanent default
tablespace other than SYSTEM at the time of database creation, to be used as the
database default for permanent objects. By separating the user data from the system
data, you reduce the likelihood of problems with the SYSTEM tablespace, which can in
some circumstances cause the entire database to become nonfunctional. This default
permanent tablespace is not used by system users, that is, SYS, SYSTEM, and OUTLN,
whose default permanent tablespace is SYSTEM. A tablespace designated as the
default permanent tablespace cannot be dropped. To accomplish this goal, you must
first designate another tablespace as the default permanent tablespace. You can use
the ALTER TABLESPACE SQL statement to alter the default permanent tablespace to
another tablespace. Be aware that this will affect all users or objects created after the
ALTER DDL statement is executed.

You can also set a user default tablespace during user creation, and change it later
with the ALTER USER statement. Changing the user default tablespace affects only
objects created after the setting is changed.

When you specify the default tablespace for a user, also specify a quota on that
tablespace.

DEFAULT TABLESPACE Clause for Assigning a Default Tablespace
The DEFAULT TABLESPACE clause in the CREATE USER statement assigns a default
tablespace to the user.

In the following CREATE USER statement, the default tablespace for local user jward is
data_ts:

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk
 CONTAINER = CURRENT;

Related Topics

• Tablespace Quotas for a User
The tablespace quota defines how much space to provide for a user's tablespace.

Tablespace Quotas for a User
The tablespace quota defines how much space to provide for a user's tablespace.

• About Assigning a Tablespace Quota for a User
You can assign each user a tablespace quota for any tablespace, except a
temporary tablespace.

• CREATE USER Statement for Assigning a Tablespace Quota
The QUOTA clause of the CREATE USER statement assigns the quotas for a
tablespace.

• Restriction of the Quota Limits for User Objects in a Tablespace
You can restrict the quota limits for user objects in a tablespace so that the current
quota is zero.

Chapter 2
Creating User Accounts

2-11

• Grants to Users for the UNLIMITED TABLESPACE System Privilege
To permit a user to use an unlimited amount of any tablespace in the database,
grant the user the UNLIMITED TABLESPACE system privilege.

About Assigning a Tablespace Quota for a User
You can assign each user a tablespace quota for any tablespace, except a temporary
tablespace.

Assigning a quota accomplishes the following:

• Users with privileges to create certain types of objects can create those objects in
the specified tablespace.

• Oracle Database limits the amount of space that can be allocated for storage of a
user's objects within the specified tablespace to the amount of the quota.

By default, a user has no quota on any tablespace in the database. If the user has the
privilege to create a schema object, then you must assign a quota to allow the user to
create objects. At a minimum, assign users a quota for the default tablespace, and
additional quotas for other tablespaces in which they can create objects. The
maximum amount of space that you can assign for a tablespace is 2 TB. If you need
more space, then specify UNLIMITED for the QUOTA clause.

You can assign a user either individual quotas for a specific amount of disk space in
each tablespace or an unlimited amount of disk space in all tablespaces. Specific
quotas prevent a user's objects from using too much space in the database.

You can assign quotas to a user tablespace when you create the user, or add or
change quotas later. (You can find existing user quotas by querying the
USER_TS_QUOTAS view.) If a new quota is less than the old one, then the following
conditions remain true:

• If a user has already exceeded a new tablespace quota, then the objects of a user
in the tablespace cannot be allocated more space until the combined space of
these objects is less than the new quota.

• If a user has not exceeded a new tablespace quota, or if the space used by the
objects of the user in the tablespace falls under a new tablespace quota, then the
user's objects can be allocated space up to the new quota.

CREATE USER Statement for Assigning a Tablespace Quota
The QUOTA clause of the CREATE USER statement assigns the quotas for a tablespace.

The following CREATE USER statement assigns quotas for the test_ts and data_ts
tablespaces:

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 500K ON data_ts
 QUOTA 100M ON test_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk
 CONTAINER = CURRENT;

Chapter 2
Creating User Accounts

2-12

Restriction of the Quota Limits for User Objects in a Tablespace
You can restrict the quota limits for user objects in a tablespace so that the current
quota is zero.

To restrict the quote limits, use the ALTER USER SQL statement.

After a quota of zero is assigned, the objects of the user in the tablespace remain, and
the user can still create new objects, but the existing objects will not be allocated any
new space. For example, you could not insert data into one of this user's existing
tables. The operation will fail with an ORA-1536 space quota exceeded for tables
error.

Grants to Users for the UNLIMITED TABLESPACE System Privilege
To permit a user to use an unlimited amount of any tablespace in the database, grant
the user the UNLIMITED TABLESPACE system privilege.

The UNLIMITED TABLESPACE privilege overrides all explicit tablespace quotas for the
user. If you later revoke the privilege, then you must explicitly grant quotas to
individual tablespaces. You can grant this privilege only to users, not to roles.

Before granting the UNLIMITED TABLESPACE system privilege, consider the
consequences of doing so.

Advantage:

• You can grant a user unlimited access to all tablespaces of a database with one
statement.

Disadvantages:

• The privilege overrides all explicit tablespace quotas for the user.

• You cannot selectively revoke tablespace access from a user with the UNLIMITED
TABLESPACE privilege. You can grant selective or restricted access only after
revoking the privilege.

Temporary Tablespaces for the User
A temporary tablespace contains transient data that persists only for the duration of a
user session.

• About Assigning a Temporary Tablespace for a User
You should assign each user a temporary tablespace.

• TEMPORARY TABLESPACE Clause for Assigning a Temporary Tablespace
The TEMPORARY TABLESPACE clause in the CREATE USER statement assigns a user a
temporary tablespace.

About Assigning a Temporary Tablespace for a User
You should assign each user a temporary tablespace.

When a user executes a SQL statement that requires a temporary segment, Oracle
Database stores the segment in the temporary tablespace of the user. These
temporary segments are created by the system when performing sort or join

Chapter 2
Creating User Accounts

2-13

operations. Temporary segments are owned by SYS, which has resource privileges in
all tablespaces.

To create a temporary tablespace, you can use the CREATE TEMPORARY TABLESPACE
SQL statement.

If you do not explicitly assign the user a temporary tablespace, then Oracle Database
assigns the user the default temporary tablespace that was specified at database
creation, or by an ALTER DATABASE statement at a later time. If there is no default
temporary tablespace explicitly assigned, then the default is the SYSTEM tablespace or
another permanent default established by the system administrator. Assigning a
tablespace to be used specifically as a temporary tablespace eliminates file contention
among temporary segments and other types of segments.

Note:

If your SYSTEM tablespace is locally managed, then users must be assigned a
specific default (locally managed) temporary tablespace. They may not be
allowed to default to using the SYSTEM tablespace because temporary objects
cannot be placed in locally managed permanent tablespaces.

You can set the temporary tablespace for a user at user creation, and change it later
using the ALTER USER statement. You can also establish tablespace groups instead of
assigning individual temporary tablespaces.

Related Topics

• Oracle Database Administrator’s Guide

TEMPORARY TABLESPACE Clause for Assigning a Temporary Tablespace
The TEMPORARY TABLESPACE clause in the CREATE USER statement assigns a user a
temporary tablespace.

In the following example, the temporary tablespace of jward is temp_ts, a tablespace
created explicitly to contain only temporary segments.

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk
 CONTAINER = CURRENT;

Profiles for the User
A profile is a set of limits, defined by attributes, on database resources and password
access to the database.

The profile can be applied to multiple users, enabling them to share these attributes.

Chapter 2
Creating User Accounts

2-14

You can specify a profile when you create a user. The PROFILE clause of the CREATE
USER statement assigns a user a profile. If you do not specify a profile, then Oracle
Database assigns the user a default profile.

For example:

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk
 CONTAINER = CURRENT;

In a multitenant environment, different profiles can be assigned to a common user in
the root and in a PDB. When the common user logs in to the PDB, a profile whose
setting applies to the session depends on whether the settings are password-related
or resource-related.

• Password-related profile settings are fetched from the profile that is assigned to
the common user in the root. For example, suppose you assign a common profile
c##prof (in which FAILED_LOGIN_ATTEMPTS is set to 1) to common user c##admin
in the root. In a PDB that user is assigned a local profile local_prof (in which
FAILED_LOGIN_ATTEMPTS is set to 6.) Common user c##admin is allowed only one
failed login attempt when he or she tries to log in to the PDB where loc_prof is
assigned to him.

• Resource-related profile settings specified in the profile assigned to a user in a
PDB get used without consulting resource-related settings in a profile assigned to
the common user in the root. For example, if the profile local_prof that is
assigned to user c##admin in a PDB has SESSIONS_PER_USER set to 2, then
c##admin is only allowed only 2 concurrent sessions when he or she logs in to the
PDB loc_prof is assigned to him, regardless of value of this setting in a profile
assigned to him in the root.

Related Topics

• Managing Resources with Profiles
A profile is a named set of resource limits and password parameters that restrict
database usage and instance resources for a user.

Creation of a Common User or a Local User
The CREATE USER SQL statement can be used to create both common (CDB and
application) users and local users.

• About Creating Common User Accounts
Be aware of common user account restrictions such as where they can be
created, naming conventions, and objects stored in their schemas.

• CREATE USER Statement for Creating a Common User Account
The CREATE USER statement CONTAINER=ALL clause can be used to create a
common user account.

• About Creating Local User Accounts
Be aware of local user account restrictions such as where they can be created,
naming conventions, and objects stored in their schemas.

Chapter 2
Creating User Accounts

2-15

• CREATE USER Statement for Creating a Local User Account
The CREATE USER statement CONTAINER clause can be used to create a local user
account.

About Creating Common User Accounts
Be aware of common user account restrictions such as where they can be created,
naming conventions, and objects stored in their schemas.

To create a common user account, follow these rules:

• To create a CDB common user, you must be connected to the CDB root and have
the commonly granted CREATE USER system privilege.

• To create an application common user, you must be connected to the application
root and have the commonly granted CREATE USER system privilege.

• You can run the CREATE USER ... CONTAINER = ALL statement to create an
application common user in the application root. Afterward, you must synchronize
the application so that this user can be visible in the application PDB. For
example, for an application named saas_sales_app:

ALTER PLUGGABLE DATABASE APPLICATION saas_sales_app SYNC;

• The name that you give the common user who connects to the CDB root must
begin with the prefix that is defined in the COMMON_USER_PREFIX parameter in the
CDB root, which by default is C##. (You can modify this parameter, but only do so
with great caution.) It must contain only ASCII or EBCDIC characters. This naming
requirement does not apply to the names of existing Oracle-supplied user
accounts, such as SYS or SYSTEM. To find the names of existing user accounts,
query the ALL_USERS, CDB_USERS, DBA_USERS, and USER_USERS data dictionary
views.

• The name that you give the common user who connects to the application root
must follow the naming conventions for standard user accounts. By default, the
COMMON_USER_PREFIX parameter in the application root is set to an empty string. In
other words, you can create a user named hr_admin in the application root but not
a user named c##hr_admin.

• To explicitly designate a user account as a CDB or an application common user, in
the CREATE USER statement, specify the CONTAINER=ALL clause. If you are logged
into the CDB or application root, and if you omit the CONTAINER clause from your
CREATE USER statement, then the CONTAINER=ALL clause is implied.

• Do not create objects in the schemas of common users for a CDB. Instead, you
can create application common objects. These are objects whose metadata, and
in case of data links or extended data links, data, is shared between all application
PDBs that belong to the application container. You must create the application
common object in the root of an application container.

• If you specify the DEFAULT TABLESPACE, TEMPORARY TABLESPACE, QUOTA...ON, and
PROFILE clauses in the CREATE USER statement for a CDB or an application
common user account, then you must ensure that these objects—tablespaces,
tablespace groups, and profiles—exist in all containers of the CDB for a CDB
common user, or in the application root and all PDBs of an application container
for an application common user.

Chapter 2
Creating User Accounts

2-16

CREATE USER Statement for Creating a Common User Account
The CREATE USER statement CONTAINER=ALL clause can be used to create a common
user account.

You must be in the CDB root to create a CDB common user account and the
application root to create an application common user account.

The following example shows how to create a CDB common user account from the
CDB root by using the CONTAINER clause, and then granting the user the SET
CONTAINER and CREATE SESSION privileges. Common users must have the SET
CONTAINER system privilege to navigate between containers. When you create the
account, there is a single common password for this common user across all
containers.

CONNECT SYSTEM
Enter password: password
Connected.

CREATE USER c##hr_admin
IDENTIFIED BY password
DEFAULT TABLESPACE data_ts
QUOTA 100M ON test_ts
QUOTA 500K ON data_ts
TEMPORARY TABLESPACE temp_ts
CONTAINER = ALL;

GRANT SET CONTAINER, CREATE SESSION TO c##hr_admin
CONTAINER = ALL;

The next example shows how to create an application common user in the application
root (app_root) by using the CONTAINER clause, and then granting the user the SET
CONTAINER, and CREATE SESSION system privileges. Finally, to synchronize this user so
that it is visible in the application PDBs, the ALTER PLUGGABLE DATABASE APPLICATION
APP$CON SYNC statement is run.

CONNECT SYSTEM@app_root
Enter password: password
Connected.

CREATE USER app_admin
IDENTIFIED BY password
DEFAULT TABLESPACE data_ts
QUOTA 100M ON temp_ts
QUOTA 500K ON data_ts
TEMPORARY TABLESPACE temp_ts
CONTAINER = ALL;

GRANT SET CONTAINER, CREATE SESSION TO app_admin CONTAINER = ALL;

CONNECT SYSTEM@app_hr_pdb
Enter password: password
Connected.

ALTER PLUGGABLE DATABASE APPLICATION APP$CON SYNC;

Chapter 2
Creating User Accounts

2-17

Related Topics

• About Common Users
Oracle provides two types of common users: CDB common users and application
common users.

• Creating a Common User Account in Enterprise Manager
A common user is a user that exists in the root and can access PDBs in the CDB.

About Creating Local User Accounts
Be aware of local user account restrictions such as where they can be created,
naming conventions, and objects stored in their schemas.

To create a local user account, follow these rules:

• To create a local user account, you must be connected to the PDB in which you
want to create the account, and have the CREATE USER privilege.

• The name that you give the local user must not start with a prefix that is reserved
for common users, which by default is C## for CDB common users.

• You can include CONTAINER=CURRENT in the CREATE USER statement to specify the
user as a local user. If you are connected to a PDB and omit this clause, then the
CONTAINER=CURRENT clause is implied.

• You cannot have common users and local users with the same name. However,
you can use the same name for local users in different PDBs. To find the names of
existing user accounts, query the ALL_USERS, CDB_USERS, DBA_USERS, and
USER_USERS data dictionary views.

• Both common and local users connected to a PDB can create local user accounts,
as long as they have the appropriate privileges.

CREATE USER Statement for Creating a Local User Account
The CREATE USER statement CONTAINER clause can be used to create a local user
account.

You must create the local user account in the PDB where you want this account to
reside.

The following example shows how to create a local user account using the CONTAINER
clause.

CONNECT SYSTEM@hrpdb
Enter password: password
Connected.

CREATE USER kmurray
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE hr_profile
 CONTAINER = CURRENT;

Chapter 2
Creating User Accounts

2-18

Related Topics

• Creating a Common User Account in Enterprise Manager
A common user is a user that exists in the root and can access PDBs in the CDB.

• About Local Users
In a multitenant environment, a local user is a database user that exists only in a
single PDB.

Creating a Default Role for the User
A default role is automatically enabled for a user when the user creates a session.

You can assign a user zero or more default roles. You cannot set default roles for a
user in the CREATE USER statement. When you first create a user, the default role
setting for the user is ALL, which causes all roles subsequently granted to the user to
be default roles.

• Use the ALTER USER statement to change the default roles for the user.

For example:

GRANT USER rdale clerk_mgr;

ALTER USER rdale DEFAULT ROLE clerk_mgr;

Before a role can be made the default role for a user, that user must have been
already granted the role.

Related Topics

• Managing User Roles
A user role is a named collection of privileges that you can create and assign to
other users.

Altering User Accounts
The ALTER USER statement modifies user accounts, such their default tablespace or
profile, or changing a user's password.

• About Altering User Accounts
Changing user security settings affects the future user sessions, not the current
session.

• ALTER USER Statement for Altering Common or Local User Accounts
The ALTER USER statement can alter both common and local user accounts.

• Changing Non-SYS User Passwords
Users can change their own passwords but to change other users' passwords,
they must have the correct privileges.

• Changing the SYS User Password
To change the SYS user password, you must use the ORAPWD command line utility.

About Altering User Accounts
Changing user security settings affects the future user sessions, not the current
session.

Chapter 2
Altering User Accounts

2-19

In most cases, you can alter user security settings with the ALTER USER SQL
statement. Users can change their own passwords. However, to change any other
option of a user security domain, you must have the ALTER USER system privilege.
Security administrators are typically the only users that have this system privilege, as it
allows a modification of any user security domain. This privilege includes the ability to
set tablespace quotas for a user on any tablespace in the database, even if the user
performing the modification does not have a quota for a specified tablespace.

In a multitenant environment, you must have the commonly granted ALTER USER
system privilege to alter common user accounts. To alter local user accounts, you
must have a commonly granted ALTER USER privilege or a locally granted ALTER USER
privilege in the PDB in which the local user account resides.

ALTER USER Statement for Altering Common or Local User Accounts
The ALTER USER statement can alter both common and local user accounts.

You cannot change an existing common user account to be a local user account, or
vice versa. In this case, you must create a new account, as either a common user
account or a local user account.

The following example shows how to use the ALTER USER statement to restrict user
c##hr_admin’s ability to view V$SESSION rows to those that pertain to sessions that are
connected to CDB$ROOT, and to the emp_db and hr_db PDBs.

CONNECT SYSTEM
Enter password: password
Connected.

ALTER USER c##hr_admin
 DEFAULT TABLESPACE data_ts
 TEMPORARY TABLESPACE temp_ts
 QUOTA 100M ON data_ts
 QUOTA 0 ON test_ts
 SET CONTAINER_DATA = (emp_db, hr_db) FOR V$SESSION
 CONTAINER = CURRENT;

The ALTER USER statement here changes the security settings for the user
c##hr_admin as follows:

• DEFAULT TABLESPACE and TEMPORARY TABLESPACE are set explicitly to data_ts and
temp_ts, respectively.

• QUOTA 100M gives the data_ts tablespace 100 MB.

• QUOTA 0 revokes the quota on the temp_ts tablespace.

• SET CONTAINER_DATA enables user c##hr_admin to have access to data related to
the emp_db and hr_db PDBs as well as the root when he queries the V$SESSION
view from the root.

Related Topics

• Oracle Database SQL Language Reference

Changing Non-SYS User Passwords
Users can change their own passwords but to change other users' passwords, they
must have the correct privileges.

Chapter 2
Altering User Accounts

2-20

• About Changing Non-SYS User Passwords
Users can use either the PASSWORD command or ALTER USER statement to change
a password.

• Using the PASSWORD Command or ALTER USER Statement to Change a
Password
Most users can change their own passwords with the SQL*Plus PASSWORD
command or the ALTER USER SQL statement.

About Changing Non-SYS User Passwords
Users can use either the PASSWORD command or ALTER USER statement to change a
password.

No special privileges (other than those to connect to the database and create a
session) are required for a user to change his or her own password. Encourage users
to change their passwords frequently. You can find existing users for the current
database instance by querying the ALL_USERS view.

For better security, use the PASSWORD command to change the account's password.
The ALTER USER statement displays the new password on the screen, where it can be
seen by any overly curious coworkers. The PASSWORD command does not display the
new password, so it is only known to you, not to your co-workers. In both cases, the
password is encrypted on the network.

Users must have the PASSWORD and ALTER USER privilege to switch between methods
of authentication. Usually, only an administrator has this privilege.

Related Topics

• Minimum Requirements for Passwords
Oracle provides a set of minimum requirements for passwords.

• Guidelines for Securing Passwords
Oracle provides guidelines for securing passwords.

• Configuring Authentication
Authentication means to verify the identity of users or other entities that connect to
the database.

Using the PASSWORD Command or ALTER USER Statement to Change a
Password

Most users can change their own passwords with the SQL*Plus PASSWORD command or
the ALTER USER SQL statement.

In a multitenant environment, a CDB common user must change his or her password
in the CDB root, and an application common user must change his or her password in
the application root.

• Use one of the following methods to change a user’s password:

– To use the SQL*Plus PASSWORD command to change a password, supply the
user's name, and when prompted, enter the new password.

For example:

PASSWORD andy
Changing password for andy

Chapter 2
Altering User Accounts

2-21

New password: password
Retype new password: password

– To use the ALTER USER SQL statement change a password, include the
IDENTIFIED BY clause.

For example:

ALTER USER andy IDENTIFIED BY password;

Changing the SYS User Password
To change the SYS user password, you must use the ORAPWD command line utility.

• About Changing the SYS User Password
The ORAPWD command line utility can create a new password file that contains the
SYS user password.

• ORAPWD Utility for Changing the SYS User Password
The ORAPWD utility enables you to change the SYS user password.

About Changing the SYS User Password
The ORAPWD command line utility can create a new password file that contains the SYS
user password.

Note the following:

• Before you can change the password of the SYS user account, a password file
must exist for this account.

• The SYS user account is used by most of the internal recursive SQL. Therefore, if
you try to use the ALTER USER statement to change this password while the
database is open, then there is a chance that deadlocks will result. To prevent this
problem, when you migrate a password file, set the ORAPWD sys option to y. Use
the following syntax:

orapwd input_file=input_file_name file=file_name sys=y force=y
Enter password for SYS: new_password

• If you try to use ALTER USER to change the SYS user password, and if the instance
initialization parameter REMOTE_LOGIN_PASSWORDFILE has been set to SHARED, then
you cannot change the SYS password. The ALTER USER statement fails with an
ORA-28046: Password change for SYS disallowed error.

• New accounts are created with created with the SHA-2 (SHA-512) verifier. You can
identify these accounts by querying the PASSWORD_VERSIONS column of the
DBA_USERS data dictionary view. (These password versions are listed as 12C in the
view's output.) Because this verifier is too large to fit in the original password file
format, the password file must be created in the extended format, by using the
format=12 argument in the ORAPWD command. Otherwise, if you try to use the
PASSWORD command to change the SYS password, then an ORA-28017: The
password file is not in the extended format error will be raised.

• In an Oracle Real Application Clusters (Oracle RAC) environment, store the
password in the ASM disk group so that it can be shared by multiple Oracle RAC
instances.

Chapter 2
Altering User Accounts

2-22

Related Topics

• Ensuring Against Password Security Threats by Using the 12C Password Version
The 12C password version enables users to create complex passwords that meet
compliance standards.

• Oracle Database Administrator’s Guide

ORAPWD Utility for Changing the SYS User Password
The ORAPWD utility enables you to change the SYS user password.

You can use the ORAPWD utility with the INPUT_FILE parameter to change the SYS user
password. To migrate the password files to a specific format, include the FORMAT
option. By default, the format is 12.2 if you do not specify the FORMAT option.

Using the ALTER USER statement to change SYS password when the database is open
could lead to deadlocks. Instead, use the ORAPWD utility to change the SYS user
password. To set a new password for the SYS user using the ORAPWD utility, set the SYS
option to Y (yes), use the INPUT_FILE parameter to specify the current password file
name, and use the FILE parameter to create the password file to which the original
password file is migrated. For example:

ORAPWD INPUT_FILE='orapworcl' FILE='orapwd' SYS=Y
Enter password for SYS: new_password

If you do not want to migrate the password file to a different format, then you can
specify the same format as the input_file. For example, assuming that the input file
orapworcl format is 12 and you want to change the SYS user password:

ORAPWD INPUT_FILE='orapworcl' FILE='orapwd' FORMAT=12 SYS=Y
Enter password for SYS: new_password

Related Topics

• Oracle Database Administrator’s Guide

Configuring User Resource Limits
A resource limit defines the amount of system resources that are available for a user.

• About User Resource Limits
You can set limits on the amount of system resources available to each user as
part of the security domain of that user.

• Types of System Resources and Limits
You can limit several types of system resources, including CPU time and logical
reads, at the session level, call level, or both.

• Values for Resource Limits of Profiles
Before you create profiles and set resource limits, you should determine
appropriate values for each resource limit.

• Managing Resources with Profiles
A profile is a named set of resource limits and password parameters that restrict
database usage and instance resources for a user.

Chapter 2
Configuring User Resource Limits

2-23

About User Resource Limits
You can set limits on the amount of system resources available to each user as part of
the security domain of that user.

By doing so, you can prevent the uncontrolled consumption of valuable system
resources such as CPU time.

This resource limit feature is very useful in large, multiuser systems, where system
resources are very expensive. Excessive consumption of these resources by one or
more users can detrimentally affect the other users of the database. In single-user or
small-scale multiuser database systems, the system resource feature is not as
important, because user consumption of system resources is less likely to have a
detrimental impact.

You manage user resource limits by using Database Resource Manager. You can set
password management preferences using profiles, either set individually or using a
default profile for many users. Each Oracle database can have an unlimited number of
profiles. Oracle Database allows the security administrator to enable or disable the
enforcement of profile resource limits universally.

Setting resource limits causes a slight performance degradation when users create
sessions, because Oracle Database loads all resource limit data for each user upon
each connection to the database.

Related Topics

• Oracle Database Administrator’s Guide

Types of System Resources and Limits
You can limit several types of system resources, including CPU time and logical reads,
at the session level, call level, or both.

• Limits to the User Session Level
When a user connects to a database, a session is created. Sessions use CPU
time and memory, on which you can set limits.

• Limits to Database Call Levels
Each time a user runs a SQL statement, Oracle Database performs several steps
to process the statement.

• Limits to CPU Time
When SQL statements and other calls are made to an Oracle database, CPU time
is necessary to process the call.

• Limits to Logical Reads
Input/output (I/O) is one of the most expensive operations in a database system.

• Limits to Other Resources
You can control limits for user concurrent sessions and idle time.

Limits to the User Session Level
When a user connects to a database, a session is created. Sessions use CPU time
and memory, on which you can set limits.

Chapter 2
Configuring User Resource Limits

2-24

You can set several resource limits at the session level. If a user exceeds a session-
level resource limit, then Oracle Database terminates (rolls back) the current
statement and returns a message indicating that the session limit has been reached.
At this point, all previous statements in the current transaction are intact, and the only
operations the user can perform are COMMIT, ROLLBACK, or disconnect (in this case, the
current transaction is committed). All other operations produce an error. Even after the
transaction is committed or rolled back, the user cannot accomplish any more work
during the current session.

Limits to Database Call Levels
Each time a user runs a SQL statement, Oracle Database performs several steps to
process the statement.

During the SQL statement processing, several calls are made to the database as a
part of the different execution phases. To prevent any one call from using the system
excessively, Oracle Database lets you set several resource limits at the call level.

If a user exceeds a call-level resource limit, then Oracle Database halts the processing
of the statement, rolls back the statement, and returns an error. However, all previous
statements of the current transaction remain intact, and the user session remains
connected.

Limits to CPU Time
When SQL statements and other calls are made to an Oracle database, CPU time is
necessary to process the call.

Average calls require a small amount of CPU time. However, a SQL statement
involving a large amount of data or a runaway query can potentially use a large
amount of CPU time, reducing CPU time available for other processing.

To prevent uncontrolled use of CPU time, you can set fixed or dynamic limits on the
CPU time for each call and the total amount of CPU time used for Oracle Database
calls during a session. The limits are set and measured in CPU one-hundredth
seconds (0.01 seconds) used by a call or a session.

Limits to Logical Reads
Input/output (I/O) is one of the most expensive operations in a database system.

SQL statements that are I/O-intensive can monopolize memory and disk use and
cause other database operations to compete for these resources.

To prevent single sources of excessive I/O, you can limit the logical data block reads
for each call and for each session. Logical data block reads include data block reads
from both memory and disk. The limits are set and measured in number of block reads
performed by a call or during a session.

Limits to Other Resources
You can control limits for user concurrent sessions and idle time.

Limits to other resources are as follows:

• You can limit the number of concurrent sessions for each user. Each user
can create only up to a predefined number of concurrent sessions.

Chapter 2
Configuring User Resource Limits

2-25

• You can limit the idle time for a session. If the time between calls in a session
reaches the idle time limit, then the current transaction is rolled back, the session
is terminated, and the resources of the session are returned to the system. The
next call receives an error that indicates that the user is no longer connected to the
instance. This limit is set as a number of elapsed minutes.

Note:

Shortly after a session is terminated because it has exceeded an idle
time limit, the process monitor (PMON) background process cleans up
after the terminated session. Until PMON completes this process, the
terminated session is still counted in any session or user resource limit.

• You can limit the elapsed connect time for each session. If the duration of a
session exceeds the elapsed time limit, then the current transaction is rolled back,
the session is dropped, and the resources of the session are returned to the
system. This limit is set as a number of elapsed minutes.

Note:

Oracle Database does not constantly monitor the elapsed idle time or
elapsed connection time. Doing so reduces system performance.
Instead, it checks every few minutes. Therefore, a session can exceed
this limit slightly (for example, by 5 minutes) before Oracle Database
enforces the limit and terminates the session.

• You can limit the amount of private System Global Area (SGA) space (used
for private SQL areas) for a session. This limit is only important in systems that
use the shared server configuration. Otherwise, private SQL areas are located in
the Program Global Area (PGA). This limit is set as a number of bytes of memory
in the SGA of an instance. Use the characters K or M to specify kilobytes or
megabytes.

Values for Resource Limits of Profiles
Before you create profiles and set resource limits, you should determine appropriate
values for each resource limit.

You can base the resource limit values on the type of operations a typical user
performs. For example, if one class of user does not usually perform a high number of
logical data block reads, then use the ALTER RESOURCE COST SQL statement to set the
LOGICAL_READS_PER_SESSION setting conservatively.

Usually, the best way to determine the appropriate resource limit values for a given
user profile is to gather historical information about each type of resource usage. For
example, the database or security administrator can use the AUDIT SESSION clause to
gather information about the limits CONNECT_TIME, LOGICAL_READS_PER_SESSION.

You can gather statistics for other limits using the Monitor feature of Oracle Enterprise
Manager (or SQL*Plus), specifically the Statistics monitor.

Chapter 2
Configuring User Resource Limits

2-26

Managing Resources with Profiles
A profile is a named set of resource limits and password parameters that restrict
database usage and instance resources for a user.

• About Profiles
A profile is a collection of attributes that apply to a user.

• ora_stig_profile User Profile
The ora_stig_profile user profile is designed for Security Technical
Implementation Guides compliance.

• Creating a Profile
A profile can encompass limits for a specific category, such as limits on passwords
or limits on resources.

• Creating a CDB Profile or an Application Profile
The CREATE PROFILE or ALTER PROFILE statement CONTAINER=ALL clause can
create a profile in a CDB or application root.

• Assigning a Profile to a User
After you create a profile, you can assign it to users.

• Dropping Profiles
You can drop a profile, even if it is currently assigned to a user.

About Profiles
A profile is a collection of attributes that apply to a user.

The profile is used to enable a single point of reference for multiple users who share
these attributes.

You should assign a profile to each user. Each user can have only one profile, and
creating a new one supersedes an earlier assignment.

You can create and manage user profiles only if resource limits are a requirement of
your database security policy. To use profiles, first categorize the related types of
users in a database. Just as roles are used to manage the privileges of related users,
profiles are used to manage the resource limits of related users. Determine how many
profiles are needed to encompass all categories of users in a database and then
determine appropriate resource limits for each profile.

User profiles in Oracle Internet Directory contain attributes pertinent to directory usage
and authentication for each user. Similarly, profiles in Oracle Label Security contain
attributes useful in label security user administration and operations management.
Profile attributes can include restrictions on system resources. You can use Database
Resource Manager to set these types of resource limits.

In a multitenant environment, profiles are useful for the administration and operations
performed in the container databases (CDBs) and application containers, as well as
their associated pluggable databases (PDBs). For both CDB and application
containers, if you define a common profile, then the profile applies to the entire
container and not outside this container. If you create a local profile, then it applies to
that PDB only.

Profile resource limits are enforced only when you enable resource limitation for the
associated database. Enabling this limitation can occur either before starting the

Chapter 2
Configuring User Resource Limits

2-27

database (using the RESOURCE_LIMIT initialization parameter) or while it is open (using
the ALTER SYSTEM statement).

Though password parameters reside in profiles, they are unaffected by
RESOURCE_LIMIT or ALTER SYSTEM and password management is always enabled. In
Oracle Database, Database Resource Manager primarily handles resource allocations
and restrictions.

Any authorized database user can create, assign to users, alter, and drop a profile at
any time (using the CREATE USER or ALTER USER statement). Profiles can be assigned
only to users and not to roles or other profiles. Profile assignments do not affect
current sessions; instead, they take effect only in subsequent sessions.

To find information about current profiles, query the DBA_PROFILES view.

See Also:

Oracle Database Administrator’s Guide for detailed information about
managing resources

ora_stig_profile User Profile
The ora_stig_profile user profile is designed for Security Technical Implementation
Guides compliance.

The ora_stig_profile user profile addresses STIG requirements such as the need
for a password complexity function, maximum failed login attempts, reuse time, and
other requirements. The definition for this profile is as follows:

CREATE PROFILE ora_stig_profile
 password_life_time 60
 password_grace_time 5
 password_reuse_time 365
 password_reuse_max 10
 failed_login_attempts 3
 password_lock_time unlimited
 inactive_account_time 35
 idle_time 15
 password_verify_function ora12c_stig_verify_function;

Creating a Profile
A profile can encompass limits for a specific category, such as limits on passwords or
limits on resources.

To create a profile, you must have the CREATE PROFILE system privilege. To find all
existing profiles, you can query the DBA_PROFILES view.

• Use the CREATE PROFILE statement to create a profile.

For example, to create a profile that defines password limits:

CREATE PROFILE password_prof LIMIT
 FAILED_LOGIN_ATTEMPTS 6
 PASSWORD_LIFE_TIME 60
 PASSWORD_REUSE_TIME 60

Chapter 2
Configuring User Resource Limits

2-28

 PASSWORD_REUSE_MAX 5
 PASSWORD_LOCK_TIME 1/24
 PASSWORD_GRACE_TIME 10
 PASSWORD_VERIFY_FUNCTION DEFAULT;

The following example shows how to create a resource limits profile.

CREATE PROFILE app_user LIMIT
 SESSIONS_PER_USER UNLIMITED
 CPU_PER_SESSION UNLIMITED
 CPU_PER_CALL 3500
 CONNECT_TIME 50
 LOGICAL_READS_PER_SESSION DEFAULT
 LOGICAL_READS_PER_CALL 1200
 PRIVATE_SGA 20K
 COMPOSITE_LIMIT 7500000;

Related Topics

• Oracle Database SQL Language Reference

Creating a CDB Profile or an Application Profile
The CREATE PROFILE or ALTER PROFILE statement CONTAINER=ALL clause can create a
profile in a CDB or application root.

You cannot create local profiles in the CDB root or the application root. The profile that
you create will be applied to all PDBs that are associated with the CDB root or the
application root. Create the profile using the same parameters that you would in a non-
multitenant environment.

• To create a profile in a CDB root or an application root, optionally include the
CONTAINER=ALL clause in the CREATE PROFILE or ALTER PROFILE statement.

The CONTAINER=ALL clause is optional because it is the default when the statement
is processed.

For example:

CREATE PROFILE password_prof LIMIT
 FAILED_LOGIN_ATTEMPTS 6
 PASSWORD_LIFE_TIME 60
 PASSWORD_REUSE_TIME 60
 PASSWORD_REUSE_MAX 5
 PASSWORD_LOCK_TIME 1/24
 PASSWORD_GRACE_TIME 10
 PASSWORD_VERIFY_FUNCTION DEFAULT
 CONTAINER=ALL;

Assigning a Profile to a User
After you create a profile, you can assign it to users.

You can assign a profile to a user who has already been assigned a profile, but the
most recently assigned profile takes precedence. When you assign a profile to an
external user or a global user, the password parameters do not take effect for that
user.

To find the profiles that are currently assigned to users, you can query the DBA_USERS
view.

Chapter 2
Configuring User Resource Limits

2-29

• Use the ALTER USER statement to assign the profile to a user.

For example:

ALTER USER psmith PROFILE app_user;

Dropping Profiles
You can drop a profile, even if it is currently assigned to a user.

When you drop a profile, the drop does not affect currently active sessions. Only
sessions that were created after a profile is dropped use the modified profile
assignments. To drop a profile, you must have the DROP PROFILE system privilege.
You cannot drop the default profile.

• Use the SQL statement DROP PROFILE to drop a profile. To drop a profile that is
currently assigned to a user, use the CASCADE option.

For example:

DROP PROFILE clerk CASCADE;

Any user currently assigned to a profile that is dropped is automatically is assigned to
the DEFAULT profile. The DEFAULT profile cannot be dropped.

Related Topics

• Oracle Database SQL Language Reference

Dropping User Accounts
You can drop user accounts if the user is not in a session, and if the user has objects
in the user’s schema.

• About Dropping User Accounts
Before you drop a user account, you must ensure that you have the appropriate
privileges for doing so.

• Terminating a User Session
A user who is connected to a database cannot be dropped.

• About Dropping a User After the User Is No Longer Connected to the Database
After a user is disconnected from the database, you can use the DROP USER
statement to drop the user.

• Dropping a User Whose Schema Contains Objects
Before you drop a user whose schema contains objects, carefully investigate the
implications of dropping these schema objects.

About Dropping User Accounts
Before you drop a user account, you must ensure that you have the appropriate
privileges for doing so.

To drop a user account in any environment, you must have the DROP USER system
privilege. In a multitenant environment, you must have the commonly granted DROP
USER system privilege to drop common user accounts. To drop local user accounts,
you must have a commonly granted DROP USER privilege or a locally granted DROP
USER privilege in the PDB in which the local user account resides.

Chapter 2
Dropping User Accounts

2-30

When you drop a user account, Oracle Database removes the user account and
associated schema from the data dictionary. It also immediately drops all schema
objects contained in the user schema, if any.

Note:

• If a user schema and associated objects must remain but the user must
be denied access to the database, then revoke the CREATE SESSION
privilege from the user.

• Do not attempt to drop the SYS or SYSTEM user. Doing so corrupts your
database.

Terminating a User Session
A user who is connected to a database cannot be dropped.

You must first terminate the user session (or the user can exit the session) before you
can drop the user.

1. Query the V$SESSION dynamic view to find the session ID of the user whose
session you want to terminate.

For example:

SELECT SID, SERIAL#, USERNAME FROM V$SESSION;

 SID SERIAL# USERNAME
------- --------------- ----------------------
 127 55234 ANDY
...

2. Use the ALTER SYSTEM SQL statement to stop the session for the user, based on
the SID and SERIAL# settings of the V$SESSION view.

For example:

ALTER SYSTEM KILL SESSION '127, 55234';

About Dropping a User After the User Is No Longer Connected to the
Database

After a user is disconnected from the database, you can use the DROP USER statement
to drop the user.

To drop a user and all the user schema objects (if any), you must have the DROP USER
system privilege. Because the DROP USER system privilege is powerful, a security
administrator is typically the only type of user that has this privilege.

If the schema of the user contains any dependent schema objects, then use the
CASCADE option to drop the user and all associated objects and foreign keys that
depend on the tables of the user successfully. If you do not specify CASCADE and the
user schema contains dependent objects, then an error message is returned and the
user is not dropped.

Chapter 2
Dropping User Accounts

2-31

Dropping a User Whose Schema Contains Objects
Before you drop a user whose schema contains objects, carefully investigate the
implications of dropping these schema objects.

1. Query the DBA_OBJECTS data dictionary view to find the objects that are owned by
the user.

For example:

SELECT OWNER, OBJECT_NAME FROM DBA_OBJECTS WHERE OWNER LIKE 'ANDY';

Enter the user name in capital letters. Pay attention to any unknown cascading
effects. For example, if you intend to drop a user who owns a table, then check
whether any views or procedures depend on that particular table.

2. Use the DROP USER SQL statement with the CASCADE clause to drop the user and
all associated objects and foreign keys that depend on the tables that the user
owns.

For example:

DROP USER andy CASCADE;

Predefined Schema User Accounts Provided by Oracle
Database

The Oracle Database installation process creates predefined administrative, non-
administrative, and sample schema user accounts in the database.

• About the Predefined Schema User Accounts
The predefined schema accounts are either created automatically when you run
standard Oracle scripts or they are accounts that represent a fictional company.

• Predefined Administrative Accounts
A default Oracle Database installation provides predefined administrative accounts
to manage commonly used features, such as auditing.

• Predefined Non-Administrative User Accounts
A default Oracle Database installation provides non-administrative user accounts
to manage features such as Oracle Spatial.

• Predefined Sample Schema User Accounts
Oracle Database creates a set of sample user accounts if you install the sample
schemas.

About the Predefined Schema User Accounts
The predefined schema accounts are either created automatically when you run
standard Oracle scripts or they are accounts that represent a fictional company.

The predefined schema accounts are in two categories:

• The predefined administrative and non-administrative schema accounts are
created automatically when you run standard scripts such as the various cat.*sql
scripts. You can find these accounts by querying the USERNAME and
ORACLE_MAINTAINED columns of the ALL_USERS data dictionary view. If the output

Chapter 2
Predefined Schema User Accounts Provided by Oracle Database

2-32

for ORACLE_MAINTAINED is Y, then you must not modify the user account except by
running the script that was used to create it.

• The HR sample schema user account is installed by default. A set of additional
schema user accounts (OE, PM, IX, and SH, along with HR) is available on GitHub.
These schema accounts represent different divisions of a fictional company that
manufactures various products. You can find the status of these accounts by
querying the DBA_USERS data dictionary view. Because the ORACLE_MAINTAINED
column output for these accounts is N, you can modify these accounts without re-
running the scripts that were used to create them.

By default, most of these accounts are authenticated as schema only accounts, except
for the sample schema accounts, which are locked and expired during the database
installation process. When using these accounts, you can configure them to be
authenticated in other ways (such as with password authentication), but Oracle
recommends that for better security, to keep these accounts as schema only accounts.

Related Topics

• Oracle Database Sample Schemas

• Schema-Only Accounts
You can create schema-only accounts, that is, the schema user has no password.

Predefined Administrative Accounts
A default Oracle Database installation provides predefined administrative accounts to
manage commonly used features, such as auditing.

These are accounts that have special privileges required to administer areas of the
database, such as the CREATE ANY TABLE or ALTER SESSION privilege, or EXECUTE
privileges on packages owned by the SYS schema. The default tablespace for
administrative accounts is either SYSTEM or SYSAUX. In a multitenant environment, the
predefined administrative accounts reside in the root database.

To protect these accounts from unauthorized access, the installation process expires
and locks most of these accounts, except where noted in the following table. As the
database administrator, you are responsible for unlocking and resetting these
accounts.

Table 2-1 lists the predefined administrative user accounts, which Oracle Database
automatically creates when you run standard scripts (such as the various cat*.sql
scripts). You can find a complete list of user accounts that are created and maintained
by Oracle by querying the USERNAME and ORACLE_MAINTAINED columns of the
ALL_USERS data dictionary view. If the output for ORACLE_MAINTAINED is Y, then you
must not modify the user account except by running the script that was used to create
it.

To find the status of an account, such as whether it is open, locked, or expired, query
the ACCOUNT_STATUS column of the DBA_USERS data dictionary view. If the account is
schema only, then the status is NONE.

Chapter 2
Predefined Schema User Accounts Provided by Oracle Database

2-33

Table 2-1 Predefined Oracle Database Administrative User Accounts

User Account Description

ANONYMOUS An account that allows HTTP access to Oracle XML DB. It is used in place of the
APEX_PUBLIC_USER account when the Embedded PL/SQL Gateway (EPG) is
installed in the database.

EPG is a Web server that can be used with Oracle Database. It provides the
necessary infrastructure to create dynamic applications.

AUDSYS The internal account used by the unified audit feature to store unified audit trail
records.

See When and Where Are Audit Records Created?.

CTXSYS The account used to administer Oracle Text. Oracle Text enables you to build text
query applications and document classification applications. It provides indexing, word
and theme searching, and viewing capabilities for text.

See Oracle Text Application Developer's Guide.

DBSNMP The account used by the Management Agent component of Oracle Enterprise
Manager to monitor and manage the database.

See Enterprise Manager Cloud Control Administrator's Guide.

DVF The account owned by Oracle Database Vault that contains public functions to
retrieve Database Vault factor values.

See Oracle Database Vault Administrator’s Guide

DVSYS Oracle Database Vault account that is associated with the DV_OWNER (for
administrative configurations) and DV_ACCTMGR (for account management) roles.

See Oracle Database Vault Administrator’s Guide

GGSYS The internal account used by Oracle GoldenGate. It should not be unlocked or used
for a database login.

See Oracle Database Global Data Services Concepts and Administration Guide

GSMADMIN_INTERNAL The internal account that owns the Global Data Services schema. It should not be
unlocked or used for a database login.

See Oracle Database Global Data Services Concepts and Administration Guide

GSMCATUSER The account used by Global Service Manager to connect to the Global Data Services
catalog.

See Oracle Database Global Data Services Concepts and Administration Guide

GSMUSER The account used by Global Service Manager to connect to the database.

See Oracle Database Global Data Services Concepts and Administration Guide

LBACSYS The account used to administer Oracle Label Security (OLS). It is created only when
you install the Label Security custom option.

See Oracle Label Security Administrator’s Guide.

MDSYS The Oracle Spatial and Oracle Multimedia Locator administrator account.

See Oracle Spatial and Graph Developer's Guide.

OLAPSYS The account that owns the OLAP Catalog (CWMLite). This account has been
deprecated, but is retained for backward compatibility.

ORDDATA This account contains the Oracle Multimedia DICOM data model. See Oracle
Multimedia DICOM Developer's Guide for more information.

Chapter 2
Predefined Schema User Accounts Provided by Oracle Database

2-34

Table 2-1 (Cont.) Predefined Oracle Database Administrative User Accounts

User Account Description

ORDPLUGINS The Oracle Multimedia user. Plug-ins supplied by Oracle and third-party, format plug-
ins are installed in this schema.

Oracle Multimedia enables Oracle Database to store, manage, and retrieve images,
audio, video, DICOM format medical images and other objects, or other
heterogeneous media data integrated with other enterprise information.

See Oracle Multimedia User's Guide .

ORDSYS The Oracle Multimedia administrator account.

See Oracle Multimedia User's Guide .

SI_INFORMTN_SCHEMA The account that stores the information views for the SQL/MM Still Image Standard.

See Oracle Multimedia User's Guide.

Note: The SI_INFORMTN_SCHEMA account is deprecated in Oracle Database 12c
release 2 (12.2).

SYS An account used to perform database administration tasks.

See Oracle Database 2 Day DBA.

SYSBACKUP The account used to perform Oracle Recovery Manager recovery and backup
operations.

See Oracle Database Backup and Recovery User’s Guide.

SYSDG The account used to perform Oracle Data Guard operations.

See Oracle Data Guard Concepts and Administration.

SYSKM The account used to manage Transparent Data Encryption.

See Oracle Database Advanced Security Guide.

SYSRAC The account used to manage Oracle Real Application Clusters.

See Oracle Real Application Clusters Administration and Deployment Guide.

SYSTEM A default generic database administrator account for Oracle databases.

For production systems, Oracle recommends creating individual database
administrator accounts and not using the generic SYSTEM account for database
administration operations.

See Oracle Database 2 Day DBA.

WMSYS The account used to store the metadata information for Oracle Workspace Manager.

See Oracle Database Workspace Manager Developer's Guide.

XDB The account used for storing Oracle XML DB data and metadata. For better security,
never unlock the XDB user account.

Oracle XML DB provides high-performance XML storage and retrieval for Oracle
Database data.

See Oracle XML DB Developer’s Guide.

Chapter 2
Predefined Schema User Accounts Provided by Oracle Database

2-35

Note:

If you create an Oracle Automatic Storage Management (Oracle ASM)
instance, then the ASMSNMP account is created. Oracle Enterprise Manager
uses this account to monitor ASM instances to retrieve data from ASM-
related data dictionary views. The ASMSNMP account status is set to OPEN upon
creation, and it is granted the SYSDBA administrative privilege.

Predefined Non-Administrative User Accounts
A default Oracle Database installation provides non-administrative user accounts to
manage features such as Oracle Spatial.

Table 2-2 lists the predefined non-administrative user accounts that Oracle Database
automatically creates when you run standard scripts (such as the various cat*.sql
scripts). You can find a complete list of user accounts that are created and maintained
by Oracle by querying the USERNAME and ORACLE_MAINTAINED columns of the
ALL_USERS data dictionary view. If the output for ORACLE_MAINTAINED is Y, then you
must not modify the user account except by running the script that was used to create
it.

Non-administrative user accounts only have the minimum privileges needed to perform
their jobs. Their default tablespace is USERS. In a multitenant environment, the
predefined non-administrative accounts reside in the root database

To protect these accounts from unauthorized access, the installation process locks
and expires these accounts immediately after installation, except where noted in the
following table. As the database administrator, you are responsible for unlocking and
resetting these accounts.

To find the status of an account, such as whether it is open, locked, or expired, query
the ACCOUNT_STATUS column of the DBA_USERS data dictionary view. If the account is
schema only, then the status is NONE.

Table 2-2 Predefined Oracle Database Non-Administrative User Accounts

User Account Description

DIP The Oracle Directory Integration and Provisioning (DIP) account that is installed with
Oracle Label Security. This profile is created automatically as part of the installation
process for Oracle Internet Directory-enabled Oracle Label Security.

See Oracle Label Security Administrator’s Guide.

MDDATA The schema used by Oracle Spatial for storing Geocoder and router data.

Oracle Spatial provides a SQL schema and functions that enable you to store,
retrieve, update, and query collections of spatial features in an Oracle database.

See Oracle Spatial and Graph Developer's Guide.

ORACLE_OCM The account used with Oracle Configuration Manager. This feature enables you to
associate the configuration information for the current Oracle Database instance with
My Oracle Support. Then when you log a service request, it is associated with the
database instance configuration information.

See Oracle Database Installation Guide for your platform.

Chapter 2
Predefined Schema User Accounts Provided by Oracle Database

2-36

Table 2-2 (Cont.) Predefined Oracle Database Non-Administrative User Accounts

User Account Description

SPATIAL_CSW_ADMIN_USR The Catalog Services for the Web (CSW) account. It is used by Oracle Spatial CSW
Cache Manager to load all record-type metadata and record instances from the
database into the main memory for the record types that are cached.

See Oracle Spatial and Graph Developer's Guide.

SPATIAL_WFS_ADMIN_USR The Web Feature Service (WFS) account. It is used by Oracle Spatial WFS Cache
Manager to load all feature type metadata and feature instances from the database
into main memory for the feature types that are cached.

See Oracle Spatial and Graph Developer's Guide.

XS$NULL An internal account that represents the absence of database user in a session and
the actual session user is an application user supported by Oracle Real Application
Security. XS$NULL has no privileges and does not own any database object. No one
can authenticate as XS$NULL, nor can authentication credentials ever be assigned to
XS$NULL.

Predefined Sample Schema User Accounts
Oracle Database creates a set of sample user accounts if you install the sample
schemas.

The sample schema user accounts are all non-administrative accounts, and their
tablespace is USERS.

To protect these accounts from unauthorized access, the installation process locks
and expires these accounts immediately after installation. As the database
administrator, you are responsible for unlocking and resetting these accounts.

Table 2-3 lists the sample schema user accounts, which represent different divisions
of a fictional company that manufactures various products. You can find the status of
these accounts by querying the DBA_USERS data dictionary view. Because the
ORACLE_MAINTAINED column output for these accounts is N, you can modify these
accounts without re-running the scripts that were used to create them.

To find the status of an account, such as whether it is open, locked, or expired, query
the ACCOUNT_STATUS column of the DBA_USERS data dictionary view. If the account is
schema only, then the status is NONE.

Table 2-3 Default Sample Schema User Accounts

User
Account

Description

HR The account used to manage the HR (Human Resources) schema. This schema stores information
about the employees and the facilities of the company.

OE The account used to manage the OE (Order Entry) schema. This schema stores product inventories
and sales of the company's products through various channels.

PM The account used to manage the PM (Product Media) schema. This schema contains descriptions
and detailed information about each product sold by the company.

IX The account used to manage the IX (Information Exchange) schema. This schema manages
shipping through business-to-business (B2B) applications.

Chapter 2
Predefined Schema User Accounts Provided by Oracle Database

2-37

Table 2-3 (Cont.) Default Sample Schema User Accounts

User
Account

Description

SH The account used to manage the SH (Sales) schema. This schema stores business statistics to
facilitate business decisions.

In addition to the sample schema accounts, Oracle Database provides another sample
schema account, SCOTT. The SCOTT schema contains the tables EMP, DEPT, SALGRADE,
and BONUS. The SCOTT account is used in examples throughout the Oracle Database
documentation set. When you install Oracle Database, the SCOTT account is locked
and expired.

Related Topics

• Oracle Database Sample Schemas

Database User and Profile Data Dictionary Views
Oracle Database provides a set of data dictionary views that provide information about
the settings that you used to create users and profiles.

• Data Dictionary Views That List Information About Users and Profiles
Oracle Database provides a set of data dictionary views that contain information
about database users and profiles.

• Query to Find All Users and Associated Information
The DBA_USERS data dictionary view shows all users and their associated
information as defined in the database.

• Query to List All Tablespace Quotas
The DBA_TS_QUOTAS data dictionary view lists all tablespace quotas assigned to
each user.

• Query to List All Profiles and Assigned Limits
The DBA_PROFILE view lists all profiles in the database and associated settings for
each limit in each profile.

• Query to View Memory Use for Each User Session
The V$SESSION dynamic view lists the memory use for each user session.

Data Dictionary Views That List Information About Users and Profiles
Oracle Database provides a set of data dictionary views that contain information about
database users and profiles.

Table 2-4 lists these data dictionary views. For detailed information about these views,
see Oracle Database Reference.

Table 2-4 Data Dictionary Views That Display Information about Users and
Profiles

View Description

ALL_OBJECTS Describes all objects accessible to the current user

Chapter 2
Database User and Profile Data Dictionary Views

2-38

Table 2-4 (Cont.) Data Dictionary Views That Display Information about Users
and Profiles

View Description

ALL_USERS Lists users visible to the current user, but does not describe
them

DBA_PROFILES Displays all profiles and their limits

DBA_TS_QUOTAS Describes tablespace quotas for users

DBA_OBJECTS Describes all objects in the database

DBA_USERS Describes all users of the database

DBA_USERS_WITH_DEFPWD Lists all user accounts that have default passwords

PROXY_USERS Describes users who can assume the identity of other users

RESOURCE_COST Lists the cost for each resource in terms of CPUs for each
session, reads for each session, connection times, and SGA

USER_PASSWORD_LIMITS Describes the password profile parameters that are assigned to
the user

USER_RESOURCE_LIMITS Displays the resource limits for the current user

USER_TS_QUOTAS Describes tablespace quotas for users

USER_OBJECTS Describes all objects owned by the current user

USER_USERS Describes only the current user

V$SESSION Lists session information for the current database session

V$SESSTAT Displays user session statistics

V$STATNAME Displays decoded statistic names for the statistics shown in the
V$SESSTAT view

The following sections present examples of using these views. These examples
assume that the following statements have been run. The users are all local users.

CREATE PROFILE clerk LIMIT
 SESSIONS_PER_USER 1
 IDLE_TIME 30
 CONNECT_TIME 600;

CREATE USER jfee
 IDENTIFIED BY password
 DEFAULT TABLESPACE example
 TEMPORARY TABLESPACE temp
 QUOTA 500K ON example
 PROFILE clerk
 CONTAINER = CURRENT;

CREATE USER dcranney
 IDENTIFIED BY password
 DEFAULT TABLESPACE example
 TEMPORARY TABLESPACE temp
 QUOTA unlimited ON example
 CONTAINER = CURRENT;

CREATE USER userscott

Chapter 2
Database User and Profile Data Dictionary Views

2-39

 IDENTIFIED BY password
 CONTAINER = CURRENT;

Query to Find All Users and Associated Information
The DBA_USERS data dictionary view shows all users and their associated information
as defined in the database.

For detailed information about the DBA_USERS view, see Oracle Database Reference.

For example:

col username format a11
col profile format a10
col account_status format a19
col authentication_type format a29

SELECT USERNAME, PROFILE, ACCOUNT_STATUS, AUTHENTICATION_TYPE FROM DBA_USERS;

USERNAME PROFILE ACCOUNT_STATUS AUTHENTICATION_TYPE
--------------- --------------- --------------- -------------------
SYS DEFAULT OPEN PASSWORD
SYSTEM DEFAULT OPEN PASSWORD
USERSCOTT DEFAULT OPEN PASSWORD
JFEE CLERK OPEN GLOBAL
DCRANNEY DEFAULT OPEN EXTERNAL

Query to List All Tablespace Quotas
The DBA_TS_QUOTAS data dictionary view lists all tablespace quotas assigned to each
user.

For detailed information about this view, see Oracle Database Reference.

For example:

SELECT * FROM DBA_TS_QUOTAS;

TABLESPACE USERNAME BYTES MAX_BYTES BLOCKS MAX_BLOCKS
---------- --------- -------- ---------- ------- ----------
EXAMPLE JFEE 0 512000 0 250
EXAMPLE DCRANNEY 0 -1 0 -1

When specific quotas are assigned, the exact number is indicated in the MAX_BYTES
column. This number is always a multiple of the database block size, so if you specify
a tablespace quota that is not a multiple of the database block size, then it is rounded
up accordingly. Unlimited quotas are indicated by -1.

Query to List All Profiles and Assigned Limits
The DBA_PROFILE view lists all profiles in the database and associated settings for
each limit in each profile.

For detailed information about this view, see Oracle Database Reference.

For example:

SELECT * FROM DBA_PROFILES
 ORDER BY PROFILE;

Chapter 2
Database User and Profile Data Dictionary Views

2-40

PROFILE RESOURCE_NAME RESOURCE_TYPE LIMIT
----------------- ----------------------- ------------- --------------
CLERK COMPOSITE_LIMIT KERNEL DEFAULT
CLERK FAILED_LOGIN_ATTEMPTS PASSWORD DEFAULT
CLERK PASSWORD_LIFE_TIME PASSWORD DEFAULT
CLERK PASSWORD_REUSE_TIME PASSWORD DEFAULT
CLERK PASSWORD_REUSE_MAX PASSWORD DEFAULT
CLERK PASSWORD_VERIFY_FUNCTION PASSWORD DEFAULT
CLERK PASSWORD_LOCK_TIME PASSWORD DEFAULT
CLERK PASSWORD_GRACE_TIME PASSWORD DEFAULT
CLERK PRIVATE_SGA KERNEL DEFAULT
CLERK CONNECT_TIME KERNEL 600
CLERK IDLE_TIME KERNEL 30
CLERK LOGICAL_READS_PER_CALL KERNEL DEFAULT
CLERK LOGICAL_READS_PER_SESSION KERNEL DEFAULT
CLERK CPU_PER_CALL KERNEL DEFAULT
CLERK CPU_PER_SESSION KERNEL DEFAULT
CLERK SESSIONS_PER_USER KERNEL 1
DEFAULT COMPOSITE_LIMIT KERNEL UNLIMITED
DEFAULT PRIVATE_SGA KERNEL UNLIMITED
DEFAULT SESSIONS_PER_USER KERNEL UNLIMITED
DEFAULT CPU_PER_CALL KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_CALL KERNEL UNLIMITED
DEFAULT CONNECT_TIME KERNEL UNLIMITED
DEFAULT IDLE_TIME KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_SESSION KERNEL UNLIMITED
DEFAULT CPU_PER_SESSION KERNEL UNLIMITED
DEFAULT FAILED_LOGIN_ATTEMPTS PASSWORD 10
DEFAULT PASSWORD_LIFE_TIME PASSWORD 180
DEFAULT PASSWORD_REUSE_MAX PASSWORD UNLIMITED
DEFAULT PASSWORD_LOCK_TIME PASSWORD 1
DEFAULT PASSWORD_GRACE_TIME PASSWORD 7
DEFAULT PASSWORD_VERIFY_FUNCTION PASSWORD UNLIMITED
DEFAULT PASSWORD_REUSE_TIME PASSWORD UNLIMITED
32 rows selected.

To find the default profile values, you can run the following query:

SELECT * FROM DBA_PROFILES WHERE PROFILE = 'DEFAULT';

PROFILE RESOURCE_NAME RESOURCE_TYPE LIMIT
----------------- ------------------------- ------------- --------------
DEFAULT COMPOSITE_LIMIT KERNEL UNLIMITED
DEFAULT SESSIONS_PER_USER KERNEL UNLIMITED
DEFAULT CPU_PER_SESSION KERNEL UNLIMITED
DEFAULT CPU_PER_CALL KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_SESSION KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_CALL KERNEL UNLIMITED
DEFAULT IDLE_TIME KERNEL UNLIMITED
DEFAULT CONNECT_TIME KERNEL UNLIMITED
DEFAULT PRIVATE_SGA KERNEL UNLIMITED
DEFAULT FAILED_LOGIN_ATTEMPTS PASSWORD 10
DEFAULT PASSWORD_LIFE_TIME PASSWORD 180
DEFAULT PASSWORD_REUSE_TIME PASSWORD UNLIMITED
DEFAULT PASSWORD_REUSE_MAX PASSWORD UNLIMITED
DEFAULT PASSWORD_VERIFY_FUNCTION PASSWORD NULL
DEFAULT PASSWORD_LOCK_TIME PASSWORD 1
DEFAULT PASSWORD_GRACE_TIME PASSWORD 7

16 rows selected.

Chapter 2
Database User and Profile Data Dictionary Views

2-41

Query to View Memory Use for Each User Session
The V$SESSION dynamic view lists the memory use for each user session.

For detailed information on this view, see Oracle Database Reference.

The following query lists all current sessions, showing the Oracle Database user and
current User Global Area (UGA) memory use for each session:

SELECT USERNAME, VALUE || 'bytes' "Current UGA memory"
 FROM V$SESSION sess, V$SESSTAT stat, V$STATNAME name
WHERE sess.SID = stat.SID
 AND stat.STATISTIC# = name.STATISTIC#
 AND name.NAME = 'session uga memory';

USERNAME Current UGA memory
------------------------------ ---
 18636bytes
 17464bytes
 19180bytes
 18364bytes
 39384bytes
 35292bytes
 17696bytes
 15868bytes
USERSCOTT 42244bytes
SYS 98196bytes
SYSTEM 30648bytes

11 rows selected.

To see the maximum UGA memory allocated to each session since the instance
started, replace 'session uga memory' in the preceding query with 'session uga
memory max'.

Chapter 2
Database User and Profile Data Dictionary Views

2-42

3
Configuring Authentication

Authentication means to verify the identity of users or other entities that connect to the
database.

• About Authentication
Authentication means verifying the identity of a user, device, or other entity who
wants to use data, resources, or applications.

• Configuring Password Protection
You can secure user passwords in a variety of ways, such as controlling the
password creation requirements or using password management policies.

• Authentication of Database Administrators
You can authenticate database administrators by using strong authentication, from
the operating system, or from the database using passwords.

• Database Authentication of Users
Database authentication of users entails using information within the database
itself to perform the authentication.

• Schema-Only Accounts
You can create schema-only accounts, that is, the schema user has no password.

• Operating System Authentication of Users
Oracle Database can authenticate by using information that is maintained by the
operating system.

• Network Authentication of Users
You can authenticate users over a network by using Secure Sockets Layer with
third-party services.

• Configuring Operating System Users for a PDB
The DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure configures user accounts to
be operating system users for a PDB.

• Global User Authentication and Authorization
Global user authentication and authorization enables you to centralize the
management of user-related information.

• Configuring an External Service to Authenticate Users and Passwords
An external service (the operating system or the network) can administer
passwords and authenticate users.

• Multitier Authentication and Authorization
Oracle Database secures middle-tier applications by limiting privileges, preserving
client identities through all tiers, and auditing actions by clients.

• Administration and Security in Clients, Application Servers, and Database Servers
In a multitier environment, an application server provides data for clients and
serves as an interface to one or more database servers.

• Preserving User Identity in Multitiered Environments
You can use middle tier servers for proxy authentication and client identifiers to
identify application users who are not known to the database.

3-1

• User Authentication Data Dictionary Views
Oracle Database provides data dictionary views that list information about user
authentication, such as roles that users have or profiles they use.

About Authentication
Authentication means verifying the identity of a user, device, or other entity who wants
to use data, resources, or applications.

Validating this identity establishes a trust relationship for further interactions.
Authentication also enables accountability by making it possible to link access and
actions to specific identities. After authentication, authorization processes can allow or
limit the levels of access and action permitted to that entity.

You can authenticate both database and nondatabase users for an Oracle database.
For simplicity, the same authentication method is generally used for all database
users, but Oracle Database allows a single database instance to use any or all
methods. Oracle Database requires special authentication procedures for database
administrators, because they perform special database operations. Oracle Database
also encrypts passwords during transmission to ensure the security of network
authentication.

After authentication, authorization processes can allow or limit the levels of access and
action permitted to that entity.

Related Topics

• Configuring Privilege and Role Authorization
Privilege and role authorization controls the permissions that users have to
perform day-to-day tasks.

Configuring Password Protection
You can secure user passwords in a variety of ways, such as controlling the password
creation requirements or using password management policies.

• What Are the Oracle Database Built-in Password Protections?
Oracle Database provides a set of built-in password protections designed to
protect your users' passwords.

• Minimum Requirements for Passwords
Oracle provides a set of minimum requirements for passwords.

• Creating a Password by Using the IDENTIFIED BY Clause
SQL statements that accept the IDENTIFIED BY clause also enable you to create
passwords.

• Using a Password Management Policy
A password management policy can create and enforce a set of restrictions that
can better secure user passwords.

• Managing the Complexity of Passwords
Oracle Database provides a set of functions that you can use to manage the
complexity of passwords.

• Managing Password Case Sensitivity
You can manage the password case sensitivity for passwords from user accounts
from previous releases.

Chapter 3
About Authentication

3-2

• Ensuring Against Password Security Threats by Using the 12C Password Version
The 12C password version enables users to create complex passwords that meet
compliance standards.

• Managing the Secure External Password Store for Password Credentials
The secure external password store is a client-side wallet that is used to store
password credentials.

• Managing Passwords for Administrative Users
The passwords of administrative users have special protections, such as
password files and password complexity functions.

What Are the Oracle Database Built-in Password Protections?
Oracle Database provides a set of built-in password protections designed to protect
your users' passwords.

These password protections are as follows:

• Password encryption. Oracle Database automatically and transparently encrypts
passwords during network (client-to-server and server-to-server) connections,
using Advanced Encryption Standard (AES) before sending them across the
network. However, a password that is specified within a SQL statement (such as
CREATE USER user_name IDENTIFIED BY password;) is still transmitted across the
network in clear text in the network trace files. For this reason, you should have
native network encryption enabled or configure Secure Sockets Layer (SSL)
encryption.

• Password complexity checking. In a default installation, Oracle Database
provides the ora12c_verify_function and ora12c_strong_verify_function
password verification functions to ensure that new or changed passwords are
sufficiently complex to prevent intruders who try to break into the system by
guessing passwords. You must manually enable password complexity checking.
You can further customize the complexity of your users' passwords. See About
Password Complexity Verification for more information.

• Preventing passwords from being broken. If a user tries to log in to Oracle
Database multiple times using an incorrect password, Oracle Database delays
each login by one second. This protection applies for attempts made from different
IP addresses or multiple client connections. This feature significantly decreases
the number of passwords that an intruder would be able to try within a fixed time
period when attempting to log in. The failed login delay slows down each failed
login attempt, increasing the overall time that is required to perform a password-
guessing attack, because such attacks usually require a very large number of
failed login attempts.

For non-administrative logins, Oracle Database protects against concurrent
password guessing attacks by setting an exclusive lock for the failed login delay.
This prevents an intruder from attempting to sidestep the failed login delay when
the intruder tries the next concurrent guess in a different database session as
soon as the first guess fails and is delayed.

By holding an exclusive lock on the account that is being attacked, Oracle
Database mitigates concurrent password guessing attacks, but this can
simultaneously leave the account vulnerable to denial-of-service (DoS) attacks. To
remedy this problem, you should create a password profile where the
FAILED_LOGIN_ATTEMPTS parameter is set to UNLIMITED, and then apply this
password profile to the user account. The value UNLIMITED for the

Chapter 3
Configuring Password Protection

3-3

FAILED_LOGIN_ATTEMPTS parameter setting disables failed login delays and does
not limit the number of failed login attempts. For these types of accounts, Oracle
recommends that you use a long random password.

The concurrent password-guessing attack protection does not apply to
administrative user connections, because these kinds of connections must remain
available at all times and be immune to denial-of-service attacks. Hence, Oracle
recommends that you choose long passwords for any administrative privileged
account.

• Enforced case sensitivity for passwords. Passwords are case sensitive. For
example, the password hPP5620qr fails if it is entered as hpp5620QR or hPp5620Qr.
See Managing Password Case Sensitivity for information about how case
sensitivity works, and how it affects password files and database links.

• Passwords hashed using the 12C password version. To verify the user's
password and enforce case sensitivity in password creation, Oracle Database
uses the 12C password version, which is based on a de-optimized algorithm that
involves Password-Based Key Derivation Function (PBKDF2) and the SHA-512
cryptographic hash functions. See Ensuring Against Password Security Threats by
Using the 12C Password Version for more information.

See Also:

Guidelines for Securing Passwords for advice about securing passwords

Minimum Requirements for Passwords
Oracle provides a set of minimum requirements for passwords.

Passwords can be at most 30 bytes long. There are a variety of ways that you can
secure passwords, ranging from requiring passwords to be of a sensible length to
creating custom password complexity verification scripts that enforce the password
complexity policy requirements that apply at your site.

Related Topics

• Guidelines for Securing Passwords
Oracle provides guidelines for securing passwords.

Creating a Password by Using the IDENTIFIED BY Clause
SQL statements that accept the IDENTIFIED BY clause also enable you to create
passwords.

• To create passwords for users, use the CREATE USER, ALTER USER, GRANT CREATE
SESSION, or CREATE DATABASE LINK SQL statement.

The following SQL statements create passwords with the IDENTIFIED BY clause.

CREATE USER psmith IDENTIFIED BY password;
GRANT CREATE SESSION TO psmith IDENTIFIED BY password;
ALTER USER psmith IDENTIFIED BY password;
CREATE DATABASE LINK AUTHENTICATED BY psmith IDENTIFIED BY password;

Chapter 3
Configuring Password Protection

3-4

Related Topics

• About Password Complexity Verification
Complexity verification checks that each password is complex enough to protect
against intruders who try to guess user passwords.

Using a Password Management Policy
A password management policy can create and enforce a set of restrictions that can
better secure user passwords.

• About Managing Passwords
Database security systems that depend on passwords require that passwords be
kept secret at all times.

• Finding User Accounts That Have Default Passwords
The DBA_USERS_WITH_DEFPWD data dictionary view can find user accounts that use
default passwords.

• Password Settings in the Default Profile
A profile is a collection of parameters that sets limits on database resources.

• Using the ALTER PROFILE Statement to Set Profile Limits
You can modify profile limits such as failed login attempts, password lock times,
password reuse, and several other settings.

• Disabling and Enabling the Default Password Security Settings
Oracle provides scripts that you can use to disable and enable the default
password security settings.

• Automatically Locking Inactive Database User Accounts
The INACTIVE_ACCOUNT_TIME profile parameter locks a user account that has not
logged in to the database instance in a specified number of days.

• Automatically Locking User Accounts After Failed Logins
Oracle Database can lock a user's account after a specified number of
consecutive failed log-in attempts.

• Example: Locking an Account with the CREATE PROFILE Statement
The CREATE PROFILE statement can lock user accounts if a user’s attempt to log in
violates the CREATE PROFILE settings.

• Explicitly Locking a User Account
When you explicitly lock a user account, the account cannot be unlocked
automatically. Only a security administrator can unlock the account.

• Controlling the User Ability to Reuse Previous Passwords
You can ensure that users do not reuse previous passwords for an amount of time
or for a number of password changes.

• About Controlling Password Aging and Expiration
You can specify a password lifetime, after which the password expires.

• Using the CREATE PROFILE or ALTER PROFILE Statement to Set a Password
Lifetime
When you set a lifetime for a password, the user must create a new password
when this lifetime ends.

• Checking the Status of a User Account
You can check the status of any account, whether it is open, in grace, or expired.

Chapter 3
Configuring Password Protection

3-5

• Password Change Life Cycle
After a password is created, it follows a lifecycle and grace period in four phases.

• PASSWORD_LIFE_TIME Profile Parameter Low Value
Be careful if you set the PASSWORD_LIFE_TIME parameter of CREATE PROFILE or
ALTER PROFILE to a low value (for example, 1 day).

About Managing Passwords
Database security systems that depend on passwords require that passwords be kept
secret at all times.

Because passwords are vulnerable to theft and misuse, Oracle Database uses a
password management policy. Database administrators and security officers control
this policy through user profiles, enabling greater control of database security.

You can use the CREATE PROFILE statement to create a user profile. The profile is
assigned to a user with the CREATE USER or ALTER USER statement.

Finding User Accounts That Have Default Passwords
The DBA_USERS_WITH_DEFPWD data dictionary view can find user accounts that use
default passwords.

When you create a database, most of the default accounts are locked with the
passwords expired. If you have upgraded from an earlier release of Oracle Database,
then you may have user accounts that have default passwords. These are default
accounts that are created when you create a database, such as the HR, OE, and SCOTT
accounts.

For greater security, you should change the passwords for these accounts. Using a
default password that is commonly known can make your database vulnerable to
attacks by intruders.

1. Log in to the database instance using SQL*Plus with the SYSDBA administrative
privilege.

For example:

sqlplus sys as sysdba
Enter password: password

2. Query the DBA_USERS_WITH_DEFPWD data dictionary view.

For example, to find both the names of accounts that have default passwords and
the status of the account:

SELECT d.username, u.account_status
FROM DBA_USERS_WITH_DEFPWD d, DBA_USERS u
WHERE d.username = u.username
ORDER BY 2,1;

USERNAME ACCOUNT_STATUS
--------- ---------------------------
SCOTT EXPIRED & LOCKED

3. Change the passwords for any accounts that the DBA_USERS_WITH_DEFPWD view
lists.

Oracle recommends that you do not assign these accounts passwords that they
may have had in previous releases of Oracle Database.

Chapter 3
Configuring Password Protection

3-6

For example:

ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY password;

Follow the guidelines in Minimum Requirements for Passwords to replace
password with a password that is secure.

Password Settings in the Default Profile
A profile is a collection of parameters that sets limits on database resources.

If you assign the profile to a user, then that user cannot exceed these limits. You can
use profiles to configure database settings such as sessions per user, logging and
tracing features, and so on. Profiles can also control user passwords. To find
information about the current password settings in the profile, you can query the
DBA_PROFILES data dictionary view.

Table 3-1 lists the password-specific parameter settings in the default profile.

Table 3-1 Password-Specific Settings in the Default Profile

Parameter Default Setting Description

INACTIVE_ACCOUNT_TIME UNLIMITED Locks the account of a database user who
has not logged in to the database instance in
a specified number of days.

See Automatically Locking Inactive Database
User Accounts for more information.

FAILED_LOGIN_ATTEMPTS 10 Sets the maximum times a user try to log in
and to fail before locking the account.

Notes:
• When you set this parameter, take into

consideration users who may log in
using the CONNECT THROUGH privilege.

• You can set limits on the number of
times an unauthorized user (possibly an
intruder) attempts to log in to Oracle Call
Interface (OCI) applications by using the
SEC_MAX_FAILED_LOGIN_ATTEMPTS
initialization parameter. See
Configuration of the Maximum Number
of Authentication Attempts for more
information about this parameter.

See also Automatically Locking User
Accounts After Failed Logins for more
information.

PASSWORD_GRACE_TIME 7 Sets the number of days that a user has to
change his or her password before it expires.

See About Controlling Password Aging and
Expiration for more information.

PASSWORD_LIFE_TIME 180 Sets the number of days the user can use his
or her current password.

See About Controlling Password Aging and
Expiration for more information.

Chapter 3
Configuring Password Protection

3-7

Table 3-1 (Cont.) Password-Specific Settings in the Default Profile

Parameter Default Setting Description

PASSWORD_LOCK_TIME 1 Sets the number of days an account will be
locked after the specified number of
consecutive failed login attempts. After the
time passes, then the account becomes
unlocked. This user's profile parameter is
useful to help prevent brute force attacks on
user passwords but not to increase the
maintenance burden on administrators.

See Automatically Locking User Accounts
After Failed Logins for more information.

PASSWORD_REUSE_MAX UNLIMITED Sets the number of password changes
required before the current password can be
reused.

See Controlling the User Ability to Reuse
Previous Passwords for more information.

PASSWORD_REUSE_TIME UNLIMITED Sets the number of days before which a
password cannot be reused.

See Controlling the User Ability to Reuse
Previous Passwords for more information.

Related Topics

• Managing Resources with Profiles
A profile is a named set of resource limits and password parameters that restrict
database usage and instance resources for a user.

Using the ALTER PROFILE Statement to Set Profile Limits
You can modify profile limits such as failed login attempts, password lock times,
password reuse, and several other settings.

These settings are described in Table 3-1. For greater security, use the default
settings that are described in this table, based on your needs.

• Use the ALTER PROFILE statement to modify a user's profile limits.

For example:

ALTER PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 9
 PASSWORD_LOCK_TIME 10
 INACTIVE_ACCOUNT_TIME 21;

Disabling and Enabling the Default Password Security Settings
Oracle provides scripts that you can use to disable and enable the default password
security settings.

If your applications use the default password security settings from Oracle Database
10g release 2 (10.2), then you can revert to these settings until you modify the
applications to use the default password security settings from Oracle Database 11g
or later.

Chapter 3
Configuring Password Protection

3-8

1. Modify your applications to conform to the password security settings from Oracle
Database 11g or later.

2. Update your database to use the security configuration that suits your business
needs, using one of the following methods:

• Manually update the database security configuration.

• Run the secconf.sql script to apply the default password settings from Oracle
Database 11g or later. You can customize this script to have different security
settings if you like, but remember that the settings listed in the original script
are Oracle-recommended settings.

If you created your database manually, then you should run the secconf.sql script to
apply the Oracle default password settings to the database. Databases that have been
created with Database Configuration Assistant (DBCA) will have these settings, but
manually created databases do not.

The secconf.sql script is in the $ORACLE_HOME/rdbms/admin directory. The
secconf.sql script affects both password and audit settings. It has no effect on other
security settings.

Automatically Locking Inactive Database User Accounts
The INACTIVE_ACCOUNT_TIME profile parameter locks a user account that has not
logged in to the database instance in a specified number of days.

Users are considered active users if they log in periodically. The
INACTIVE_ACCOUNT_TIME timing is based on the number of days after the last time a
user successfully logs in.

• To lock user accounts automatically after a specified number of days, set the
INACTIVE_ACCOUNT_TIME profile parameter in the CREATE PROFILE or ALTER
PROFILE statement.

Note the following:

– The default value for INACTIVE_ACCOUNT_TIME is UNLIMITED.

– You must specify a whole number for the number of days. The minimum
setting is 15 and the maximum is 24855.

– To set the user’s account to have an unlimited inactivity time, set the
INACTIVE_ACCOUNT_TIME to UNLIMITED.

– To set the user’s account to use the time specified by the default profile, set
INACTIVE_ACCOUNT_TIME to DEFAULT.

– You can set this parameter for all database authenticated users, including
administrative users, but not for external or global authenticated users.

– In a read-only database, the last successful login is not considered in the
INACTIVE_ACCOUNT_TIME timing. It is not possible to lock a user account in a
read-only database (except by performing consecutive failed logins equal in
number to the account’s FAILED_LOGIN_ATTEMPTS password profile setting).

– For a newly created user account, the timing begins at account creation time.
When this user logs out and then logs again, the timing starts when the user
successfully logs in.

Chapter 3
Configuring Password Protection

3-9

– In a multitenant environment, the INACTIVE_ACCOUNT_TIME setting applies to
the last time a common user logs in to the root. A common user is considered
active if this user logs in to any of the PDBs or the root.

– For a proxy user account login, the INACTIVE_ACCOUNT_TIME begins the timing
when the proxy user logs in successfully.

For example, to create a profile that locks an account after 60 days of being inactive:

CREATE PROFILE time_limit LIMIT
 INACTIVE_ACCOUNT_TIME 60;

Automatically Locking User Accounts After Failed Logins
Oracle Database can lock a user's account after a specified number of consecutive
failed log-in attempts.

• To lock user accounts automatically after a specified time interval or to require
database administrator intervention to be unlocked, set the PASSWORD_LOCK_TIME
profile parameter in the CREATE PROFILE or ALTER PROFILE statement.

For example, to set the time interval to 10 days:

PASSWORD_LOCK_TIME = 10

Note the following:

• You can lock accounts manually, so that they must be unlocked explicitly by a
database administrator.

• You can specify the permissible number of failed login attempts by using the
CREATE PROFILE statement. You can also specify the amount of time an account
remains locked.

• Each time the user unsuccessfully logs in, Oracle Database increases the delay
exponentially with each login failure.

• If you do not specify a time interval for unlocking the account, then
PASSWORD_LOCK_TIME assumes the value specified in a default profile. (The
recommended value is 1 day.) If you specify PASSWORD_LOCK_TIME as UNLIMITED,
then you must explicitly unlock the account by using an ALTER USER statement. For
example, assuming that PASSWORD_LOCK_TIME UNLIMITED is specified for johndoe,
then you use the following statement to unlock the johndoe account:

ALTER USER johndoe ACCOUNT UNLOCK;

• After a user successfully logs into an account, Oracle Database resets the
unsuccessful login attempt count for the user. If it is non-zero, then the count is set
to zero.

• In a multitenant environment, a locked CDB common user account will be locked
across all PDBs in the CDB. A locked application common user account will be
locked across all PDBs that are associated with the application root.

Example: Locking an Account with the CREATE PROFILE Statement
The CREATE PROFILE statement can lock user accounts if a user’s attempt to log in
violates the CREATE PROFILE settings.

Chapter 3
Configuring Password Protection

3-10

Example 3-1 sets the maximum number of failed login attempts for the user johndoe to
10 (the default), and the amount of time the account locked to 30 days. The account
will unlock automatically after 30 days.

Example 3-1 Locking an Account with the CREATE PROFILE Statement

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 10
 PASSWORD_GRACE_TIME 3

ALTER USER johndoe PROFILE prof;

Explicitly Locking a User Account
When you explicitly lock a user account, the account cannot be unlocked
automatically. Only a security administrator can unlock the account.

In a multitenant environment, after you have locked a CDB common user account in
the CDB root, this user cannot log in to any PDB that is associated with this root, nor
can this account be unlocked in a PDB. In addition, you can lock a CDB common
account locally in a PDB, which will prevent the CDB common user from logging in to
that PDB. Similarly, an application common user account that is locked in the
application root cannot log in to any PDB associated with the application root, nor can
the application common user be unlocked in an application PDB. You can explicitly
lock an application common user locally in an application PDB.

• To explicitly lock a user account, use the CREATE USER or ALTER USER statement.

For example, the following statement locks the user account, susan:

ALTER USER susan ACCOUNT LOCK;

Controlling the User Ability to Reuse Previous Passwords
You can ensure that users do not reuse previous passwords for an amount of time or
for a number of password changes.

• To ensure that users cannot reuse their passwords for a specified period of time,
configure the rules for password reuse with the CREATE PROFILE or ALTER PROFILE
statements.

Table 3-2 lists the CREATE PROFILE and ALTER PROFILE parameters that control ability
of a user to reuse a previous password.

Table 3-2 Parameters Controlling Reuse of a Previous Password

Parameter Name Description and Use

PASSWORD_REUSE_TIME Requires either of the following:

• A number specifying how many days (or a fraction of a day)
between the earlier use of a password and its next use

• The word UNLIMITED

PASSWORD_REUSE_MAX Requires either of the following:

• An integer to specify the number of password changes required
before a password can be reused

• The word UNLIMITED

Chapter 3
Configuring Password Protection

3-11

If you do not specify a parameter, then the user can reuse passwords at any time,
which is not a good security practice.

If neither parameter is UNLIMITED, then password reuse is allowed, but only after
meeting both conditions. The user must have changed the password the specified
number of times, and the specified number of days must have passed since the
previous password was last used.

For example, suppose that the profile of user A had PASSWORD_REUSE_MAX set to 10 and
PASSWORD_REUSE_TIME set to 30. User A cannot reuse a password until he or she has
reset the password 10 times, and until 30 days had passed since the password was
last used.

If either parameter is specified as UNLIMITED, then the user can never reuse a
password.

If you set both parameters to UNLIMITED, then Oracle Database ignores both, and the
user can reuse any password at any time.

Note:

If you specify DEFAULT for either parameter, then Oracle Database uses the
value defined in the DEFAULT profile, which sets all parameters to UNLIMITED.
Oracle Database thus uses UNLIMITED for any parameter specified as
DEFAULT, unless you change the setting for that parameter in the DEFAULT
profile.

Related Topics

• Oracle Database SQL Language Reference

About Controlling Password Aging and Expiration
You can specify a password lifetime, after which the password expires.

This means that the next time the user logs in with the current, correct password, he or
she is prompted to change the password. By default, there are no complexity or
password history checks, so users can still reuse any previous or weak passwords.
You can control these factors by setting the PASSWORD_REUSE_TIME,
PASSWORD_REUSE_MAX, and PASSWORD_VERIFY_FUNCTION parameters.

In addition, you can set a grace period, during which each attempt to log in to the
database account receives a warning message to change the password. If the user
does not change it by the end of that period, then Oracle Database expires the
account.

As a database administrator, you can manually set the password state to be expired,
which sets the account status to EXPIRED. The user must then follow the prompts to
change the password before the logon can proceed.

For example, in SQL*Plus, suppose user SCOTT tries to log in with the correct
credentials, but his password has expired. User SCOTT will then see the ORA-28001:
The password has expired error and be prompted to change his password, as
follows:

Chapter 3
Configuring Password Protection

3-12

Changing password for scott
New password: new_password
Retype new password: new_password
Password changed.

Related Topics

• Controlling the User Ability to Reuse Previous Passwords
You can ensure that users do not reuse previous passwords for an amount of time
or for a number of password changes.

• About Password Complexity Verification
Complexity verification checks that each password is complex enough to protect
against intruders who try to guess user passwords.

Using the CREATE PROFILE or ALTER PROFILE Statement to Set a
Password Lifetime

When you set a lifetime for a password, the user must create a new password when
this lifetime ends.

• Use the CREATE PROFILE or ALTER PROFILE statement to specify a lifetime for
passwords.

The following example demonstrates how to create and assign a profile to user
johndoe, and the PASSWORD_LIFE_TIME clause specifies that johndoe can use the
same password for 180 days before it expires.

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 4
 PASSWORD_GRACE_TIME 3
 PASSWORD_LIFE_TIME 180;
ALTER USER johndoe PROFILE prof;

Related Topics

• Password Change Life Cycle
After a password is created, it follows a lifecycle and grace period in four phases.

Checking the Status of a User Account
You can check the status of any account, whether it is open, in grace, or expired.

• To check the status of a user account, query the ACCOUNT_STATUS column of the
DBA_USERS data dictionary view.

For example:

SELECT ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = 'username';

Password Change Life Cycle
After a password is created, it follows a lifecycle and grace period in four phases.

Figure 3-1 shows the life cycle of the password lifetime and grace period.

Chapter 3
Configuring Password Protection

3-13

Figure 3-1 Password Change Life Cycle

OPEN
DBA_USERS.

ACCOUNT_STATUS:

Prompted for new

password?

Phase number: 1 2 3 4

None

No No Yes

EXPIRED(GRACE)

ORA-28002:

The password will

expire in n days

EXPIRED

ORA-28001:

The password

has expired

Errors during

phase:

Last Password Change Password ExpiresFirst Login After

Password Lifetime

Ends

PASSWORD_LIFE_TIME

Password Profile

Setting (180 days

by default)

User makes no

authentication

attempts during

this time.

PASSWORD_GRACE_TIME

Password Profile

Setting (7 days

by default)

User is prompted

to change his

password during

this time

In this figure:

• Phase 1: After the user account is created, or the password of an existing account
is changed, the password lifetime period begins.

• Phase 2: This phase represents the period of time after the password lifetime
ends but before the user logs in again with the correct password. The correct
credentials are needed for Oracle Database to update the account status.
Otherwise, the account status will remain unchanged. Oracle Database does not
have any background process to update the account status. All changes to the
account status are driven by the Oracle Database server process on behalf of
authenticated users.

• Phase 3: When the user finally does log in, the grace period begins. Oracle
Database then updates the DBA_USERS.EXPIRY_DATE column to a new value using
the current time plus the value of the PASSWORD_GRACE_TIME setting from the
account's password profile. At this point, the user receives an ORA-28002 warning
message about the password expiring in the near future (for example, ORA-28002
The password will expire within 7 days if PASSWORD_GRACE_TIME is set to 7
days), but the user can still log in without changing the password. The
DBA_USERS.EXPIRY_DATE column shows the time in the future when the user will be
prompted to change their password.

• Phase 4: After the grace period (Phase 3) ends, the ORA-28001: The password
has expired error appears, and the user is prompted to change the password
after entering the current, correct password before the authentication can proceed.
If the user has an Oracle Active Data Guard configuration, where there is a
primary and a stand-by database, and the authentication attempt is made on the
standby database (which is a read-only database), then the ORA-28032: Your
password has expired and the database is set to read-only error appears.
The user should log into the primary database and change the password there.

During any of these four phases, you can query the DBA_USERS data dictionary view to
find the user's account status in the DBA_USERS.ACCOUNT_STATUS column.

Chapter 3
Configuring Password Protection

3-14

In the following example, the profile assigned to johndoe includes the specification of a
grace period: PASSWORD_GRACE_TIME = 3 (the recommended value). The first time
johndoe tries to log in to the database after 90 days (this can be any day after the 90th
day, that is, the 91st day, 100th day, or another day), he receives a warning message
that his password will expire in 3 days. If 3 days pass, and if he does not change his
password, then the password expires. After this, he receives a prompt to change his
password on any attempt to log in.

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 4
 PASSWORD_LIFE_TIME 90
 PASSWORD_GRACE_TIME 3;

ALTER USER johndoe PROFILE prof;

A database administrator or a user who has the ALTER USER system privilege can
explicitly expire a password by using the CREATE USER and ALTER USER statements.
The following statement creates a user with an expired password. This setting forces
the user to change the password before the user can log in to the database.

CREATE USER jbrown
 IDENTIFIED BY password
 ...
 PASSWORD EXPIRE;

There is no "password unexpire" clause for the CREATE USER statement, but an
account can be "unexpired" by changing the password on the account.

PASSWORD_LIFE_TIME Profile Parameter Low Value
Be careful if you set the PASSWORD_LIFE_TIME parameter of CREATE PROFILE or ALTER
PROFILE to a low value (for example, 1 day).

The PASSWORD_LIFE_TIME limit of a profile is measured from the last time that an
account's password is changed, or the account creation time if the password has
never been changed. These dates are recorded in the PTIME (password change time)
and CTIME (account creation time) columns of the SYS.USER$ system table. The
PASSWORD_LIFE_TIME limit is not measured starting from the timestamp of the last
change to the PASSWORD_LIFE_TIME profile parameter, as may be initially thought.
Therefore, any accounts affected by the changed profile whose last password change
time was more than PASSWORD_LIFE_TIME days ago immediately expire and enter their
grace period on their next connection, issuing the ORA-28002: The password will
expire within n days warning.

As a database administrator, you can find an account's last password change time as
follows:

ALTER SESSION SET NLS_DATE_FORMAT='DD-MON-YYYY HH24:MI:SS';
SELECT PTIME FROM SYS.USER$ WHERE NAME = 'user_name'; -- Password change time

To find when the account was created and the password expiration date, issue the
following query:

SELECT CREATED, EXPIRY_DATE FROM DBA_USERS WHERE USERNAME = 'user_name';

If the user who is assigned this profile is currently logged in when you set the
PASSWORD_LIFE_TIME parameter and remains logged in, then Oracle Database does
not change the user's account status from OPEN to EXPIRED(GRACE) when the currently

Chapter 3
Configuring Password Protection

3-15

listed expiration date passes. The timing begins only when the user logs into the
database. You can check the user's last login time as follows:

SELECT LAST_LOGIN FROM DBA_USERS WHERE USERNAME = 'user_name';

When making changes to a password profile, a database administrator must be aware
that if some of the users who are subject to this profile are currently logged in to the
Oracle database while their password profile is being updated by the administrator,
then those users could potentially remain logged in to the system even beyond the
expiration date of their password. You can find the currently logged in users by
querying the USERNAME column of the V$SESSION view.

This is because the expiration date of a user's password is based on the timestamp of
the last password change on their account plus the value of the PASSWORD_LIFE_TIME
password profile parameter set by the administrator. It is not based on the timestamp
of the last change to the password profile itself.

Note the following:

• If the user is not logged in when you set PASSWORD_LIFE_TIME to a low value, then
the user's account status does not change until the user logs in.

• You can set the PASSWORD_LIFE_TIME parameter to UNLIMITED, but this only affects
accounts that have not entered their grace period. After the grace period expires,
the user must change the password.

Managing the Complexity of Passwords
Oracle Database provides a set of functions that you can use to manage the
complexity of passwords.

• About Password Complexity Verification
Complexity verification checks that each password is complex enough to protect
against intruders who try to guess user passwords.

• How Oracle Database Checks the Complexity of Passwords
Oracle Database provides four password verification functions to check password
complexity.

• Who Can Use the Password Complexity Functions?
The password complexity functions enable you to customize how users access
your data.

• verify_function_11G Function Password Requirements
The verify_function_11G function originated in Oracle Database Release 11g.

• ora12c_verify_function Password Requirements
The ora12c_verify_function function fulfills the Department of Defense
Database Security Technical Implementation Guide requirements.

• ora12c_strong_verify_function Function Password Requirements
The ora12c_strong_verify_function function fulfills the Department of Defense
Database Security Technical Implementation Guide requirements.

• ora12c_stig_verify_function Password Requirements
The ora12c_stig_verify_function function fulfills the Security Technical
Implementation Guides (STIG) requirements.

• About Customizing Password Complexity Verification
Oracle Database enables you to customize password complexity for your site.

Chapter 3
Configuring Password Protection

3-16

• Enabling Password Complexity Verification
The catpvf.sql script can be customized to enable password complexity
verification.

About Password Complexity Verification
Complexity verification checks that each password is complex enough to protect
against intruders who try to guess user passwords.

Using a complexity verification function forces users to create strong, secure
passwords for database user accounts. You must ensure that the passwords for your
users are complex enough to provide reasonable protection against intruders who try
to break into the system by guessing passwords.

How Oracle Database Checks the Complexity of Passwords
Oracle Database provides four password verification functions to check password
complexity.

These functions are in the catpvf.sql PL/SQL script (located in $ORACLE_HOME/
rdbms/admin). When these functions are enabled, they can check whether users are
correctly creating or modifying their passwords. When enabled, password complexity
checking is not enforced for user SYS; it only applies to non-SYS users. For better
security of passwords, Oracle recommends that you associate the password
verification function with the default profile. About Customizing Password Complexity
Verification provides an example of how to accomplish this.

Who Can Use the Password Complexity Functions?
The password complexity functions enable you to customize how users access your
data.

Before you can use the password complexity verification functions in the CREATE
PROFILE or ALTER PROFILE statement, you must be granted the EXECUTE privilege on
them.

The password verification functions are located in the SYS schema.

verify_function_11G Function Password Requirements
The verify_function_11G function originated in Oracle Database Release 11g.

Note:

The verify_function_11G function has been deprecated because it
enforces the weaker password restrictions from earlier releases of Oracle
Database. Instead, you should use the ORA12C_VERIFY_FUNCTION,
ORA12C_STRONG_VERIFY_FUNCTION, ORA12C_STIG_VERIFY_FUNCTION functions,
which enforce stronger, more up-to-date password verification restrictions.

This function checks for the following requirements when users create or modify
passwords:

Chapter 3
Configuring Password Protection

3-17

• The password contains no fewer than 8 characters and includes at least one
numeric and one alphabetic character.

• The password is not the same as the user name, nor is it the user name reversed
or with the numbers 1–100 appended.

• The password is not the same as the server name or the server name with the
numbers 1–100 appended.

• The password does not contain oracle (for example, oracle with the numbers 1–
100 appended).

• The password is not too simple (for example, welcome1, database1, account1,
user1234, password1, oracle123, computer1, abcdefg1, or change_on_install).

• The password differs from the previous password by at least 3 characters.

The following internal check is also applied:

• The password does not contain the double-quotation character ("). However, it
can be surrounded by double-quotation marks.

ora12c_verify_function Password Requirements
The ora12c_verify_function function fulfills the Department of Defense Database
Security Technical Implementation Guide requirements.

This function checks for the following requirements when users create or modify
passwords:

• The password contains no fewer than 8 characters and includes at least one
numeric and one alphabetic character.

• The password is not the same as the user name or the user name reversed.

• The password is not the same as the database name.

• The password does not contain the word oracle (such as oracle123).

• The password differs from the previous password by at least 8 characters.

• The password contains at least 1 special character.

The following internal check is also applied:

• The password does not contain the double-quotation character ("). However, it
can be surrounded by double-quotation marks.

ora12c_strong_verify_function Function Password Requirements
The ora12c_strong_verify_function function fulfills the Department of Defense
Database Security Technical Implementation Guide requirements.

This function checks for the following requirements when users create or modify
passwords:

• The password must contain at least 2 upper case characters, 2 lower case
characters, 2 numeric characters, and 2 special characters. These special
characters are as follows:

‘ ~ ! @ # $ % ^ & * () _ - + = { } [] \ / < > , . ; ? ' : | (space)

• The password must differ from the previous password by at least 4 characters.

Chapter 3
Configuring Password Protection

3-18

The following internal check is also applied:

• The password does not contain the double-quotation character ("). It can be
surrounded by double-quotation marks, however.

ora12c_stig_verify_function Password Requirements
The ora12c_stig_verify_function function fulfills the Security Technical
Implementation Guides (STIG) requirements.

This function checks for the following requirements when users create or modify
passwords:

• The password has at least 15 characters.

• The password has at least 1 lower case character and at least 1 upper case
character.

• The password has at least 1 digit.

• The password has at least 1 special character.

• The password differs from the previous password by at least 8 characters.

The following internal check is also applied:

• The password does not contain the double-quotation character ("). However, it
can be surrounded by double-quotation marks.

The ora12c_stig_verify_function function is the default handler for the
ORA_STIG_PROFILE profile, which is available in a newly-created or upgraded Oracle
database.

About Customizing Password Complexity Verification
Oracle Database enables you to customize password complexity for your site.

You can create your own password complexity verification function in the SYS schema,
similar to the functions that are defined in admin/catpvf.sql. In fact, Oracle
recommends that you do so to further secure your site’s passwords.

Note the following:

• Do not include Data Definition Language (DDL) statements in the custom
password complexity verification function. DDLs are not allowed during the
execution of password complexity verification functions.

• Do not modify the admin/catpvf.sql script or the Oracle-supplied password
complexity functions. You can create your own functions based on the contents of
these files.

• If you make no modifications to the utlpwdmg.sql script, then it uses the
ora12c_verify_function function as the default function.

See Also:

Guideline 1 in Guidelines for Securing Passwords for general advice on
creating passwords

Chapter 3
Configuring Password Protection

3-19

Enabling Password Complexity Verification
The catpvf.sql script can be customized to enable password complexity verification.

To enable password complexity verification, you must edit the catpvf.sql script to use
the password verification function that you want, and then run the script to enable it.

1. Log in to SQL*Plus with administrative privileges.

For example:

CONNECT SYSTEM
Enter password: password

2. Run the catpvf.sql script (or your modified version of this script) to create the
password complexity functions in the SYS schema.

@$ORACLE_HOME/rdbms/admin/catpvf.sql

3. Grant any users who must use this function the EXECUTE privilege on it.

For example:

GRANT pmsith EXECUTE ON ora12c_strong_verify_function;

4. In the default profile or the user profile, set the PASSWORD_VERIFY_FUNCTION setting
to either the sample password complexity function in the catpvf.sql script, or to
your customized function. Use one of the following methods:

• Log in to SQL*Plus with administrator privileges and use the CREATE PROFILE
or ALTER PROFILE statement to enable the function. Ensure that you have the
EXECUTE privilege on the function.

For example, to update the default profile to use the
ora12c_strong_verify_function function:

ALTER PROFILE default LIMIT
 PASSWORD_VERIFY_FUNCTION ora12c_strong_verify_function;

• In Oracle Enterprise Manager Cloud Control, from the Administration menu,
select Security, and then Profiles. Select the Password tab. Under
Complexity, from the Complexity function list, select the name of the
complexity function that you want. Click Apply.

After you have enabled password complexity verification, it takes effect immediately. If
you must disable it, then run the following statement:

ALTER PROFILE DEFAULT LIMIT PASSWORD_VERIFY_FUNCTION NULL;

Chapter 3
Configuring Password Protection

3-20

Note:

The ALTER USER statement has a REPLACE clause. With this clause, users can
change their own unexpired passwords by supplying the previous password
to authenticate themselves.

If the password has expired, then the user cannot log in to SQL to issue the
ALTER USER command. Instead, the OCIPasswordChange() function must be
used, which also requires the previous password.

A database administrator with ALTER ANY USER privilege can change any
user password (force a new password) without supplying the old one.

Managing Password Case Sensitivity
You can manage the password case sensitivity for passwords from user accounts from
previous releases.

• SEC_CASE_SENSITIVE_LOGON Parameter and Password Case Sensitivity
The SEC_CASE_SENSITIVE_LOGON initialization parameter controls the use of case
sensitivity in passwords.

• Using the ALTER SYSTEM Statement to Enable Password Case Sensitivity
If password case sensitivity has been disabled, then you can enable it by setting
the SEC_CASE_SENSITIVE_LOGON parameter to TRUE.

• Management of Case Sensitivity for Secure Role Passwords
For better security, you should ensure that the passwords for secure roles are
case sensitive.

• Management of Password Versions of Users
By default, Oracle Database uses Exclusive Mode, which does not permit case-
insensitive passwords, to manage password versions.

• Finding and Resetting User Passwords That Use the 10G Password Version
For better security, find and reset passwords for user accounts that use the 10G
password version so that they use later, more secure password versions.

• How Case Sensitivity Affects Password Files
By default, password files are case sensitive. The IGNORECASE argument in the
ORAPWD command line utility controls the case sensitivity of password files.

• How Case Sensitivity Affects Passwords Used in Database Link Connections
When you create a database link connection, you must define a user name and
password for the connection.

SEC_CASE_SENSITIVE_LOGON Parameter and Password Case Sensitivity
The SEC_CASE_SENSITIVE_LOGON initialization parameter controls the use of case
sensitivity in passwords.

Only users who have the ALTER SYSTEM privilege can set the
SEC_CASE_SENSITIVE_LOGON parameter. You should ensure that this parameter is set
to TRUE so that case sensitivity is enforced when a user enters a password. However,
you should be aware that the SEC_CASE_SENSITIVE_LOGON parameter is deprecated,
but is currently retained for backward compatibility.

Chapter 3
Configuring Password Protection

3-21

When you create or modify user accounts, by default, passwords are case sensitive.
Case sensitivity affects not only passwords that users enter manually, but it affects
password files as well.

Ensure that the SEC_CASE_SENSITIVE_LOGON parameter is not set to FALSE if the
SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter is set to 12 or 12a. This is
because the more secure password versions used for this mode only support case-
sensitive password checking. For compatibility reasons, Oracle Database does not
prevent the use of FALSE for SEC_CASE_SENSITIVE_LOGON when
SQLNET.ALLOWED_LOGON_VERSION_SERVER is set to 12 or 12a. Setting
SEC_CASE_SENSITIVE_LOGON to FALSE when SQLNET.ALLOWED_LOGON_VERSION_SERVER is
set to 12 or 12a causes all accounts to become inaccessible. If
SQLNET.ALLOWED_LOGON_VERSION_SERVER is set to 11 or a lower value, then Oracle
recommends that you set SEC_CASE_SENSITIVE_LOGON to TRUE, because the more
secure password versions used in Exclusive Mode (when
SQLNET.ALLOWED_LOGON_VERSION_SERVER is 12 or 12a) in Oracle Database 12c do not
support case insensitive password matching.

In addition to the server-side settings, you should ensure that the client software with
which the users are connecting has the O5L_NP capability flag. All Oracle Database
release 11.2.0.3 and later clients have the O5L_NP capability. If you have an earlier
client, then you must install the CPUOct2012 patch.

Using the ALTER SYSTEM Statement to Enable Password Case Sensitivity
If password case sensitivity has been disabled, then you can enable it by setting the
SEC_CASE_SENSITIVE_LOGON parameter to TRUE.

1. If you are using a password file, then ensure that it was created with the ORAPWD
utility IGNORECASE parameter set to N and the FORMAT parameter set to 12.

The IGNORECASE parameter overrides the SEC_CASE_SENSITIVE_LOGON parameter.
By default, IGNORECASE is set to N, which means that passwords are treated as
case sensitive.

Note that the IGNORECASE parameter and the SEC_CASE_SENSITIVE_LOGON system
parameter are deprecated. Oracle strongly recommends that you set IGNORECASE
to N or omit the IGNORECASE setting entirely.

2. Enter the following ALTER SYSTEM statement:

ALTER SYSTEM SET SEC_CASE_SENSITIVE_LOGON = TRUE;

Related Topics

• Oracle Database Administrator’s Guide

Management of Case Sensitivity for Secure Role Passwords
For better security, you should ensure that the passwords for secure roles are case
sensitive.

If before upgrading to Oracle Database 12c release 2 (12.2), you created secure roles
by using the IDENTIFIED BY clause of the CREATE ROLE statement, and if upon
upgrading to Oracle Database 12c release 12.2, you set the
SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter to one of the Exclusive Modes 12
or 12a, then you must change the password for these secure roles in order for them to
remain usable. Because Exclusive Mode is now the default, secure roles that were

Chapter 3
Configuring Password Protection

3-22

created in earlier releases (such as Oracle Database 10g, in which the 10G password
version was the default) will need to have their passwords changed.

You can query the PASSWORD_REQUIRED and AUTHENTICATION_TYPE columns of the
DBA_ROLES data dictionary view to find any secure roles that must have their password
changed after upgrade to Oracle Database 12c, in order to become usable again.

Otherwise, the password version for these secure roles cannot be used, unless you
set the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter to 8. If this parameter is
set to 12 or 12a, then you must run the following SQL statement to ensure that case
sensitivity is enabled. If not, then secure roles will remain unusable even after their
passwords have been changed.

ALTER SYSTEM SET SEC_CASE_SENSITIVE_LOGON = "TRUE";

Management of Password Versions of Users
By default, Oracle Database uses Exclusive Mode, which does not permit case-
insensitive passwords, to manage password versions.

In a default installation, the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter is set
to 12 to enable Exclusive Mode. Exclusive Mode requires that the password-based
authentication protocol use one of the case-sensitive password versions (11G or 12C)
for the account that is being authenticated. Exclusive Mode excludes the use of the
10G password version that was used in earlier releases. After you upgrade to Oracle
Database 12c release 2 (12.2), accounts that use the 10G password version become
inaccessible. This occurs because the server runs in Exclusive Mode by default, and
Exclusive Mode cannot use the old 10G password version to authenticate the client.
The server is left with no password version with which to authenticate the client.

The user accounts from Release 10g use the 10G password version. Therefore, you
should find the user accounts that use the 10G password version, and then reset the
passwords for these accounts. This generates the appropriate password version
based on the setting of the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter, as
follows:

• SQLNET.ALLOWED_LOGON_VERSION_SERVER=8 generates all three password versions
10G, 11G, and 12C.

• SQLNET.ALLOWED_LOGON_VERSION_SERVER=12 generates both 11G and 12C
password versions, and removes the 10G password version.

• SQLNET.ALLOWED_LOGON_VERSION_SERVER=12a generates only the 12C password
version.

If you first relax the SQLNET.ALLOWED_LOGON_VERSION_SERVER setting to a more
permissive value (such as SQLNET.ALLOWED_LOGON_VERSION_SERVER=8) and then
import the user accounts from an Oracle Database release 10g (or earlier) release into
the current database release, then because the 10G password version (used in the
older release) is not case sensitive, these users will still be able to log into the
database using any case for their password. But when such a user changes their
password, the new 11G and 12C password versions are generated automatically, and
their password will automatically become case sensitive, because the default value for
the instance initialization parameter SEC_CASE_SENSITIVE_LOGON is TRUE. (Be aware
that SEC_CASE_SENSITIVE_LOGON is deprecated, but is currently retained for backward
compatibility.)

Chapter 3
Configuring Password Protection

3-23

The following example demonstrates the effect of setting the
SEC_CASE_SENSITIVE_LOGON parameter to TRUE. In this scenario, user rtaylor has
been imported from Oracle Database release 10g, and therefore this account only has
the 10G password version. On the server, the SQLNET.ALLOWED_LOGON_VERSION_SERVER
is set to 8 because otherwise rtaylor would not be able to log in. In addition, the
SEC_CASE_SENSITIVE_LOGON parameter is set to TRUE to enable case sensitivity for the
11G and 12C password versions.

1. Check the password versions for user rtaylor:

SELECT PASSWORD_VERSIONS FROM DBA_USERS WHERE USERNAME='RTAYLOR';

PASSWORD VERSIONS

10G

2. Connect as user rtaylor.

CONNECT rtaylor
Enter password: "MaresEatOats"

Connected.

User rtaylor can connect to the database because his password still uses the
10G password version, which is case insensitive. Here, he enters his password in
mixed case, though his actual password is all lower case: mareseatoats.

3. Check the password versions for one of the default users, SCOTT.

SELECT PASSWORD_VERSIONS FROM DBA_USERS WHERE USERNAME='SCOTT';

PASSWORD VERSIONS

11G 12C

4. Try connecting as user SCOTT using a mixed case for the password, even though
his actual password is all lowercase: luv2walkmyk9.

CONNECT SCOTT
Enter password: "LuvToWalkMyK9"

ERROR: ORA-01017: invalid username/password; logon denied
Warning: You are no longer connected to ORACLE.

Because user SCOTT’s password versions are 11G and 12G, the password is case
sensitive. The password entered in this example is correct, but the case is
incorrect.

5. Alter rtaylor’s password to grumble_mumble2work.

ALTER USER rtaylor IDENTIFIED BY grumble_mumble2work;

User altered.

6. Connect with the SYSDBA administrative privilege.

CONNECT / AS SYSDBA

7. Find the password versions for user rtaylor.

SELECT PASSWORD_VERSIONS FROM DBA_USERS WHERE USERNAME='RTAYLOR';

PASSWORD VERSIONS

Chapter 3
Configuring Password Protection

3-24

10G 11G 12C

The authentication protocol that was configured with the
SQLNET.ALLOWED_LOGON_VERSION_SERVER and SEC_CASE_SENSITIVE_LOGON settings
will enforce the case sensitivity of rtaylor’s password, now that he has changed
this password.

8. Try connecting as rtaylor using a mixed case for the password.

CONNECT rtaylor
Enter password: "Grumble_Mumble2Work"

ERROR: ORA-01017: invalid username/password; logon denied
Warning: You are no longer connected to ORACLE.

The password entered fails because it was not entered using the case in which the
password was created.

9. Try connecting as rtaylor again but with the password using the correct case

CONNECT rtaylor
Enter password: "grumble_mumble2work"

Connected.

User rtaylor can connect.

The case sensitivity of the rtaylor account is a result of the server's default setting for
SEC_CASE_SENSITIVE_LOGON, which is TRUE. If this setting is FALSE, then case-
insensitive matching can be restored because the rtaylor account still has the 10G
password version. However, Oracle does not recommend this setting. The
SEC_CASE_SENSITIVE_LOGON parameter is deprecated for this reason. For greater
security, Oracle strongly recommends that you keep case-sensitive password
authentication enabled.

Finding and Resetting User Passwords That Use the 10G Password Version
For better security, find and reset passwords for user accounts that use the 10G
password version so that they use later, more secure password versions.

Finding All Password Versions of Current Users

You can query the DBA_USERS data dictionary view to find a list of all the password
versions configured for user accounts.

For example:

SELECT USERNAME,PASSWORD_VERSIONS FROM DBA_USERS;

USERNAME PASSWORD_VERSIONS
------------------------------ -----------------
JONES 10G 11G 12C
ADAMS 10G 11G
CLARK 10G 11G
PRESTON 11G
BLAKE 10G

Chapter 3
Configuring Password Protection

3-25

The PASSWORD_VERSIONS column shows the list of password versions that exist for the
account. 10G refers to the earlier case-insensitive Oracle password version, 11G refers
to the SHA-1-based password version, and 12C refers to the SHA-2-based SHA-512
password version.

• User jones: The password for this user was reset in Oracle Database 12c Release
12.1 when the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter setting was 8.
This enabled all three password versions to be created.

• Users adams and clark: The passwords for these accounts were originally created
in Oracle Database 10g and then reset in Oracle Database 11g. The Oracle
Database 11g software was using the default SQLNET.ALLOWED_LOGON_VERSION
setting of 8 at that time. Because case insensitivity is enabled by default, their
passwords are now case sensitive, as is the password for preston.

• User preston: This account was imported from an Oracle Database 11g database
that was running in Exclusive Mode (SQLNET.ALLOWED_LOGON_VERSION = 12).

• User blake: This account still uses the Oracle Database 10g password version. At
this stage, user blake is prevented from logging in.

Resetting User Passwords That Use the 10G Password Version

For better security, remove the 10G password version from the accounts of all users. In
the following procedure, to reset the passwords of users who have the 10G password
version, you must temporarily relax the SQLNET.ALLOWED_LOGON_VERSION_SERVER
setting, which controls the ability level required of clients before login can be allowed.
Relaxing the setting enables these users to log in and change their passwords, and
hence generate the newer password versions in addition to the 10G password version.
Afterward, you can set the database to use Exclusive Mode and ensure that the clients
have the O5L_NP capability. Then the users can reset their passwords again, so that
their password versions no longer include 10G, but only have the more secure 11G and
12C password versions.

1. Query the DBA_USERS view to find users who only use the 10G password version.

SELECT USERNAME FROM DBA_USERS
WHERE (PASSWORD_VERSIONS = '10G '
OR PASSWORD_VERSIONS = '10G HTTP ')
AND USERNAME <> 'ANONYMOUS';

2. Configure the database so that it does not run in Exclusive Mode, as follows:

a. Edit the SQLNET.ALLOWED_LOGON_VERSION_SERVER setting in the sqlnet.ora file
so that it is more permissive than the default. For example:

SQLNET.ALLOWED_LOGON_VERSION_SERVER=11

b. Restart the database.

3. Expire the users that you found when you queried the DBA_USERS view to find
users who only use the 10G password version.

You must expire the users who have only the 10G password version, and do not
have one or both of the 11G or 12C password versions.

For example:

ALTER USER username PASSWORD EXPIRE;

4. Ask the users whose passwords you expired to log in.

Chapter 3
Configuring Password Protection

3-26

When the users log in, they are prompted to change their passwords. The
database generates the missing 11G and 12C password versions for their account,
in addition to the 10G password version. The 10G password version continues to be
present, because the database is running in the permissive mode.

5. Ensure that the client software with which the users are connecting has the O5L_NP
ability.

All Oracle Database release 11.2.0.3 and later clients have the O5L_NP ability. If
you have an earlier Oracle Database client, then you must install the CPUOct2012
patch.

6. After all clients have the O5L_NP capability, set the security for the server back to
Exclusive Mode, as follows:

a. Remove the SEC_CASE_SENSITIVE_LOGON parameter setting from the instance
initialization file, or set SEC_CASE_SENSITIVE_LOGON to TRUE.

SEC_CASE_SENSITIVE_LOGON = TRUE

b. Remove the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter from the
server sqlnet.ora file, or set the value of
SQLNET.ALLOWED_LOGON_VERSION_SERVER in the server sqlnet.ora file back to
12, to set it to an Exclusive Mode.

SQLNET.ALLOWED_LOGON_VERSION_SERVER = 12

c. Restart the database.

7. Find the accounts that still have the 10G password version.

SELECT USERNAME FROM DBA_USERS
WHERE PASSWORD_VERSIONS LIKE '%10G%'
AND USERNAME <> 'ANONYMOUS';

8. Expire the accounts that still have the 10G password version.

ALTER USER username PASSWORD EXPIRE;

9. Ask these users to log in to their accounts.

When the users log in, they are prompted to reset their passwords. The database
then generates only the 11G and 12C password versions for their accounts.
Because the database is running in Exclusive Mode, the 10G password version is
no longer generated.

10. Rerun the following query:

SELECT USERNAME FROM DBA_USERS
WHERE PASSWORD_VERSIONS LIKE '%10G%'
AND USERNAME <> 'ANONYMOUS';

If this query does not return any results, then it means that no user accounts have
the 10G password version. Hence, the database is running in a more secure mode
than in previous releases.

How Case Sensitivity Affects Password Files
By default, password files are case sensitive. The IGNORECASE argument in the ORAPWD
command line utility controls the case sensitivity of password files.

Chapter 3
Configuring Password Protection

3-27

The default value for IGNORECASE is N (no), which enforces case sensitivity. For better
security, set IGNORECASE to N or omit the ignorecase argument entirely. Note that
IGNORECASE is deprecated.

The following example shows how to enable case sensitivity in password files.

orapwd file=orapw entries=100
Enter password for SYS: password

This command creates a case sensitive password file called orapw. By default,
passwords are case sensitive. Afterwards, if you connect using this password, it
succeeds—as long as you enter it using the exact case in which it was created. If you
enter the same password but with a different case sensitivity, it will fail.

If you imported user accounts from a previous release and these accounts were
created with SYSDBA or SYSOPER administrative privilege, then they will be included in
the password file. The passwords for these accounts are case insensitive. The next
time these users change their passwords, and assuming case sensitivity is enabled,
the passwords become case sensitive. For greater security, have these users change
their passwords.

Related Topics

• Oracle Database Administrator’s Guide

How Case Sensitivity Affects Passwords Used in Database Link Connections
When you create a database link connection, you must define a user name and
password for the connection.

When you create the database link connection, the password is case sensitive. How a
user enters his or her password for connections depends on the release in which the
database link was created:

• Users can connect from a pre-Oracle Database 12c database to a Oracle
Database 12c database. Because case sensitivity is enabled, then the user must
enter the password using the case that was used when the account was created.

• If the user connects from a Oracle Database 12c database to a pre-Oracle
Database 12c database, and if the SEC_CASE_SENSITIVE_LOGON parameter in the
pre-Release 12c database had been set to FALSE, then the password for this
database link can be specified using any case.

You can find the user accounts for existing database links by querying the V$DBLINK
view. For example:

SELECT DB_LINK, OWNER_ID FROM V$DBLINK;

See Oracle Database Reference for more information about the V$DBLINK view.

Ensuring Against Password Security Threats by Using the 12C
Password Version

The 12C password version enables users to create complex passwords that meet
compliance standards.

Chapter 3
Configuring Password Protection

3-28

• About the 12C Version of the Password Hash
The 12C password hash protects against password-based security threats by
including support for mixed case passwords.

• Oracle Database 12C Password Version Configuration Guidelines
By default, Oracle Database generates two versions of the password hash: 11G
and 12C.

• Configuring Oracle Database to Use the 12C Password Version Exclusively
You should set the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter to 12a so
that only the 12C password hash version is used.

• How Server and Client Logon Versions Affect Database Links
The SQLNET.ALLOWED_LOGON_VERSION_SERVER and
SQLNET.ALLOWED_LOGON_VERSION_CLIENT parameters can accommodate
connections between databases and clients of different releases.

• Configuring Oracle Database Clients to Use the 12C Password Version
Exclusively
An intruder may try to provision a fake server to downgrade authentication and
trick the client into using a weaker password hash version.

About the 12C Version of the Password Hash
The 12C password hash protects against password-based security threats by including
support for mixed case passwords.

The cryptographic hash function used for generating the 12C version of the password
hash is based on a de-optimized algorithm involving Password-Based Key Derivation
Function 2 (PBKDF2) and the SHA-512 cryptographic hash functions. The PBKDF2
algorithm introduces computational asymmetry in the challenge that faces an intruder
who is trying to recover the original password when in possession of the 12C version of
the password hash. The 12C password generation performs a SHA-512 hash of the
PBKDF2 output as its last step. This two-step approach used in the 12C password
version generation allows server CPU resources to be conserved when the client has
the O7L_MR capability. This is because during the password verification phase of the
O5LOGON authentication, the server only needs to perform a single SHA-512 hash of
a value transmitted by the O7L_MR capable client, rather than having to repeat the
entire PBKDF2 calculation on the password itself.

In addition, the 12C password version adds a salt to the password when it is hashed,
which provides additional protection. The 12C password version enables your users to
create far more complex passwords. The 12C password version's use of salt, its use of
PBKDF2 de-optimization, and its support for mixed-case passwords makes it more
expensive for an intruder to perform dictionary or brute force attacks on the 12C
password version in an attempt to recover the user's password. Oracle recommends
that you use the 12C version of the password hash.

The password hash values are considered to be extremely sensitive, because they are
used as a "shared secret" between the server and person who is logging in. If an
intruder learns this secret, then the protection of the authentication is immediately and
severely compromised. Remember that administrative users who have account
management privileges, administrative users who have the SYSDBA administrative
privilege, or even users who have the EXP_FULL_DATABASE role can immediately
access the password hash values. Therefore, this type of administrative user must be
trustworthy if the integrity of the database password-based authentication is to be
preserved. If you cannot trust these administrators, then it is better to deploy a

Chapter 3
Configuring Password Protection

3-29

directory server (such as Oracle Database Enterprise User Security) so that the
password hash values remain within the Enterprise User Security directory and are
never accessible to anyone except the Enterprise User Security administrator.

Related Topics

• Oracle Database Net Services Reference

Oracle Database 12C Password Version Configuration Guidelines
By default, Oracle Database generates two versions of the password hash: 11G and
12C.

The version of the password hash that Oracle Database uses to authenticate a given
client depends on the client’s ability, and the settings for the
SQLNET.ALLOWED_LOGON_VERSION_CLIENT and SQLNET.ALLOWED_LOGON_VERSION_SERVER
parameters. See the column “Ability Required of the Client” in the
“SQLNET.ALLOWED_LOGON_VERSION_SERVER Settings” table in the
SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter description in Oracle Database
Net Services Reference for detailed information about how the client authentication
works with password versions.

The 10G password version, which was generated in Oracle Database 10g, is not case
sensitive. Both the 11G and 12C password versions are case sensitive.

In Oracle Database 12g release 2 (12.2), the sqlnet.ora parameter
SQLNET.ALLOWED_LOGON_VERSION_SERVER defaults to 12, which is Exclusive Mode and
prevents the use of the 10G password version, and the
SQLNET.ALLOWED_LOGON_VERSION_CLIENT parameter defaults to 11. For new accounts,
when the client is Oracle Database 12c, then Oracle Database uses the 12C password
version exclusively with clients that are running the Oracle Database 12c release
software. For accounts that were created before Oracle Database release 12c, logins
will succeed as long as the client has the O5L_NP ability, because an 11G password
version normally exists for accounts created in earlier releases such as Oracle
Database release 11g. For a very old account (for example, from Oracle Database
release 10g), the user’s password may need to be reset, in order to create a SHA-1
password version for the account. To configure this server to generate only the 12C
password version whenever a new account is created or an existing account password
is changed, then set the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter to 12a.
However, if you want your applications to be compatible with older clients, then ensure
that SQLNET.ALLOWED_LOGON_VERSION_SERVER is set to 12, which is the default.

How you set the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter depends on the
balance of security and interoperability with older clients that your system requires.
You can control the levels of security as follows:

• Greatest level of compatibility: To configure the server to generate all three
versions of the password hash (the 12C password version, the 11G password
version, and the DES-based 10G password version), whenever a new account is
created or an existing account password is changed, set the
SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter to the value 11 or lower. (Be
aware that earlier releases used the value 8 as the default.)

• Recommended level of security: To configure the server to generate both the
12C password version and the 11G password version (but not the 10G password
version), whenever a new account is created or an existing account password is

Chapter 3
Configuring Password Protection

3-30

changed, set the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter to the value
12.

• Highest level of security: To configure the server to generate only the 12C
password version whenever a new account is created or an existing account
password is changed, set the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter
to the value 12a.

During authentication, the following scenarios are possible, based on the kinds of
password versions that exist for the account, and on the version of the client software
being used:

• Accounts with only the 10G version of the password hash: If you want to force
the server to generate the newer versions of the password hash for older
accounts, an administrator must expire the password for any account that has only
the 10G password version (and none of the more secure password versions, 11G or
12C). You must generate these password versions because the database depends
on using these password versions to provide stronger security. You can find these
users as follows.

SELECT USERNAME FROM DBA_USERS
WHERE PASSWORD_VERSIONS LIKE '%10G%
AND USERNAME <> 'ANONYMOUS';

And then expire each account as follows:

ALTER USER username PASSWORD EXPIRE;

After you have expired each account, notify these users to log in, in which case
they will be prompted to change their password. The version of the client
determines the password version that is used. The setting of the
SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter determines the password
versions that are generated. If the client has the O7L_MR ability (Oracle Database
release 12c), then the 12C password version is used to authenticate. If the client
has the O5L_NP ability but not the O7L_MR ability (such as Oracle Database
release 11g clients), then the 11G password version is used to authenticate. You
should upgrade all clients to Oracle Database release 12c so that the 12C
password version can be used exclusively to authenticate. (By default, Oracle
Database release 11.2.0.3 and later clients have the O5L_NP ability, which enables
the 11G password version to be used exclusively. If you have an earlier Oracle
Database client, then you must install the CPUOct2012 patch.)

When an account password is expired and the ALLOWED_LOGON_VERSION_SERVER
parameter is set to 12 or 12a, then the 10G password version is removed and only
one or both of the new password versions are created, depending on how the
parameter is set, as follows:

– If ALLOWED_LOGON_VERSION_SERVER is set to 12 (the default), then both the 11G
and 12C versions of the password hash are generated.

– If ALLOWED_LOGON_VERSION_SERVER is set to 12a, then only the 12C version of
the password hash is generated.

For more details, see the "Generated Password Version" column in the table in the
"Usage Notes" section for the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter
in Oracle Database Net Services Reference.

• Accounts with both 10G and 11G versions of the password hash: For users
who are using a Release 10g or later client, the user logins will succeed because

Chapter 3
Configuring Password Protection

3-31

the 11G version of the password hash is used. However, to use the latest version,
expire these passwords, as described in the previous bulleted item for accounts.

• Accounts with only the 11G version of the password hash: The authentication
uses the 11G version of the password hash. To use the latest version, expire the
passwords, as described in the first bulleted item.

The Oracle Database 12c default configuration for
SQLNET.ALLOWED_LOGON_VERSION_SERVER is 12, which means that it is compatible with
Oracle Database 12c release 2 (12.2) authentication protocols and later products that
use OCI-based drivers, including SQL*Plus, ODBC, Oracle .NET, Oracle Forms, and
various third-party Oracle Database adapters. It is also compatible with JDBC type-4
(thin) versions that have had the CPUOct2012 bundle patch applied or starting with
Oracle Database 11g, and Oracle Database Client interface (OCI)-based drivers
starting in Oracle Database 10g release 10.2. Be aware that earlier releases of the
OCI client drivers cannot authenticate to an Oracle database using password-based
authentication.

Configuring Oracle Database to Use the 12C Password Version Exclusively
You should set the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter to 12a so that
only the 12C password hash version is used.

The 12C password version is the most restrictive and secure of the password hash
versions, and for this reason, Oracle recommends that you use only this password
version. By default, SQLNET.ALLOWED_LOGON_VERSION_SERVER is set to 12, which
enables both the 11G and 12C password versions to be used. (Both the
SQLNET.ALLOWED_LOGON_VERSION_SERVER values 12 and 12a are considered Exclusive
Mode, which prevents the use of the earlier 10G password version.) If you have
upgraded from a previous release, or if SQLNET.ALLOWED_LOGON_VERSION_SERVER is set
to 12 or another setting that was used in previous releases, then you should
reconfigure this parameter, because intruders will attempt to downgrade the
authentication to use weaker password versions. Table 3-3 shows the effect of the
SQLNET.ALLOWED_LOGON_VERSION_SERVER setting on password version generation.
Be aware that you can use the 12C password version exclusively only if you use Oracle
Database 12c release 12.1.0.2 or later clients. Before you change the
SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter to 12a, check the versions of the
database clients that are connected to the server.

1. Log in to SQL*Plus as an administrative user who has the ALTER USER system
privilege.

2. Perform the following SQL query to find the password versions of your users.

SELECT USERNAME,PASSWORD_VERSIONS FROM DBA_USERS;

3. Expire the account of each user who does not have the 12C password version.

For example, assuming user blake is still using a 10G password version:

ALTER USER blake PASSWORD EXPIRE;

The next time that these users log in, they will be forced to change their
passwords, which enables the server to generate the password versions required
for Exclusive Mode.

4. Remind users to log in within a reasonable period of time (such as 30 days).

Chapter 3
Configuring Password Protection

3-32

When they log in, they will be prompted to change their password, ensuring that
the password versions required for authentication in Exclusive Mode are
generated by the server. (For more information about how Exclusive Mode works,
see the usage notes for the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter in
Oracle Database Net Services Reference.)

5. Manually change the passwords for accounts that are used in test scripts or batch
jobs so that they exactly match the passwords used by these test scripts or batch
jobs, including the password's case.

6. Enable the Exclusive Mode configuration as follows:

a. Create a back up copy of the sqlnet.ora parameter file.

By default, this file is located in the $ORACLE_HOME/network/admin directory on
UNIX operating systems and the %ORACLE_HOME%\network\admin directory on
Microsoft Windows operating systems.

Be aware that in a Multitenant environment, the settings in the sqlnet.ora file
apply to all PDBs.

b. Set the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter, using Table 3-3
for guidance.

c. Save the sqlnet.ora file.

Table 3-3 shows the effect of the SQLNET.ALLOWED_LOGON_VERSION_SERVER setting on
password version generation.

Table 3-3 Effect of SQLNET.ALLOWED_LOGON_VERSION_SERVER on
Password Version Generation

SQLNET.ALLOWED_LOGON_VERSION
_SERVER Setting

8 11 12 12a

Server runs in Exclusive Mode? No No Yes Yes

Generate the 10G password version? Yes Yes No No

Generate the 11G password version? Yes Yes Yes No

Generate the 12C password version? Yes Yes Yes Yes

If you only use Oracle Database 12c release 12.1.0.2 or later clients, then set
SQLNET.ALLOWED_LOGON_VERSION_SERVER to 12a.

The higher the setting, the more restrictive the use of password versions, as follows:

• A setting of 12a, the most restrictive and secure setting, only permits the 12C
password version.

• A setting of 12 permits both the 11G and 12C password versions to be used for
authentication.

• A setting of 8 permits the most password versions: 10G, 11G, and 12C.

For detailed information about the SQLNET.ALLOWED_LOGON_VERSION_SERVER
parameter, see Oracle Database Net Services Reference.

Chapter 3
Configuring Password Protection

3-33

Note:

If your system hosts a fixed database link to a target database that runs an
earlier release, then you can set the
SQLNET.ALLOWED_LOGON_VERSION_CLIENT parameter, as described in How
Server and Client Logon Versions Affect Database Links.

How Server and Client Logon Versions Affect Database Links
The SQLNET.ALLOWED_LOGON_VERSION_SERVER and
SQLNET.ALLOWED_LOGON_VERSION_CLIENT parameters can accommodate connections
between databases and clients of different releases.

The following diagram illustrates how connections between databases and clients of
different releases work. The SQLNET.ALLOWED_LOGON_VERSION_CLIENT parameter
affects the "client allowed logon version" aspect of a server that hosts the database
link H. This setting enables H to connect through database links to older servers, such
as those running Oracle 9i (T), yet still refuse connections from older unpatched clients
(U). When this happens, the Oracle Net Services protocol negotiation fails, which
raises an ORA-28040: No matching authentication protocol error message in this
client, which is attempting to authenticate using the Oracle 9I software. The Oracle Net
Services protocol negotiation for Oracle Database 10g release 10.2 client E succeeds
because this release incorporates the critical patch update CPUOct2012. The Oracle
Net Services protocol negotiation for Release 11.2.0.3 client C succeeds because it
uses a secure password version.

9i Client

(Unpatched)

11.2.0.3 Client

Oracle Net Services
protocol negotiation
fails

Oracle Net Services
protocol negotiation
succeeds

U

C

10g Client

Oracle Net Services
protocol negotiation
succeeds

E

Fixed Database

Link (Host)

12g

Database Link

(Target)

9i

H T

H acts as client to T by using
SQLNET.ALLOWED_LOGON_VERSION_CLIENT = 8

H also acts as server for C, E, and U by using
SQLNET.ALLOWED_LOGON_VERSION_SERVER = 12

T uses
SQLNET.ALLOWED_LOGON_VERSION=8

This scenario uses the following settings for the system that hosts the database link H:

SQLNET.ALLOWED_LOGON_VERSION_CLIENT=8
SQLNET.ALLOWED_LOGON_VERSION_SERVER=12

Note that the remote Oracle Database T has the following setting:

SQLNET.ALLOWED_LOGON_VERSION=8

If the release of the remote Oracle Database T does not meet or exceed the value
defined by the SQLNET.ALLOWED_LOGON_VERSION_CLIENT parameter set for the host H,

Chapter 3
Configuring Password Protection

3-34

then queries over the fixed database link would fail during authentication of the
database link user, resulting in an ORA-28040: No matching authentication
protocol error when an end-user attempts to access a table over the database link.

Note:

If you are using an older Oracle Database client (such as Oracle Database
11g release 11.1.0.7), then Oracle strongly recommends that you upgrade to
use the critical patch update CPUOct2012.

See Also:

• Oracle Database Net Services Reference for more information about the
SQLNET.ALLOWED_LOGON_VERSION_CLIENT parameter

• http://www.oracle.com/technetwork/topics/security/
cpuoct2012-1515893.html for more information about CPUOct2012

Configuring Oracle Database Clients to Use the 12C Password Version
Exclusively

An intruder may try to provision a fake server to downgrade authentication and trick
the client into using a weaker password hash version.

• To prevent the use of the 10G password version, or both the 10G and 11G password
versions, after you configure the server, configure the clients to run in Exclusive
Mode, as follows:

– To use the client Exclusive Mode setting to permit both the 11G and 12C
password versions:

SQLNET.ALLOWED_LOGON_VERSION_CLIENT = 12

– To use the more restrictive client Exclusive Mode setting to permit only the 12C
password version (this setting permits the client to connect only to Oracle
Database 12c release 1 (12.1.0.2) and later servers):

SQLNET.ALLOWED_LOGON_VERSION_CLIENT = 12a

If the server and the client are both installed on the same computer, then ensure that
the TNS_ADMIN environment variable for each points to the correct directory for its
respective Oracle Net Services configuration files. If the variable is the same for both,
then the server could use the client's SQLNET.ALLOWED_LOGON_VERSION_CLIENT setting
instead.

If you are using older Oracle Database clients (such as Oracle Database 11g release
11.1.0.7), then you should apply CPU Oct2012 or later to these clients. This patch
provides the O5L_NP ability. Unless you apply this patch, users will be unable to log in.

Chapter 3
Configuring Password Protection

3-35

http://www.oracle.com/technetwork/topics/security/cpuoct2012-1515893.html
http://www.oracle.com/technetwork/topics/security/cpuoct2012-1515893.html

See Also:

• Oracle Database Net Services Reference for more information about the
SQLNET.ALLOWED_LOGON_VERSION_CLIENT parameter

• The following Oracle Technology Network site for more information
about CPUOct2012:

http://www.oracle.com/technetwork/topics/security/
cpuoct2012-1515893.html

Managing the Secure External Password Store for Password
Credentials

The secure external password store is a client-side wallet that is used to store
password credentials.

• About the Secure External Password Store
You can store password credentials database connections by using a client-side
Oracle wallet.

• How Does the External Password Store Work?
Users (and applications, batch jobs, and scripts) connect to databases by using a
standard CONNECT statement that specifies a database connection string.

• About Configuring Clients to Use the External Password Store
If your client is configured to use external authentication, such as Windows native
authentication or SSL, then Oracle Database uses that authentication method.

• Configuring a Client to Use the External Password Store
You can configure a client to use the secure external password store feature by
using the mkstore command-line utility.

• Example: Sample SQLNET.ORA File with Wallet Parameters Set
You can set special parameters in the sqlnet.ora file to control how wallets are
managed.

• Managing External Password Store Credentials
The mkstore command-line utility manages credentials from an external password
store.

About the Secure External Password Store
You can store password credentials database connections by using a client-side
Oracle wallet.

An Oracle wallet is a secure software container that stores authentication and signing
credentials. This wallet usage can simplify large-scale deployments that rely on
password credentials for connecting to databases. When this feature is configured,
application code, scripts no longer need embedded user names and passwords. This
reduces risk because the passwords are no longer exposed, and password
management policies are more easily enforced without changing application code
whenever user names or passwords change.

Chapter 3
Configuring Password Protection

3-36

http://www.oracle.com/technetwork/topics/security/cpuoct2012-1515893.html
http://www.oracle.com/technetwork/topics/security/cpuoct2012-1515893.html

Note:

The external password store of the wallet is separate from the area where
public key infrastructure (PKI) credentials are stored. Consequently, you
cannot use Oracle Wallet Manager to manage credentials in the external
password store of the wallet. Instead, use the command-line utility mkstore
to manage these credentials.

Related Topics

• Using Proxy Authentication with the Secure External Password Store
Use a secure external password store if you are concerned about the password
used in proxy authentication being obtained by a malicious user.

• Oracle Database Enterprise User Security Administrator's Guide

How Does the External Password Store Work?
Users (and applications, batch jobs, and scripts) connect to databases by using a
standard CONNECT statement that specifies a database connection string.

This string can include a user name and password, and an Oracle Net service name
identifying the database on an Oracle Database network. If the password is omitted,
the connection prompts the user for the password.

For example, the service name could be the URL that identifies that database, or a
TNS alias you entered in the tnsnames.ora file in the database. Another possibility is a
host:port:sid string.

The following examples are standard CONNECT statements that could be used for a
client that is not configured to use the external password store:

CONNECT salesapp@sales_db.us.example.com
Enter password: password

CONNECT salesapp@orasales
Enter password: password

CONNECT salesapp@ourhost37:1527:DB17
Enter password: password

In these examples, salesapp is the user name, with the unique connection string for
the database shown as specified in three different ways. You could use its URL
sales_db.us.example.com, or its TNS alias orasales from the tnsnames.ora file, or its
host:port:sid string.

However, when clients are configured to use the secure external password store,
applications can connect to a database with the following CONNECT statement syntax,
without specifying database login credentials:

CONNECT /@db_connect_string

CONNECT /@db_connect_string AS SYSDBA

CONNECT /@db_connect_string AS SYSOPER

Chapter 3
Configuring Password Protection

3-37

In this specification, db_connect_string is a valid connection string to access the
intended database, such as the service name, URL, or alias as shown in the earlier
examples. Each user account must have its own unique connection string; you cannot
create one connection string for multiple users.

In this case, the database credentials, user name and password, are securely stored
in an Oracle wallet created for this purpose. The autologin feature of this wallet is
turned on, so the system does not need a password to open the wallet. From the
wallet, it gets the credentials to access the database for the user they represent.

Related Topics

• Oracle Database Enterprise User Security Administrator's Guide

About Configuring Clients to Use the External Password Store
If your client is configured to use external authentication, such as Windows native
authentication or SSL, then Oracle Database uses that authentication method.

The same credentials used for this type of authentication are typically also used to log
in to the database. For clients not using such authentication methods or wanting to
override them for database authentication, you can set the SQLNET.WALLET_OVERRIDE
parameter in sqlnet.ora to TRUE. The default value for SQLNET.WALLET_OVERRIDE is
FALSE, allowing standard use of authentication credentials as before.

Configuring a Client to Use the External Password Store
You can configure a client to use the secure external password store feature by using
the mkstore command-line utility.

1. Create a wallet on the client by using the following syntax at the command line:

mkstore -wrl wallet_location -create

For example:

mkstore -wrl c:\oracle\product\12.2.0\db_1\wallets -create
Enter password: password

wallet_location is the path to the directory where you want to create and store
the wallet. This command creates an Oracle wallet with the autologin feature
enabled at the location you specify. The autologin feature enables the client to
access the wallet contents without supplying a password. See Oracle Database
Enterprise User Security Administrator's Guide for information about autologin
wallets.

The mkstore utility -create option uses password complexity verification. See
About Password Complexity Verification for more information.

2. Create database connection credentials in the wallet by using the following syntax
at the command line:

mkstore -wrl wallet_location -createCredential db_connect_string username
Enter password: password

For example:

mkstore -wrl c:\oracle\product\12.2.0\db_1\wallets -createCredential orcl system
Enter password: password

Chapter 3
Configuring Password Protection

3-38

In this specification:

• wallet_location is the path to the directory where you created the wallet in
Step 1.

• db_connect_string is the TNS alias you use to specify the database in the
tnsnames.ora file or any service name you use to identify the database on an
Oracle network. By default, tnsnames.ora is located in the $ORACLE_HOME/
network/admin directory on UNIX systems and in ORACLE_HOME\network
\admin on Windows.

• username is the database login credential. When prompted, enter the
password for this user.

Repeat this step for each database you want accessible using the CONNECT /
@db_connect_string syntax. The db_connect_string used in the CONNECT /
@db_connect_string statement must be identical to the db_connect_string
specified in the -createCredential command.

3. In the client sqlnet.ora file, enter the WALLET_LOCATION parameter and set it to the
directory location of the wallet you created in Step 1.

For example, if you created the wallet in $ORACLE_HOME/network/admin and your
Oracle home is set to /private/ora11, then you need to enter the following into
your client sqlnet.ora file:

WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = /private/ora11/network/admin)
)
)

4. In the client sqlnet.ora file, enter the SQLNET.WALLET_OVERRIDE parameter and
set it to TRUE as follows:

SQLNET.WALLET_OVERRIDE = TRUE

This setting causes all CONNECT /@db_connect_string statements to use the
information in the wallet at the specified location to authenticate to databases.

When external authentication is in use, an authenticated user with such a wallet
can use the CONNECT /@db_connect_string syntax to access the previously
specified databases without providing a user name and password. However, if a
user fails that external authentication, then these connect statements also fail.

Note:

If an application uses SSL for encryption, then the sqlnet.ora
parameter, SQLNET.AUTHENTICATION_SERVICES, specifies SSL and an
SSL wallet is created. If this application wants to use secret store
credentials to authenticate to databases (instead of the SSL certificate),
then those credentials must be stored in the SSL wallet. After SSL
authentication, if SQLNET.WALLET_OVERRIDE = TRUE, then the user names
and passwords from the wallet are used to authenticate to databases. If
SQLNET.WALLET_OVERRIDE = FALSE, then the SSL certificate is used.

Chapter 3
Configuring Password Protection

3-39

Example: Sample SQLNET.ORA File with Wallet Parameters Set
You can set special parameters in the sqlnet.ora file to control how wallets are
managed.

Example 3-2 shows a sample sqlnet.ora file with the WALLET_LOCATION and the
SQLNET.WALLET_OVERRIDE parameters set as described in Steps 3 and 4 of Configuring
a Client to Use the External Password Store.

Example 3-2 Sample SQLNET.ORA File with Wallet Parameters Set

WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = /private/ora11/network/admin)
)
)

SQLNET.WALLET_OVERRIDE = TRUE
SSL_CLIENT_AUTHENTICATION = FALSE
SSL_VERSION = 0

Managing External Password Store Credentials
The mkstore command-line utility manages credentials from an external password
store.

• Listing External Password Store Contents
You can view the contents, including specific credentials, of a client wallet external
password store.

• Adding Credentials to an External Password Store
You can store multiple credentials in one client wallet.

• Modifying Credentials in an External Password Store
You can modify the database login credentials that are stored in the wallet if the
database connection strings change.

• Deleting Credentials from an External Password Store
You can delete login credentials for a database from a wallet if the database no
longer exists or to disable connections to a specific database.

Listing External Password Store Contents
You can view the contents, including specific credentials, of a client wallet external
password store.

Listing the external password store contents provides information you can use to
decide whether to add or delete credentials from the store.

• To list the contents of the external password store, enter the following command at
the command line:

mkstore -wrl wallet_location -listCredential

For example:

mkstore -wrl c:\oracle\product\19.1.0\db_1\wallets -listCredential

Chapter 3
Configuring Password Protection

3-40

wallet_location specifies the path to the directory where the wallet, whose external
password store contents you want to view, is located. This command lists all of the
credential database service names (aliases) and the corresponding user name
(schema) for that database. Passwords are not listed.

Adding Credentials to an External Password Store
You can store multiple credentials in one client wallet.

For example, if a client batch job connects to hr_database and a script connects to
sales_database, then you can store the login credentials in the same client wallet.
You cannot, however, store multiple credentials (for logging in to multiple schemas) for
the same database in the same wallet. If you have multiple login credentials for the
same database, then they must be stored in separate wallets.

• To add database login credentials to an existing client wallet, enter the following
command at the command line:

mkstore -wrl wallet_location -createCredential db_alias username

For example:

mkstore -wrl c:\oracle\product\19.1.0\db_1\wallets -createCredential orcl system
Enter password: password

In this specification:

• wallet_location is the path to the directory where the client wallet to which you
want to add credentials is stored.

• db_alias can be the TNS alias you use to specify the database in the
tnsnames.ora file or any service name you use to identify the database on an
Oracle network.

• username is the database login credential for the schema to which your application
connects. When prompted, enter the password for this user.

Modifying Credentials in an External Password Store
You can modify the database login credentials that are stored in the wallet if the
database connection strings change.

• To modify database login credentials in a wallet, enter the following command at
the command line:

mkstore -wrl wallet_location -modifyCredential db_alias username

For example:

mkstore -wrl c:\oracle\product\19.1.0\db_1\wallets -modifyCredential sales_db
Enter password: password

In this specification:

• wallet_location is the path to the directory where the wallet is located.

• db_alias is a new or different alias you want to use to identify the database. It can
be a TNS alias you use to specify the database in the tnsnames.ora file or any
service name you use to identify the database on an Oracle network.

• username is the new or different database login credential. When prompted, enter
the password for this user.

Chapter 3
Configuring Password Protection

3-41

Deleting Credentials from an External Password Store
You can delete login credentials for a database from a wallet if the database no longer
exists or to disable connections to a specific database.

• To delete database login credentials from a wallet, enter the following command at
the command line:

mkstore -wrl wallet_location -deleteCredential db_alias

For example:

mkstore -wrl c:\oracle\product\19.1.0\db_1\wallets -deleteCredential orcl

In this specification:

• wallet_location is the path to the directory where the wallet is located.

• db_alias is the TNS alias you use to specify the database in the tnsnames.ora
file, or any service name you use to identify the database on an Oracle Database
network.

Managing Passwords for Administrative Users
The passwords of administrative users have special protections, such as password
files and password complexity functions.

• About Managing Passwords for Administrative Users
The passwords of administrative users are stored outside of the database so that
the users can be authenticated even when the database is not open.

• Setting the LOCK and EXPIRED Status of Administrative Users
Administrative users whose accounts have been locked cannot connect to the
database.

• Password Profile Settings for Administrative Users
There are several user profile password settings that are enforced for
administrative users.

• Last Successful Login Time for Administrative Users
The last successful login time of administrative user connections that use
password file-based authentication is captured.

• Management of the Password File of Administrative Users
Setting the ORAPWD utility FORMAT parameter to 12.2 enables you to manage the
password profile parameters for administrative users.

• Migration of the Password File of Administrative Users
The ORAPWD utility input_file parameter or DBUA can be used to migrate from
earlier password file formats to the 12.2 format.

• How the Multitenant Option Affects Password Files for Administrative Users
In a multitenant environment, the password information for the local and common
administrative users is stored in different locations.

• Password Complexity Verification Functions for Administrative Users
For better security, use password complexity verification functions for the
passwords of administrative users.

Chapter 3
Configuring Password Protection

3-42

About Managing Passwords for Administrative Users
The passwords of administrative users are stored outside of the database so that the
users can be authenticated even when the database is not open.

There is no special protection with the password file. The password verifiers must be
stored outside of the database so that authentication can be performed even when the
database is not open. In previous releases, password complexity functions were
available for non-administrative users only. Starting with Oracle Database release 12c
(12.2), password complexity functions can be used for both non-administrative users
and administrative users.

Setting the LOCK and EXPIRED Status of Administrative Users
Administrative users whose accounts have been locked cannot connect to the
database.

• To unlock locked or expired administrative accounts, use the ALTER USER
statement.

For example:

ALTER USER hr_admin ACCOUNT UNLOCK;

If the administrative user’s password has expired, then the next time the user attempts
to log in, the user will be prompted to create a new password.

Password Profile Settings for Administrative Users
There are several user profile password settings that are enforced for administrative
users.

These password profile parameters are as follows:

• FAILED_LOGIN_ATTEMPT

• INACTIVE_ACCOUNT_TIME

• PASSWORD_LOCK_TIME

• PASSWORD_LIFE_TIME

• PASSWORD_GRACE_TIME

Related Topics

• Managing Resources with Profiles
A profile is a named set of resource limits and password parameters that restrict
database usage and instance resources for a user.

Last Successful Login Time for Administrative Users
The last successful login time of administrative user connections that use password
file-based authentication is captured.

To find this login time, query the LAST_LOGIN column of the V$PWFILE_USERS dynamic
performance view.

Chapter 3
Configuring Password Protection

3-43

Management of the Password File of Administrative Users
Setting the ORAPWD utility FORMAT parameter to 12.2 enables you to manage the
password profile parameters for administrative users.

The password file is particularly important for administrative users because it stores
the administrative user’s credentials in an external file, not in the database itself. This
enables the administrative user to log in to a database that is not open and perform
tasks such as querying the data dictionary views. To create the password file, you
must use the ORAPWD utility.

The FORMAT parameter setting of 12.2, which is the default setting, enables the
password file to accommodate the password profile information for the administrative
user.

For example:

orapwd file=orapworcl input_file=orapwold format=12.2
...

Setting FORMAT to 12.2 enforces the following rules:

• The password contains no fewer than 8 characters and includes at least one
numeric and one alphabetic character.

• The password is not the same as the user name or the user name reversed.

• The password is not the same as the database name.

• The password does not contain the word oracle (such as oracle123).

• The password differs from the previous password by at least 8 characters.

• The password contains at least 1 special character.

FORMAT=12.2 also applies the following internal checks:

• The password does not exceed 30 characters.

• The password does not contain the double-quotation character ("). However, it
can be surrounded by double-quotation marks.

The following user profile password settings are enforced for administrative users:

• FAILED_LOGIN_ATTEMPT

• INACTIVE_ACCOUNT_TIME

• PASSWORD_GRACE_TIME

• PASSWORD_LIFE_TIME

• PASSWORD_LOCK_TIME

You can find the administrative users who have been included in the password file and
their administrative privileges by querying the V$PWFILE_USERS dynamic view.

Migration of the Password File of Administrative Users
The ORAPWD utility input_file parameter or DBUA can be used to migrate from earlier
password file formats to the 12.2 format.

Chapter 3
Configuring Password Protection

3-44

You can migrate from earlier password file formats to the 12.2 format by using either
the ORAPWD utility file and input_file parameters, or by using Oracle Database
Upgrade Assistant (DBUA).

• The ORAPWD FILE and INPUT_FILE parameters: To migrate using the ORAPWD
utility, set the FILE parameter to a name for the new password file and the
INPUT_FILE parameter to the name of the earlier password file.

For example:

orapwd file=orapworcl input_file=orapwold format=12.2

• DBUA: To migrate from the earlier formats of password files (FORMAT = LEGACY
and FORMAT = 12), you can use the DBUA when you upgrade an earlier database
to the current release. However, ensure that the database is open in read-only
mode. You can check the database read-only status by querying the OPEN_MODE
column of the V$DATABASE dynamic view.

See also:

Related Topics

• Oracle Database Administrator’s Guide

How the Multitenant Option Affects Password Files for Administrative Users
In a multitenant environment, the password information for the local and common
administrative users is stored in different locations.

• For CDB administrative users: The password information (hashes of the
password) for the CDB common administrative users to whom administrative
privileges were granted in the CDB root is stored in the password file.

• For all users in a CDB to whom administrative privileges were granted
outside the CDB root: To view information about the password hash information
of these users, query the $PWFILE_USERS dynamic view.

Password Complexity Verification Functions for Administrative Users
For better security, use password complexity verification functions for the passwords
of administrative users.

Note the following:

• Profiles: You can specify a password complexity verification function for the SYS
user by using the PASSWORD_VERIFY_FUNCTION clause of the CREATE PROFILE or
ALTER PROFILE statement. Oracle recommends that you use password verification
functions to better protect the passwords of administrative users.

• ORAPWD password files: If you created a password file using the ORAPWD utility,
then Oracle Database enforces password complexity checking for the SYS user
and for administrative users who have logged in using the SYSDBA, SYSBACKUP,
SYSDG, and SYSKM administrative privileges.

The password checks for the following requirements:

– The password contains no fewer than 8 characters and includes at least one
numeric character, one alphabetic character, and one special character.

– The password is not the same as the user name or the user name reversed.

Chapter 3
Configuring Password Protection

3-45

– The password does not contain the word oracle (such as oracle123).

– The password differs from the previous password by at least three characters.

The following internal checks are also applied:

– The password does not exceed 30 characters.

– The password does not contain the double-quotation character ("). However, it
can be surrounded by double-quotation marks.

Related Topics

• Managing the Complexity of Passwords
Oracle Database provides a set of functions that you can use to manage the
complexity of passwords.

Authentication of Database Administrators
You can authenticate database administrators by using strong authentication, from the
operating system, or from the database using passwords.

• About Authentication of Database Administrators
Database administrators perform special administrative operations, such as
shutting down or starting databases.

• Strong Authentication, Centralized Management for Administrators
Strong authentication methods for centrally managed databases include directory
authentication, Kerberos authentication, and SSL authentication.

• Authentication of Database Administrators by Using the Operating System
For both Windows and UNIX systems, you use DBA-privileged groups to
authenticate for the operating system.

• Authentication of Database Administrators by Using Their Passwords
Password files are used to authenticate database administrators.

• Risks of Using Password Files for Database Administrator Authentication
Be aware that using password files may pose security risks.

About Authentication of Database Administrators
Database administrators perform special administrative operations, such as shutting
down or starting databases.

Oracle Database provides methods to secure the authentication of database
administrators who have the SYSDBA, SYSOPER, SYSBACKUP, SYSDG, or SYSKM
administrative privilege.

Strong Authentication, Centralized Management for Administrators
Strong authentication methods for centrally managed databases include directory
authentication, Kerberos authentication, and SSL authentication.

• About Strong Authentication for Database Administrators
Strong authentication lets you centrally control SYSDBA and SYSOPER access to
multiple databases.

Chapter 3
Authentication of Database Administrators

3-46

• Configuring Directory Authentication for Administrative Users
Oracle Internet Directory configures directory authentication for administrative
users.

• Configuring Kerberos Authentication for Administrative Users
Oracle Internet Directory can be used to configure Kerberos authentication for
administrative users.

• Configuring Secure Sockets Layer Authentication for Administrative Users
Both the client and server side can authenticate administrative users with Secure
Sockets Layer (SSL).

About Strong Authentication for Database Administrators
Strong authentication lets you centrally control SYSDBA and SYSOPER access to multiple
databases.

Consider using this type of authentication for database administration for the following
situations:

• You have concerns about password file vulnerability.

• Your site has very strict security requirements.

• You want to separate the identity management from your database. By using a
directory server such as Oracle Internet Directory (OID), for example, you can
maintain, secure, and administer that server separately.

To enable the Oracle Internet Directory server to authorize SYSDBA and SYSOPER
connections, use one of the following methods described in this section, depending on
your environment.

Configuring Directory Authentication for Administrative Users
Oracle Internet Directory configures directory authentication for administrative users.

1. Configure the administrative user by using the same procedures you would use to
configure a typical user.

2. In Oracle Internet Directory, grant the SYSDBA or SYSOPER administrative privilege to
the user for the database that this user will administer.

Grant SYSDBA or SYSOPER only to trusted users.

3. Set the LDAP_DIRECTORY_SYSAUTH initialization parameter to YES:

ALTER SYSTEM SET LDAP_DIRECTORY_SYSAUTH = YES;

When set to YES, the LDAP_DIRECTORY_SYSAUTH parameter enables SYSDBA and
SYSOPER users to authenticate to the database by using a strong authentication
method.

4. Set the LDAP_DIRECTORY_ACCESS parameter to either PASSWORD or SSL. For
example:

ALTER SYSTEM SET LDAP_DIRECTORY_ACCESS = PASSWORD;

Ensure that the LDAP_DIRECTORY_ACCESS initialization parameter is not set to NONE.
Setting this parameter to PASSWORD or SSL ensures that users can be authenticated
using the SYSDBA or SYSOPER administrative privileges through Oracle Internet
Directory.

Chapter 3
Authentication of Database Administrators

3-47

Afterward, this user can log in by including the net service name in the CONNECT
statement in SQL*Plus. For example, to log on as SYSDBA if the net service name is
orcl:

CONNECT SOMEUSER@ORCL AS SYSDBA
Enter password: password

If the database is configured to use a password file for remote authentication, Oracle
Database checks the password file first.

Related Topics

• Guidelines for Securing User Accounts and Privileges
Oracle provides guidelines to secure user accounts and privileges.

• Oracle Database Reference

• Oracle Database Reference

Configuring Kerberos Authentication for Administrative Users
Oracle Internet Directory can be used to configure Kerberos authentication for
administrative users.

1. Configure the administrative user by using the same procedures you would use to
configure a typical user.

See Configuring Kerberos Authentication , for more information.

2. Configure Oracle Internet Directory for Kerberos authentication.

See Oracle Database Enterprise User Security Administrator's Guide for more
information.

3. In Oracle Internet Directory, grant the SYSDBA or SYSOPER administrative privilege to
the user for the database that this user will administer.

Grant SYSDBA or SYSOPER only to trusted users. See Guidelines for Securing User
Accounts and Privileges for advice on this topic.

4. Set the LDAP_DIRECTORY_SYSAUTH initialization parameter to YES:

ALTER SYSTEM SET LDAP_DIRECTORY_SYSAUTH = YES;

When set to YES, the LDAP_DIRECTORY_SYSAUTH parameter enables SYSDBA and
SYSOPER users to authenticate to the database by using strong authentication
methods. See Oracle Database Reference for more information about
LDAP_DIRECTORY_SYSAUTH.

5. Set the LDAP_DIRECTORY_ACCESS parameter to either PASSWORD or SSL. For
example:

ALTER SYSTEM SET LDAP_DIRECTORY_ACCESS = SSL;

Ensure that the LDAP_DIRECTORY_ACCESS initialization parameter is not set to NONE.
Setting this parameter to PASSWORD or SSL ensures that users can be authenticated
using SYSDBA or SYSOPER through Oracle Internet Directory. See Oracle Database
Reference for more information about LDAP_DIRECTORY_ACCESS.

Afterward, this user can log in by including the net service name in the CONNECT
statement in SQL*Plus. For example, to log on as SYSDBA if the net service name is
orcl:

Chapter 3
Authentication of Database Administrators

3-48

CONNECT /@orcl AS SYSDBA

Configuring Secure Sockets Layer Authentication for Administrative Users
Both the client and server side can authenticate administrative users with Secure
Sockets Layer (SSL).

1. Configure the client to use SSL:

a. Configure the client wallet and user certificate. Update the wallet location in
the sqlnet.ora configuration file.

You can use Wallet Manager to configure the client wallet and user certificate.
See Oracle Database Enterprise User Security Administrator's Guide for more
information.

b. Configure the Oracle net service name to include server DNs and use TCP/IP
with SSL in tnsnames.ora.

c. Configure TCP/IP with SSL in listener.ora.

d. Set the client SSL cipher suites and the required SSL version, and then set
SSL as an authentication service in sqlnet.ora.

2. Configure the server to use SSL:

a. Enable SSL for your database listener on TCPS and provide a corresponding
TNS name. You can use Net Configuration Assistant to configure the TNS
name.

b. Store the database PKI credentials in the database wallet. You can use Wallet
Manager do this.

c. Set the LDAP_DIRECTORY_ACCESS initialization parameter to SSL:

ALTER SYSTEM SET LDAP_DIRECTORY_ACCESS = SSL;

See Oracle Database Reference for more information about
LDAP_DIRECTORY_ACCESS.

3. Configure Oracle Internet Directory for SSL user authentications.

See Oracle Database Enterprise User Security Administrator's Guide for
information about configuring enterprise user security SSL authentication.

4. In Oracle Internet Directory, grant the SYSDBA or SYSOPER privilege to the user for
the database that the user will administer.

5. On the server computer, set the LDAP_DIRECTORY_SYSAUTH initialization parameter
to YES.

ALTER SYSTEM SET LDAP_DIRECTORY_SYSAUTH = YES;

When set to YES, the LDAP_DIRECTORY_SYSAUTH parameter enables SYSDBA and
SYSOPER users to authenticate to the database by using a strong authentication
method. See Oracle Database Reference for more information about
LDAP_DIRECTORY_SYSAUTH.

Afterward, this user can log in by including the net service name in the CONNECT
statement in SQL*Plus. For example, to log on as SYSDBA if the net service name is
orcl:

CONNECT /@orcl AS SYSDBA

Chapter 3
Authentication of Database Administrators

3-49

Authentication of Database Administrators by Using the Operating
System

For both Windows and UNIX systems, you use DBA-privileged groups to authenticate
for the operating system.

Operating system authentication for a database administrator typically involves
establishing a group on the operating system, granting DBA privileges to that group,
and then adding the names of persons who should have those privileges to that group.
(On UNIX systems, the group is the dba group.)

Note:

In a multitenant environment, you can use operating system authentication
for a database administrator only for the CDB root. You cannot use it for for
PDBs, the application root, or application PDBs.

On Microsoft Windows systems:

• Users who connect with the SYSDBA administrative privilege can take advantage of
the Windows native authentication. If these users work with Oracle Database
using their domain accounts, then you must explicitly grant them local
administrative privileges and ORA_DBA membership.

• Oracle recommends that you run Oracle Database services using a low privileged
Microsoft Windows user account rather than a Microsoft Windows built-in account.

See Also:

Your Oracle Database operating system-specific documentation for
information about configuring operating system authentication of database
administrators

Authentication of Database Administrators by Using Their Passwords
Password files are used to authenticate database administrators.

That is, Oracle Database users who have been granted the SYSDBA, SYSOPER, SYSASM,
SYSBACKUP, SYSDG, and SYSKM administrative privileges are first authenticated using
database-specific password files.

These privileges enable the following activities:

• The SYSOPER system privilege lets database administrators perform STARTUP,
SHUTDOWN, ALTER DATABASE OPEN/MOUNT, ALTER DATABASE BACKUP, ARCHIVE LOG, and
RECOVER operations. SYSOPER also includes the RESTRICTED SESSION privilege.

Chapter 3
Authentication of Database Administrators

3-50

• The SYSDBA administrative privilege has all system privileges with ADMIN OPTION,
including the SYSOPER administrative privilege, and permits CREATE DATABASE and
time-based recovery.

• A password file containing users who have the SYSDBA, SYSOPER, SYSASM,
SYSBACKUP, SYSDG, and SYSKM administrative privileges can be shared between
different databases. In addition, this type of password file authentication can be
used in a Secure Sockets Layer (SSL) or Kerberos configuration, and for common
administrative users in a multitenant environment. You can have a shared
password file that contains users in addition to the SYS user. To share a password
file among different databases, set the REMOTE_LOGIN_PASSWORDFILE parameter in
the init.ora file to SHARED.

If you set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to EXCLUSIVE or
SHARED from NONE, then ensure that the password file is synchronized with the
dictionary passwords. See Oracle Database Administrator’s Guide for more
information.

• For Automatic Storage Management (ASM) environments, you can create shared
ASM password files. Remember that you must have the SYSASM system privilege
to create an ASM password file. See Oracle Automatic Storage Management
Administrator's Guide for more information.

• The SYSDG administrative privilege must be included in a password file for sharding
administrators to perform tasks that involve file transfer and Oracle Recovery
Manager (RMAN) activities.

• Password file-based authentication is enabled by default. This means that the
database is ready to use a password file for authenticating users that have SYSDBA,
SYSOPER, SYSASM, SYSBACKUP, SYSDG, and SYSKM administrative privileges. Password
file-based authentication is activated as soon as you create a password file by
using the ORAPWD utility.

Anyone who has EXECUTE privileges and write privileges to the $ORACLE_HOME/dbs
directory can run the ORAPWD utility.

• Password limits such as FAILED_LOGIN_ATTEMPTS and PASSWORD_LIFE_TIME are
enforced for administrative logins, if the password file is created in the Oracle
Database 12c release 2 (12.2) format.

Note:

• To find a list of users who are included in the password file, you can
query the V$PWFILE_USERS data dictionary view.

• Connections requested AS SYSDBA or AS SYSOPER must use these
phrases. Without them, the connection fails. The Oracle Database
parameter O7_DICTIONARY_ACCESSIBILITY can be set to FALSE to limit
sensitive data dictionary access only to authorized users. The parameter
also enforces the required AS SYSDBA or AS SYSOPER syntax.

Chapter 3
Authentication of Database Administrators

3-51

Risks of Using Password Files for Database Administrator
Authentication

Be aware that using password files may pose security risks.

For this reason, consider using the authentication methods described in Strong
Authentication, Centralized Management for Administrators.

Examples of password security risks are as follows:

• An intruder could steal or attack the password file.

• Many users do not change the default password.

• The password could be easily guessed.

• The password is vulnerable if it can be found in a dictionary.

• Passwords that are too short, chosen perhaps for ease of typing, are vulnerable if
an intruder obtains the cryptographic hash of the password.

Note:

Oracle Database Administrator’s Guide for information about creating and
maintaining password files

Database Authentication of Users
Database authentication of users entails using information within the database itself to
perform the authentication.

• About Database Authentication
Oracle Database can authenticate users attempting to connect to a database by
using information stored in that database itself.

• Advantages of Database Authentication
There are three advantages of using the database to authenticate users.

• Creating Users Who Are Authenticated by the Database
When you create a user who is authenticated by the database, you assign this
user a password.

About Database Authentication
Oracle Database can authenticate users attempting to connect to a database by using
information stored in that database itself.

To configure Oracle Database to use database authentication, you must create each
user with an associated password. User names can use the National Language
Support (NLS) character format, but you cannot include double quotation mark
characters in the password. The user must provide this user name and password
when attempting to establish a connection.

Chapter 3
Database Authentication of Users

3-52

Oracle Database generates a one-way hash of the user's password and stores it for
use when verifying the provided login password. In order to support older clients,
Oracle Database can be configured to generate the one-way hash of the user's
password using a variety of different hashing algorithms. The resulting password
hashes are known as password versions, which have the short names 10G, 11G, and
12C. The short names 10G, 11G, and 12C serve as abbreviations for the details of the
one-way password hashing algorithms, which are described in more detail in the
documentation for the PASSWORD_VERSIONS column of the DBA_USERS view. To find the
list of password versions for any given user, query the PASSWORD_VERSIONS column of
the DBA_USERS view.

By default, there are currently two versions of the one-way hashing algorithm in use in
Oracle Database 12c release 2 (12.2): the salted SHA-1 hashing algorithm, and the
salted PKBDF2 SHA-2 SHA-512 hashing algorithm. The salted SHA-1 hashing
algorithm generates the hash that is used for the 11G password version. The salted
PKBDF2 SHA-2 SHA-512 hashing algorithm generates the hash that is used for the
12C password version. This hash generation takes place for the same password; that
is, both algorithms run for the same password. Oracle Database records these
password versions in the DBA_USERS data dictionary view. When you query this view,
you will see two password versions. For example:

SELECT USERNAME, PASSWORD_VERSIONS FROM DBA_USERS;

USERNAME PASSWORD_VERSIONS
-------- -----------------
ADAMS 11G, 12C
SYS 11G, 12C
...

To specify which authentication protocol to allow during authentication of a client or of
a database server acting as a client, you can explicitly set the
SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter in the server sqlnet.ora file. (The
client version of this parameter is SQLNET.ALLOWED_LOGON_VERSION_CLIENT.) Each
connection attempt is tested, and if the client or server does not meet the client ability
requirements specified by its partner, authentication fails with an ORA-28040 No
matching authentication protocol error in the “Ability Required of the Client” in the
“SQLNET.ALLOWED_LOGON_VERSION_SERVER Settings” table under the
description of the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter in Oracle
Database Net Services Reference. The parameter can take the values 12a, 12, 11, 10,
9, or 8. The default value is 12, which is Exclusive Mode. These values represent the
version of the authentication protocol. Oracle recommends the value 12. However, be
aware that if you set SQLNET.ALLOWED_LOGON_VERSION_SERVER and
SQLNET.ALLOWED_LOGON_VERSION_CLIENT to 11, then pre-Oracle Database Release
11.1 client applications including JDBC thin clients cannot authenticate to the Oracle
database using password-based authentication.

To enhance security when using database authentication, Oracle recommends that
you use password management, including account locking, password aging and
expiration, password history, and password complexity verification.

Chapter 3
Database Authentication of Users

3-53

See Also:

• Oracle Database Net Services Reference for more information about the
SQLNET.ALLOWED_LOGON_VERSION_CLIENT parameter and the ORA-28040
No matching authentication protocol error

• Oracle Database Net Services Reference for more information about the
SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter and Exclusive Mode

• About Password Complexity Verification for information about password
complexity verification functions

• Using a Password Management Policy for more information about
password management

• Management of Password Versions of Users for more information about
managing password versions

Advantages of Database Authentication
There are three advantages of using the database to authenticate users.

These advantages are as follows:

• User accounts and all authentication are controlled by the database. There is no
reliance on anything outside of the database.

• Oracle Database provides strong password management features to enhance
security when using database authentication.

• It is easier to administer when there are small user communities.

Creating Users Who Are Authenticated by the Database
When you create a user who is authenticated by the database, you assign this user a
password.

• To create a user who is authenticated by the database, include the IDENTIFIED BY
clause when you create the user.

For example, the following SQL statement creates a user who is identified and
authenticated by Oracle Database. User sebastian must specify the assigned
password whenever he connects to Oracle Database.

CREATE USER sebastian IDENTIFIED BY password;

Related Topics

• Creating User Accounts
A user account can have restrictions such as profiles, a default role, and
tablespace restrictions.

Schema-Only Accounts
You can create schema-only accounts, that is, the schema user has no password.

Chapter 3
Schema-Only Accounts

3-54

• About Schema-Only Accounts
A schema-only account cannot log in to the database but can proxy in a single
session proxy.

• Creating a Schema-Only Account
The CREATE USER SQL statement creates schema-only accounts.

• Altering a Schema-Only Account
The ALTER USER SQL statement can be used to modify schema-only accounts.

About Schema-Only Accounts
A schema-only account cannot log in to the database but can proxy in a single session
proxy.

This type of account, designed for some Oracle-provided schemas along with some
user-created schemas, can be created without the specification of a password or an
authentication type. It cannot be authenticated unless an authentication method is
assigned by using the ALTER USER statement. A schema-only account does not contain
an entry in the DBA_USERS_WITH_DEFPWD data dictionary view.

By default, most of the predefined schema user accounts that are available with
Oracle Database, such as the sample schema user accounts (for example, HR), are
schema-only accounts. You can assign these accounts passwords if you want to, but
for better security, Oracle recommends that you set them back to being schema-only
afterwards. To check if a schema user account is schema only, query the STATUS
column of the DBA_USERS data dictionary view. NONE indicates that the account is
schema only.

Note the following rules about using schema only accounts:

• Schema only accounts can be used for both administrator and non-administrator
accounts.

• Schema only accounts must be created on the database instance only, not in
Oracle Automatic Storage Management (ASM) environments.

• You can grant system privileges (such as CREATE ANY TABLE) and administrator
roles (such as DBA) to schema only accounts. Schema only accounts can create
objects such as tables or procedures, assuming they have had to correct
privileges granted to them.

• You can configure schema only accounts to be used as client users in a proxy
authentication in a single session proxy. This is because in a single session proxy,
only the credentials of the proxy user are verified, not the credentials of the client
user. Therefore, a schema only account can be a client user. However, you cannot
configure schema only accounts for a two-proxy scenario, because the client
credentials must be verified. Hence, the authentication for a schema only account
will fail.

• Schema only accounts cannot connect through database links, either with
connected user links, fixed user links, or current user links.

Related Topics

• Predefined Sample Schema User Accounts
Oracle Database creates a set of sample user accounts if you install the sample
schemas.

Chapter 3
Schema-Only Accounts

3-55

Creating a Schema-Only Account
The CREATE USER SQL statement creates schema-only accounts.

You can run the CREATE USER statement with the NO AUTHENTICATION clause only on a
database instance. You cannot run it on an Oracle Automatic Storage Management
(ASM) instance.

• Use the CREATE USER statement with the NO AUTHENTICATION clause.

For example:

CREATE USER psmith NO AUTHENTICATION;

Altering a Schema-Only Account
The ALTER USER SQL statement can be used to modify schema-only accounts.

1. Check if the schema user has administrative privileges.

You can query the V$PWFILE_USERS to find if the schema user has administrative
privileges.

2. If the schema user has administrative privileges, then use the REVOKE statement to
revoke these privileges.

3. Use the ALTER USER SQL statement with the NO AUTHENTICATION clause to modify
the schema account to have no authentication.

For example:

ALTER USER psmith NO AUTHENTICATION;

You can use ALTER USER to enable authentication for a schema-only account.

Operating System Authentication of Users
Oracle Database can authenticate by using information that is maintained by the
operating system.

Using the operating system to authenticate users has both advantages and
disadvantages.

This functionality has the following benefits:

• Once authenticated by the operating system, users can connect to Oracle
Database more conveniently, without specifying a user name or password. For
example, an operating system-authenticated user can invoke SQL*Plus and omit
the user name and password prompts by entering the following command at the
command line:

SQLPLUS /

Within SQL*Plus, you enter:

CONNECT /

• With control over user authentication centralized in the operating system, Oracle
Database does not need to store or manage the cryptographic hashes (also called

Chapter 3
Operating System Authentication of Users

3-56

verifiers) of the user passwords, although it still maintains user names in the
database.

• The audit trail captures the operating system user name and the database user
name, where the database user name is the value of the OS_AUTHENT_PREFIX
instance initialization parameter prefixed to the operating system user name. For
example, if OS_AUTHENT_PREFIX is set to OPS$ and the operating system user name
is psmith, then the database user name will be OPS$PSMITH.

• You can authenticate both operating system and non-operating system users in
the same system. For example:

– Authenticate users by the operating system. You create the user account
using the IDENTIFIED EXTERNALLY clause of the CREATE USER statement, and
then you set the OS_AUTHENT_PREFIX initialization parameter to specify a prefix
that Oracle Database uses to authenticate users attempting to connect to the
server.

– Authenticate non-operating system users. These are users who are
assigned passwords and authenticated by the database.

– Authenticate Oracle Database Enterprise User Security users. These user
accounts where created using the IDENTIFIED GLOBALLY clause of the CREATE
USER statement, and then authenticated by Oracle Internet Directory (OID)
currently in the same database.

However, you should be aware of the following drawbacks to using the operating
system to authenticate users:

• A user must have an operating system account on the computer that must be
accessed. Not all users have operating system accounts, particularly non-
administrative users.

• If a user has logged in using this method and steps away from the terminal,
another user could easily log in because this user does not need any passwords
or credentials. This could pose a serious security problem.

• When an operating system is used to authenticate database users, managing
distributed database environments and database links requires special care.
Operating system-authenticated database links can pose a security weakness. For
this reason, Oracle recommends that you do not use them.

• In a multitenant environment, you can use operating system authentication for a
database administrator only for the CDB root. You cannot use it for PDBs, the
application root, or application PDBs.

See Also:

• Oracle Database Administrator’s Guide for more information about
authentication, operating systems, distributed database concepts, and
distributed data management

• Operating system-specific documentation by Oracle Database for more
information about authenticating by using your operating system

Chapter 3
Operating System Authentication of Users

3-57

Network Authentication of Users
You can authenticate users over a network by using Secure Sockets Layer with third-
party services.

• Authentication with Secure Sockets Layer
The Secure Sockets Layer (SSL) protocol is an application layer protocol.

• Authentication with Third-Party Services
The third-party services Kerberos, RADIUS, directory-based services, and public
key infrastructure can authenticate Oracle Database over a network.

Authentication with Secure Sockets Layer
The Secure Sockets Layer (SSL) protocol is an application layer protocol.

You can use SSL for user authentication to a database, and it is independent of global
user management in Oracle Internet Directory. That is, users can use SSL to
authenticate to the database without a directory server in place.

Related Topics

• Configuring Secure Sockets Layer Authentication
You can configure Oracle Database to use Secure Sockets Layer authentication.

Authentication with Third-Party Services
The third-party services Kerberos, RADIUS, directory-based services, and public key
infrastructure can authenticate Oracle Database over a network.

• About Authentication Using Third-Party Services
You must use third-party network authentication services if you want to
authenticate Oracle Database users over a network.

• Authentication with Kerberos
Kerberos is a trusted third-party authentication system that relies on shared
secrets.

• Authentication with RADIUS
Remote Authentication Dial-In User Service (RADIUS) is a standard lightweight
protocol used for user authentication, authorization, and accounting.

• Authentication with Directory-Based Services
Using a central directory can make authentication and its administration efficient.

• Authentication with Public Key Infrastructure
Authentication systems based on public key infrastructure (PKI) issue digital
certificates to user clients.

About Authentication Using Third-Party Services
You must use third-party network authentication services if you want to authenticate
Oracle Database users over a network.

Prominent examples include Kerberos, PKI (public key infrastructure), the RADIUS
(Remote Authentication Dial-In User Service), and directory-based services.

Chapter 3
Network Authentication of Users

3-58

If network authentication services are available to you, then Oracle Database can
accept authentication from the network service. If you use a network authentication
service, then some special considerations arise for network roles and database links.

Authentication with Kerberos
Kerberos is a trusted third-party authentication system that relies on shared secrets.

Kerberos presumes that the third party is secure, and provides single sign-on
capabilities, centralized password storage, database link authentication, and enhanced
PC security. It does this through a Kerberos authentication server, or through
Cybersafe Active Trust, a commercial Kerberos-based authentication server.

Related Topics

• Configuring Kerberos Authentication
Kerberos is a trusted third-party authentication system that relies on shared
secrets and presumes that the third party is secure.

Authentication with RADIUS
Remote Authentication Dial-In User Service (RADIUS) is a standard lightweight
protocol used for user authentication, authorization, and accounting.

RADIUS also enables users to use the RSA One-Time Password Specifications
(OTPS) to authenticate to the Oracle database.

See Also:

• Configuring RADIUS Authentication for information about configuring
RADIUS

• RSA documentation about OTPS

Authentication with Directory-Based Services
Using a central directory can make authentication and its administration efficient.

Directory-based services include the following:

• Oracle Internet Directory, which uses the Lightweight Directory Access Protocol
(LDAP), uses a central repository to store and manage information about users
(called enterprise users) whose accounts were created in a distributed
environment. Although database users must be created (with passwords) in each
database that they need to access, enterprise user information is accessible
centrally in the Oracle Internet Directory. You can also integrate this directory with
Microsoft Active Directory and SunOne.

• Oracle Enterprise Security Manager lets you store and retrieve roles from
Oracle Internet Directory, which provides centralized privilege management to
make administration easier and increase security levels.

Chapter 3
Network Authentication of Users

3-59

Authentication with Public Key Infrastructure
Authentication systems based on public key infrastructure (PKI) issue digital
certificates to user clients.

These clients can use these certificates to authenticate directly to servers in the
enterprise without directly involving an authentication. Oracle Database provides a PKI
for using public keys and certificates, consisting of the following components:

• Authentication and secure session key management using SSL. See
Authentication with Secure Sockets Layer for more information.

• Trusted certificates. These are used to identify third-party entities that are trusted
as signers of user certificates when an identity is being validated. When the user
certificate is being validated, the signer is checked by using trust points or a
trusted certificate chain of certificate authorities stored in the validating system. If
there are several levels of trusted certificates in this chain, then a trusted
certificate at a lower level is simply trusted without needing to have all its higher-
level certificates reverified.

• Oracle Wallet Manager. An Oracle wallet is a data structure that contains the
private key of a user, a user certificate, and the set of trust points of a user (trusted
certificate authorities). See Oracle Database Enterprise User Security
Administrator's Guide for information about managing Oracle wallets.

You can use Oracle Wallet Manager to manage Oracle wallets. This is a
standalone Java application used to manage and edit the security credentials in
Oracle wallets. It performs the following operations:

– Generates a public-private key pair and creates a certificate request for
submission to a certificate authority, and creates wallets

– Installs a certificate for the entity

– Manages X.509 version 3 certificates on Oracle Database clients and servers

– Configures trusted certificates for the entity

– Opens a wallet to enable access to PKI-based services

• X.509 version 3 certificates obtained from (and signed by) a trusted entity, a
certificate authority. Because the certificate authority is trusted, these certificates
verify that the requesting entity's information is correct and that the public key on
the certificate belongs to the identified entity. The certificate is loaded into an
Oracle wallet to enable future authentication.

Configuring Operating System Users for a PDB
The DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure configures user accounts to be
operating system users for a PDB.

• About Configuring Operating System Users for a PDB
Instead the oracle operating system user, you can set a specific user account to
be the operating system user for that PDB.

• Configuring an Operating System User for a PDB
The DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure can set an operating system
user for a PDB.

Chapter 3
Configuring Operating System Users for a PDB

3-60

About Configuring Operating System Users for a PDB
Instead the oracle operating system user, you can set a specific user account to be
the operating system user for that PDB.

If you do not set a specific user to be the operating system user for the PDB, then by
default the PDB uses the oracle operating system user. For the root, you can use the
oracle operating system user when you must interact with the operating system.

For better security, Oracle recommends that you set a unique operating system user
for each PDB in a multitenant environment. Doing so helps to ensure that operating
system interactions are performed as a less powerful user than the oracle operating
system user, and helps to protect data that belongs to one PDB from being accessed
by users who are connected to other PDBs.

Configuring an Operating System User for a PDB
The DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure can set an operating system
user for a PDB.

1. Log in to the database instance root as a user who has the EXECUTE privilege for
the DBMS_CREDENTIAL PL/SQL package and the ALTER SYSTEM system privilege.

For example:

sqlplus c##sec_admin
Enter password: password

2. Run the DBMS_CREDENTIAL.CREATE_CREDENTIAL procedure to create an Oracle
credential for the operating system user.

For example, to set the credential for a user named os_admin:

BEGIN
 DBMS_CREDENTIAL.CREATE_CREDENTIAL (
 credential_name => 'PDB1_OS_USER',
 username => 'os_admin',
 password => 'password');
END;
/

3. Connect to the PDB for which the operating system user will be used.

For example:

CONNECT cc##sec_admin@hrpdb
Enter password: password

To find the available PDBs, run the show pdbs command. To check the current
PDB, run the show con_name command.

4. Set the PDB_OS_CREDENTIAL initialization parameter for the user whose credential
was set in Step 2.

Chapter 3
Configuring Operating System Users for a PDB

3-61

For example:

ALTER SYSTEM SET PDB_OS_CREDENTIAL = PDB1_OS_USER SCOPE = SPFILE;

The PDB_OS_CREDENTIAL parameter is a static parameter, so you must set it using
the SCOPE = SPFILE clause.

5. Restart the database instance.

SHUTDOWN IMMEDIATE
STARTUP

Related Topics

• Minimum Requirements for Passwords
Oracle provides a set of minimum requirements for passwords.

Global User Authentication and Authorization
Global user authentication and authorization enables you to centralize the
management of user-related information.

• About Configuring Global User Authentication and Authorization
An LDAP-based directory service centralizes the management of user-related
information, including authorizations.

• Configuration of Users Who Are Authorized by a Directory Service
You can configure either a global user or multiple enterprise users to be
authorized by a directory service.

• Advantages of Global Authentication and Global Authorization
There are several advantages of global user authentication and authorization.

About Configuring Global User Authentication and Authorization
An LDAP-based directory service centralizes the management of user-related
information, including authorizations.

This enables users and administrators to be identified in the database as global users,
meaning that they are authenticated by SSL and that the management of these users
is handled outside of the database by the centralized directory service. Global roles
are defined in a database and are known only to that database, but the directory
service handles authorizations for global roles.

Note:

You can also have users authenticated by Secure Sockets Layer (SSL),
whose authorizations are not managed in a directory, that is, they have local
database roles only.

This centralized management enables the creation of enterprise users and
enterprise roles. Enterprise users are defined and managed in the directory. They
have unique identities across the enterprise and can be assigned enterprise roles that

Chapter 3
Global User Authentication and Authorization

3-62

determine their access privileges across multiple databases. An enterprise role
consists of one or more global roles, and might be thought of as a container for global
roles.

You also can use centrally managed users to authenticate and authorize users
through a directory service such as Microsoft Active Directory.

Related Topics

• Configuring Secure Sockets Layer Authentication
You can configure Oracle Database to use Secure Sockets Layer authentication.

• Strong Authentication, Centralized Management for Administrators
Strong authentication methods for centrally managed databases include directory
authentication, Kerberos authentication, and SSL authentication.

• Configuring Centrally Managed Users with Microsoft Active Directory
Oracle Database can authenticate and authorize Microsoft Active Directory users
with the database directly without intermediate directories or Oracle Enterprise
User Security.

Configuration of Users Who Are Authorized by a Directory Service
You can configure either a global user or multiple enterprise users to be authorized by
a directory service.

• Creating a Global User Who Has a Private Schema
You can create a user account who has a private schema by providing an identifier
(distinguished name, or DN) meaningful to the enterprise directory.

• Creating Multiple Enterprise Users Who Share Schemas
Multiple enterprise users can share a single schema in the database.

Creating a Global User Who Has a Private Schema
You can create a user account who has a private schema by providing an identifier
(distinguished name, or DN) meaningful to the enterprise directory.

However, be aware that you must create this user in every database that the user
must access, plus the directory.

• To create a global user who has a private schema, use the CREATE USER ...
IDENTIFIED GLOBALLY SQL statement.

You can include standard LDAP Data Interchange Format (LDIF) fields. For
example, to create a global user (psmith_gl with a private schema, authenticated
by SSL, and authorized by the enterprise directory service:

CREATE USER psmith_gl IDENTIFIED GLOBALLY AS
'CN=psmith,OU=division1,O=example,C=US';

In this specification:

– CN refers to the common name of this user, psmith_gl.

– OU refers to the user’s organizational unit, division1.

– O refers to the user’s organization, Example.

– C refers to the country in which the organization Example is located, the US.

Chapter 3
Global User Authentication and Authorization

3-63

Creating Multiple Enterprise Users Who Share Schemas
Multiple enterprise users can share a single schema in the database.

These users are authorized by the enterprise directory service but do not own
individual private schemas in the database. These users are not individually created in
the database. They connect to a shared schema in the database.

1. Create a shared schema in the database using the following example:

CREATE USER appschema IDENTIFIED GLOBALLY AS '';

2. In the directory, create multiple enterprise users and a mapping object.

The mapping object tells the database how you want to map the DNs for the users
to the shared schema. You can either create a full distinguished name (DN)
mapping (one directory entry for each unique DN), or you can map, for each user,
multiple DN components to one schema. For example:

OU=division1,O=Example,C=US

See Also:

Oracle Database Enterprise User Security Administrator's Guide for an
explanation of these mappings

Most users do not need their own schemas, and implementing schema-independent
users separates users from databases. You create multiple users who share the same
schema in a database, and as enterprise users, they can also access shared schemas
in other databases.

Advantages of Global Authentication and Global Authorization
There are several advantages of global user authentication and authorization.

• Provides strong authentication using SSL, Kerberos, or Windows native
authentication.

• Enables centralized management of users and privileges across the enterprise.

• Is easy to administer: You do not have to create a schema for every user in every
database in the enterprise.

• Facilitates single sign-on: Users need to sign on once to only access multiple
databases and services. Further, users using passwords can have a single
password to access multiple databases accepting password-authenticated
enterprise users.

• Because global user authentication and authorization provide password-based
access, you can migrate previously defined password-authenticated database
users to the directory (using the User Migration Utility) to be centrally
administered. This makes global authentication and authorization available for
earlier Oracle Database release clients that are still supported.

Chapter 3
Global User Authentication and Authorization

3-64

• CURRENT_USER database links connect as a global user. A local user can connect
as a global user in the context of a stored procedure, that is, without storing the
global user password in a link definition.

Related Topics

• Oracle Database Enterprise User Security Administrator's Guide

Configuring an External Service to Authenticate Users and
Passwords

An external service (the operating system or the network) can administer passwords
and authenticate users.

• About External Authentication
With external authentication, Oracle Database maintains the user account, but an
external service performs the password administration and user authentication.

• Advantages of External Authentication
External authentication provides several advantages.

• Enabling External Authentication
To enable external authentication, you can set the initialization parameter
OS_AUTHENT_PREFIX, and use this prefix in Oracle Database user names.

• Creating a User Who Is Authenticated Externally
Externally authenticated users are authenticated by the operating system or
network service.

• Authentication of User Logins By Using the Operating System
Oracle Database allows operating system-authenticated logins only over secure
connections, which precludes using Oracle Net and a shared server configuration.

• Authentication of User Logins Using Network Authentication
Oracle strong authentication performs network authentication, which you can
configure to use a third-party service such as Kerberos.

About External Authentication
With external authentication, Oracle Database maintains the user account, but an
external service performs the password administration and user authentication.

This external service can be the operating system or a network service, such as
Oracle Net. If you are authenticating users through a password file, then you can
configure external authentication for users who have been granted the SYSDBA,
SYSOPER, SYSASM, SYSBACKUP, SYSDG, and SYSKM administrative privileges.

With external authentication, your database relies on the underlying operating system
or network authentication service to restrict access to database accounts. A database
password is not used for this type of login. If your operating system or network service
permits, then it can authenticate users before they can log in to the database.

You also can use centrally managed users to authenticate and authorize users
through a directory service such as Microsoft Active Directory.

Chapter 3
Configuring an External Service to Authenticate Users and Passwords

3-65

Related Topics

• Management of the Password File of Administrative Users
Setting the ORAPWD utility FORMAT parameter to 12.2 enables you to manage the
password profile parameters for administrative users.

• Configuring Centrally Managed Users with Microsoft Active Directory
Oracle Database can authenticate and authorize Microsoft Active Directory users
with the database directly without intermediate directories or Oracle Enterprise
User Security.

Advantages of External Authentication
External authentication provides several advantages.

These advantages are as follows:

• More choices of authentication mechanisms are available, such as smart cards,
fingerprints, Kerberos, or the operating system.

• Many network authentication services, such as Kerberos support single sign-on,
enabling users to have fewer passwords to remember.

• If you are already using an external mechanism for authentication, such as one of
those listed earlier, then there may be less administrative overhead to use that
mechanism with the database.

Enabling External Authentication
To enable external authentication, you can set the initialization parameter
OS_AUTHENT_PREFIX, and use this prefix in Oracle Database user names.

The OS_AUTHENT_PREFIX parameter defines a prefix that Oracle Database adds to the
beginning of the operating system account name of every user. Oracle Database
compares the prefixed user name with the Oracle Database user names in the
database when a user attempts to connect.

1. Set OS_AUTHENT_PREFIX to a null string (an empty set of double quotation marks:
""). Using a null string eliminates the addition of any prefix to operating system
account names, so that Oracle Database user names exactly match operating
system user names.

For example:

OS_AUTHENT_PREFIX=" "

2. Ensure that the OS_AUTHENT_PREFIXremains the same for the life of a database. If
you change the prefix, then any database user name that includes the old prefix
cannot be used to establish a connection, unless you alter the user name to have
it use password authentication.

The default value of the OS_AUTHENT_PREFIX parameter is OPS$ for backward
compatibility with previous versions of Oracle Database. For example, assume that
you set OS_AUTHENT_PREFIX as follows:

OS_AUTHENT_PREFIX=OPS$

If a user with an operating system account named tsmith is to connect to an Oracle
database installation and be authenticated by the operating system, then Oracle
Database checks that there is a corresponding database user OPS$tsmith and, if so,

Chapter 3
Configuring an External Service to Authenticate Users and Passwords

3-66

lets the user connect. All references to a user authenticated by the operating system
must include the prefix, OPS$, as seen in OPS$tsmith.

Note:

The text of the OS_AUTHENT_PREFIX initialization parameter is case-sensitive
on some operating systems. See your operating system-specific Oracle
Database documentation for more information about this initialization
parameter.

Creating a User Who Is Authenticated Externally
Externally authenticated users are authenticated by the operating system or network
service.

You can create users who are authenticated externally. Oracle Database then relies
on this external login authentication when it provides that specific operating system
user with access to the database resources of a specific user.

• Use the IDENTIFIED EXTERNALLY clause of the CREATE USER statement to create
users who are authenticated externally.

The following example creates a user who is identified by Oracle Database and
authenticated by the operating system or a network service. This example assumes
that the OS_AUTHENT_PREFIX parameter has been set to a blank space (" ").

CREATE USER psmith IDENTIFIED EXTERNALLY;

Authentication of User Logins By Using the Operating System
Oracle Database allows operating system-authenticated logins only over secure
connections, which precludes using Oracle Net and a shared server configuration.

This type of operating system authentication is the default. This restriction prevents a
remote user from impersonating another operating system user over a network
connection.

Setting the REMOTE_OS_AUTHENT parameter to TRUE in the database initialization
parameter file forces the database to accept the client operating system user name
received over an unsecure connection and use it for account access. Because clients,
in general, such as PCs, are not trusted to perform operating system authentication
properly, it is very poor security practice to turn on this feature.

The default setting, REMOTE_OS_AUTHENT = FALSE, creates a more secure configuration
that enforces proper, server-based authentication of clients connecting to an Oracle
database.

Be aware that the REMOTE_OS_AUTHENT parameter was deprecated in Oracle Database
11g Release 1 (11.1), and is retained only for backward compatibility.

Any change to this parameter takes effect the next time you start the instance and
mount the database. Generally, user authentication through the host operating system
offers faster and more convenient connection to Oracle Database without specifying a
separate database user name or password. Also, user entries correspond in the
database and operating system audit trails.

Chapter 3
Configuring an External Service to Authenticate Users and Passwords

3-67

Authentication of User Logins Using Network Authentication
Oracle strong authentication performs network authentication, which you can configure
to use a third-party service such as Kerberos.

If you are using Oracle strong authentication as your only external authentication
service, then the REMOTE_OS_AUTHENT parameter setting is irrelevant, because Oracle
strong authentication permits only secure connections.

Multitier Authentication and Authorization
Oracle Database secures middle-tier applications by limiting privileges, preserving
client identities through all tiers, and auditing actions by clients.

In applications that use a very busy middle tier, such as a transaction processing
monitor, the identity of the clients connecting to the middle tier must be preserved.
One advantage of using a middle tier is connection pooling, which allows multiple
users to access a data server without each of them needing a separate connection. In
such environments, you need to be able to set up and break down connections very
quickly.

For these environments, you can use the Oracle Call Interface to create lightweight
sessions, which enable database password authentication for each user. This method
preserves the identity of the real user through the middle tier without the overhead of a
separate database connection for each user.

You can create lightweight sessions with or without passwords. However, if a middle
tier is outside of or on a firewall, then security is better when each lightweight session
has its own password. For an internal application server, lightweight sessions without
passwords might be appropriate.

Administration and Security in Clients, Application Servers,
and Database Servers

In a multitier environment, an application server provides data for clients and serves as
an interface to one or more database servers.

The application server can validate the credentials of a client, such as a Web browser,
and the database server can audit operations performed by the application server.
These auditable operations include actions performed by the application server on
behalf of clients, such as requests that information be displayed on the client. A
request to connect to the database server is an example of an application server
operation not related to a specific client.

Authentication in a multitier environment is based on trust regions. Client
authentication is the domain of the application server. The application server itself is
authenticated by the database server. The following operations take place:

• The end user provides proof of authenticity to the application server, typically, by
using a password or an X.509 certificate.

• The application server authenticates the end user and then authenticates itself to
the database server.

Chapter 3
Multitier Authentication and Authorization

3-68

• The database server authenticates the application server, verifies that the end
user exists, and verifies that the application server has the privilege to connect for
the end user.

Application servers can also enable roles for an end user on whose behalf they
connect. The application server can obtain these roles from a directory, which serves
as an authorization repository. The application server can only request that these roles
be enabled. The database verifies the following requirements:

• That the client has these roles by checking its internal role repository

• That the application server has the privilege to connect on behalf of the user and
thus to use these roles as the user could

Figure 3-2 shows an example of multitier authentication.

Figure 3-2 Multitier Authentication

SSL to login Proxies user identity

User

Application

Server

Wallet

Oracle

Internet

Directory Wallet

Oracle

Server

Wallet

Get roles

from LDAP

and log in

user

The following actions take place:

1. The user logs on using a password or Secure Sockets Layer. The authentication
information is passed through Oracle Application Server.

2. Oracle Internet Directory authenticates the user, gets the roles associated with
that user from the wallet, and then passes this information back to Oracle
Application Server.

3. Oracle Application Server checks the identity of the user in Oracle Database,
which contains a wallet that stores this information, and then sets the role for that
user.

Security for middle-tier applications must address the following key issues:

Chapter 3
Administration and Security in Clients, Application Servers, and Database Servers

3-69

• Accountability. The database server must be able to distinguish between the
actions of the application and the actions an application takes on behalf of a client.
It must be possible to audit both kinds of actions.

• Least privilege. Users and middle tiers should be given the fewest privileges
necessary to perform their actions, to reduce the danger of inadvertent or
malicious unauthorized activities.

Preserving User Identity in Multitiered Environments
You can use middle tier servers for proxy authentication and client identifiers to identify
application users who are not known to the database.

• Middle Tier Server Use for Proxy Authentication
Oracle Call Interface (OCI), JDBC/OCI, or JDBC Thin Driver supports the middle
tier for proxy authentication for database users or enterprise users.

• Using Client Identifiers to Identify Application Users Unknown to the Database
Client identifiers preserve user identity in middle tier systems; they also can be
used independently of the global application context.

Middle Tier Server Use for Proxy Authentication
Oracle Call Interface (OCI), JDBC/OCI, or JDBC Thin Driver supports the middle tier
for proxy authentication for database users or enterprise users.

• About Proxy Authentication
Oracle Database provides proxy authentication in Oracle Call Interface (OCI),
JDBC/OCI, or JDBC Thin Driver for database users or enterprise users.

• Advantages of Proxy Authentication
In multitier environments, proxy authentication preserves client identities and
privileges through all tiers in middle-tier applications and by auditing client actions.

• Who Can Create Proxy User Accounts?
To create proxy user accounts, users must have special privileges.

• Guidelines for Creating Proxy User Accounts
Oracle provides special guidelines for when you create proxy user accounts.

• Creating Proxy User Accounts and Authorizing Users to Connect Through Them
The CREATE USER and ALTER USER statements can be used to create a proxy user
and authorize users to connect through it.

• Proxy User Accounts and the Authorization of Users to Connect Through Them
The CREATE USER statement enables you to create the several types of user
accounts, all of which can be used as proxy accounts.

• Using Proxy Authentication with the Secure External Password Store
Use a secure external password store if you are concerned about the password
used in proxy authentication being obtained by a malicious user.

• How the Identity of the Real User Is Passed with Proxy Authentication
You can use Oracle Call Interface, JDBC/OCI, or Thin drivers for enterprise users
or database users.

• Limits to the Privileges of the Middle Tier
Least privilege is the principle that users should have the fewest privileges
necessary to perform their duties and no more.

Chapter 3
Preserving User Identity in Multitiered Environments

3-70

• Authorizing a Middle Tier to Proxy and Authenticate a User
You can authorize a middle-tier server to connect as a user.

• Authorizing a Middle Tier to Proxy a User Authenticated by Other Means
You can authorize a middle tier to proxy a user that has been authenticated by
other means.

• Reauthenticating a User Through the Middle Tier to the Database
You can specify that authentication is required by using the AUTHENTICATION
REQUIRED proxy clause with the ALTER USER SQL statement.

• Using Password-Based Proxy Authentication
When you use password-based proxy authentication, Oracle Database passes the
password of the client to the middle-tier server.

• Using Proxy Authentication with Enterprise Users
How the middle-tier responds for proxy authentication depends on how the user is
authenticated, either as an enterprise user or a password-authenticated user.

About Proxy Authentication
Oracle Database provides proxy authentication in Oracle Call Interface (OCI), JDBC/
OCI, or JDBC Thin Driver for database users or enterprise users.

Enterprise users are those who are managed in Oracle Internet Directory and who
access a shared schema in the database.

You can design a middle-tier server to authenticate clients in a secure fashion by using
the following three forms of proxy authentication:

• The middle-tier server authenticates itself with the database server and a client, in
this case an application user or another application, authenticates itself with the
middle-tier server. Client identities can be maintained all the way through to the
database.

• The client, in this case a database user, is not authenticated by the middle-tier
server. The clients identity and database password are passed through the
middle-tier server to the database server for authentication.

• The client, in this case a global user, is authenticated by the middle-tier server,
and passes one of the following through the middle tier for retrieving the client's
user name.

– Distinguished name (DN)

– Certificate

In all cases, an administrator must authorize the middle-tier server to act on behalf of
the client.

Related Topics

• Auditing SQL Statements and Privileges in a Multitier Environment
You can create a unified audit policy to audit the activities of a client in a multitier
environment.

• Oracle Database JDBC Developer’s Guide

Chapter 3
Preserving User Identity in Multitiered Environments

3-71

Advantages of Proxy Authentication
In multitier environments, proxy authentication preserves client identities and privileges
through all tiers in middle-tier applications and by auditing client actions.

For example, this feature allows the identity of a user using a Web application (which
acts as a proxy) to be passed through the application to the database server.

Three-tier systems provide the following benefits to organizations:

• Organizations can separate application logic from data storage, partitioning the
former in application servers and the latter in databases.

• Application servers and Web servers enable users to access data stored in
databases.

• Users like using a familiar, easy-to-use browser interface.

• Organizations can also lower their cost of computing by replacing many thick
clients with numerous thin clients and an application server.

In addition, Oracle Database proxy authentication provides the following security
benefits:

• A limited trust model, by controlling the users on whose behalf middle tiers can
connect and the roles that the middle tiers can assume for the user

• Scalability, by supporting user sessions through OCI, JDBC/OCI, or JDBC Thin
driver and eliminating the overhead of reauthenticating clients

• Accountability, by preserving the identity of the real user through to the database,
and enabling auditing of actions taken on behalf of the real user

• Flexibility, by supporting environments in which users are known to the database,
and in which users are merely application users of which the database has no
awareness

Note:

Oracle Database supports this proxy authentication functionality in three
tiers only. It does not support it across multiple middle tiers.

Who Can Create Proxy User Accounts?
To create proxy user accounts, users must have special privileges.

These privileges are as follows:

• The CREATE USER system privilege to create a database user account that will be
used as a proxy user account

• The DV_ACCTMGR role if Oracle Database Vault is enabled, to create the proxy user
account

• The ability to grant the CREATE SESSION system privilege to the proxy user account

• The ALTER USER system privilege to enable existing user accounts to connect to
the database through the proxy account

Chapter 3
Preserving User Identity in Multitiered Environments

3-72

Guidelines for Creating Proxy User Accounts
Oracle provides special guidelines for when you create proxy user accounts.

• For better security and to adhere to the principle of least privilege, only grant the
proxy user account the CREATE SESSION privilege. Do not grant this user any other
privileges. The proxy user account is designed to only enable another user to
connect using the proxy account. Any privileges that must be exercised during the
connection should belong to the connecting user, not to the proxy account.

• As with all passwords, ensure that the password you create for the proxy user is
strong and not easily guessed. Remember that multiple users will be connecting
as the proxy user, so it is especially important that this password be strong.

• Consider using the Oracle strong authentication network connection features, to
prevent network eavesdropping.

• For further fine-tuning of the amount of control that the connecting user has,
consider restricting the roles used by the connecting user when he or she is
connected through the proxy account. The ALTER USER statement WITH ROLE
clause enables you to configure the user to connect using specified roles, any role
except a specified role, or with no roles at all. Be aware that the proxy user can
only activate those roles that are included in the WITH ROLE clause. The proxy user
session will have all the privileges that were directly granted to the client (that is,
current) user.

• A proxy user in a proxy session can enable a password-protected role or secure
application role only if the role has been allowed to be enabled with the WITH ROLE
or WITH ROLE ALL clause. (If this clause is not specified, then WITH ROLE ALL is the
default.) If WITH ROLE does not specify the secure roles, then those roles cannot
be enabled, even with the correct password.

Related Topics

• Guidelines for Securing Passwords
Oracle provides guidelines for securing passwords.

Creating Proxy User Accounts and Authorizing Users to Connect Through
Them

The CREATE USER and ALTER USER statements can be used to create a proxy user and
authorize users to connect through it.

A proxy user in a proxy session can enable a password-protected role or secure
application role only if the role has been allowed to be enabled with the WITH ROLE or
WITH ROLE ALL clause. (If this clause is not specified, then WITH ROLE ALL is the
default.) If WITH ROLE does not specify the secure roles, then those roles cannot be
enabled, even with the correct password.

1. Use the CREATE USER statement to create the proxy user account.

For example:

CREATE USER appuser IDENTIFIED BY password;

2. Use the GRANT CONNECT THROUGH clause of the ALTER USER statement to enable an
existing user to connect through the proxy user account.

Chapter 3
Preserving User Identity in Multitiered Environments

3-73

For example:

ALTER USER preston GRANT CONNECT THROUGH appuser;

Be aware that the user name and proxy combination must not exceed 250
characters.

Suppose user preston has a large number of roles, but you only want her to use
one role (for example, the appuser_role) when she is connected to the database
through the appuser proxy account. You can use the following ALTER USER
statement:

ALTER USER preston GRANT CONNECT THROUGH appuser WITH ROLE appuser_role;

Any other roles that user preston has will not be available to her as long as she is
connecting as the appuser proxy.

After you complete these steps, user preston can connect using the appuser proxy
user as follows:

CONNECT appuser[preston]
Enter password: appuser_password

Related Topics

• Oracle Database SQL Language Reference

• Oracle Database SQL Language Reference

Proxy User Accounts and the Authorization of Users to Connect Through Them
The CREATE USER statement enables you to create the several types of user accounts,
all of which can be used as proxy accounts.

These accounts are as follows:

• Database user accounts, which are authenticated by passwords

• External user accounts, which are authenticated by external sources, such as
Secure Socket Layer (SSL) or Kerberos

• Global user accounts, which are authenticated by an enterprise directory service
(Oracle Internet Directory).

Note the following:

• The proxy user can only perform activities that the user preston has
privileges to perform. Remember that the proxy user itself, appuser, only has the
minimum privileges (CREATE SESSION).

• Using roles with middle-tier clients. You can also specify roles that the middle
tier is permitted to activate when connecting as the client. Operations performed
on behalf of a client by a middle-tier server can be audited.

• Finding proxy users. To find the users who are currently authorized to connect
through a middle tier, query the PROXY_USERS data dictionary view, for example:

SELECT * FROM PROXY_USERS;

• Removing proxy connections. Use the REVOKE CONNECT THROUGH clause of
ALTER USER to disallow a proxy connection. For example, to revoke user preston
from connecting through the proxy user appuser, enter the following statement:

Chapter 3
Preserving User Identity in Multitiered Environments

3-74

ALTER USER preston REVOKE CONNECT THROUGH appuser;

• Password expiration and proxy connections. Middle-tier use of password
expiration does not apply to accounts that are authenticated through a proxy.
Instead, lock the account rather than expire the password.

Related Topics

• Auditing SQL Statements and Privileges in a Multitier Environment
You can create a unified audit policy to audit the activities of a client in a multitier
environment.

• Oracle Database Enterprise User Security Administrator's Guide

Using Proxy Authentication with the Secure External Password Store
Use a secure external password store if you are concerned about the password used
in proxy authentication being obtained by a malicious user.

To accomplish this, you use the secure external password store with the proxy
authentication to store the password credentials in a wallet.

Connecting to Oracle Database using proxy authentication and the secure external
password store is ideal for situations such as running batch files. When a proxy user
connects to the database and authenticates using a secure external password, the
password is not exposed in the event that a malicious user tries to obtain the
password.

To use proxy authentication with the secure external password store:

1. Configure the proxy authentication account, as shown in the procedure in Proxy
User Accounts and the Authorization of Users to Connect Through Them.

2. Configure the secure external password store, as described in About Configuring
Clients to Use the External Password Store.

Afterward, the user can connect using the proxy but without having to specify a
password. For example:

sqlplus [preston]/@db_alias

When you use the secure external password store, the user logging in does not need
to supply the user name and password. Only the SERVICE_NAME value (that is,
db_alias) from the tnsnames.ora file must be specified.

How the Identity of the Real User Is Passed with Proxy Authentication
You can use Oracle Call Interface, JDBC/OCI, or Thin drivers for enterprise users or
database users.

These tools enable a middle tier to set up several user sessions within a single
database connection, each of which uniquely identifies a connected user (connection
pooling)

These sessions reduce the network overhead of creating separate network
connections from the middle tier to the database.

If you want to authenticate from clients through a middle tier to the database, then the
full authentication sequence from the client to the middle tier to the database occurs as
follows:

Chapter 3
Preserving User Identity in Multitiered Environments

3-75

1. The client authenticates to the middle tier, using whatever form of authentication
the middle tier will accept. For example, the client could authenticate to the middle
tier by using a user name and password or an X.509 certificate by means of SSL.

2. The middle tier authenticates itself to the database by using whatever form of
authentication the database accepts. This could be a password or an
authentication mechanism supported by Oracle Database, such as a Kerberos
ticket or an X.509 certificate (SSL).

3. The middle tier then creates one or more sessions for users using OCI, JDBC/
OCI, or Thin driver.

• If the user is a database user, then the session must, as a minimum, include
the database user name. If the database requires it, then the session can
include a password (which the database verifies against the password store in
the database). The session can also include a list of database roles for the
user.

• If the user is an enterprise user, then the session may provide different
information depending on how the user is authenticated.

Example 1: If the user authenticates to the middle tier using SSL, then the
middle tier can provide the DN from the X.509 certificate of the user, or the
certificate itself in the session. The database uses the DN to look up the user
in Oracle Internet Directory.

Example 2: If the user is a password-authenticated enterprise user, then the
middle tier must provide, as a minimum, a globally unique name for the user.
The database uses this name to look up the user in Oracle Internet Directory.
If the session also provides a password for the user, then the database will
verify the password against Oracle Internet Directory. User roles are
automatically retrieved from Oracle Internet Directory after the session is
established.

• The middle tier may optionally provide a list of database roles for the client.
These roles are enabled if the proxy is authorized to use the roles on behalf of
the client.

4. The database verifies that the middle tier has the privilege to create sessions on
behalf of the user.

The OCISessionBegin call fails if the application server cannot perform a proxy
authentication on behalf of the client by the administrator, or if the application
server is not allowed to activate the specified roles.

Limits to the Privileges of the Middle Tier
Least privilege is the principle that users should have the fewest privileges necessary
to perform their duties and no more.

As applied to middle tier applications, this means that the middle tier should not have
more privileges than it needs.

Oracle Database enables you to limit the middle tier such that it can connect only on
behalf of certain database users, using only specific database roles. You can limit the
privilege of the middle tier to connect on behalf of an enterprise user, stored in an
LDAP directory, by granting to the middle tier the privilege to connect as the mapped
database user. For instance, if the enterprise user is mapped to the APPUSER schema,
then you must at least grant to the middle tier the ability to connect on behalf of
APPUSER. Otherwise, attempts to create a session for the enterprise user will fail.

Chapter 3
Preserving User Identity in Multitiered Environments

3-76

However, you cannot limit the ability of the middle tier to connect on behalf of
enterprise users. For example, suppose that user Sarah wants to connect to the
database through a middle tier, appsrv (which is also a database user). Sarah has
multiple roles, but it is desirable to restrict the middle tier to use only the clerk role on
her behalf.

An administrator can grant permission for appsrv to initiate connections on behalf of
Sarah using her clerk role only by using the following SQL statement:

ALTER USER sarah GRANT CONNECT THROUGH appsrv WITH ROLE clerk;

By default, the middle tier cannot create connections for any client. The permission
must be granted for each user.

To enable appsrv to use all of the roles granted to the client Sarah, you can use the
following statement:

ALTER USER sarah GRANT CONNECT THROUGH appsrv;

Each time a middle tier initiates an OCI, JDBC/OCI, or Thin driver session for another
database user, the database verifies that the middle tier is authorized to connect for
that user by using the role specified.

Note:

Instead of using default roles, create your own roles and assign only
necessary privileges to them. Creating your own roles enables you to control
the privileges granted by them and protects you if Oracle Database changes
or removes default roles. For example, the CONNECT role now has only the
CREATE SESSION privilege, the one most directly needed when connecting to
a database. However, CONNECT formerly provided several additional
privileges, often not needed or appropriate for most users. Extra privileges
can endanger the security of your database and applications. These have
now been removed from CONNECT.

A proxy user in a proxy session can enable a password-protected role or
secure application role only if the role has been allowed to be enabled with
the WITH ROLE or WITH ROLE ALL clause. (If this clause is not specified, then
WITH ROLE ALL is the default.) If WITH ROLE does not specify the secure
roles, then those roles cannot be enabled, even with the correct password.

Related Topics

• Configuring Privilege and Role Authorization
Privilege and role authorization controls the permissions that users have to
perform day-to-day tasks.

Authorizing a Middle Tier to Proxy and Authenticate a User
You can authorize a middle-tier server to connect as a user.

A proxy user in a proxy session can enable a password-protected role or secure
application role only if the role has been allowed to be enabled with the WITH ROLE or
WITH ROLE ALL clause. (If this clause is not specified, then WITH ROLE ALL is the

Chapter 3
Preserving User Identity in Multitiered Environments

3-77

default.) If WITH ROLE does not specify the secure roles, then those roles cannot be
enabled, even with the correct password.

• To authorize a middle-tier server to connect as a user, use the ALTER USER
statement.

The following statement authorizes the middle-tier server appserve to connect as user
bill. It uses the WITH ROLE clause to specify that appserve activate all roles
associated with bill, except payroll.

ALTER USER bill
 GRANT CONNECT THROUGH appserve
 WITH ROLE ALL EXCEPT payroll;

To revoke the middle-tier server (appserve) authorization to connect as user bill, you
can use the REVOKE CONNECT THROUGH clause. For example:

ALTER USER bill REVOKE CONNECT THROUGH appserve;

Authorizing a Middle Tier to Proxy a User Authenticated by Other Means
You can authorize a middle tier to proxy a user that has been authenticated by other
means.

Currently, PASSWORD is the only means supported.

• Use the AUTHENTICATION REQURED clause of the ALTER USER ... GRANT CONNECT
THROUGH statement to authorize a user to be proxied, but not authenticated, by a
middle tier.

For example:

ALTER USER mary
 GRANT CONNECT THROUGH midtier
 AUTHENTICATION REQUIRED;

In the preceding statement, middle-tier server midtier is authorized to connect as
user mary, and midtier must also pass the user password to the database server for
authorization.

Reauthenticating a User Through the Middle Tier to the Database
You can specify that authentication is required by using the AUTHENTICATION REQUIRED
proxy clause with the ALTER USER SQL statement.

In this case, the middle tier must provide user authentication credentials.

For example, suppose that user Sarah wants to connect to the database through a
middle tier, appsrv.

• To require that appsrv provides authentication credentials for the user Sarah, use
the following syntax:

ALTER USER sarah GRANT CONNECT THROUGH appsrv AUTHENTICATION REQUIRED;

The AUTHENTICATION REQUIRED clause ensures that authentication credentials for the
user must be presented when the user is authenticated through the specified proxy.

Chapter 3
Preserving User Identity in Multitiered Environments

3-78

Note:

For backward compatibility, if you use the AUTHENTICATED USING PASSWORD
proxy clause, then Oracle Database transforms it to AUTHENTICATION
REQUIRED.

Using Password-Based Proxy Authentication
When you use password-based proxy authentication, Oracle Database passes the
password of the client to the middle-tier server.

The middle-tier server then passes the password as an attribute to the data server for
verification.

The main advantage to this type of authentication is that the client computer does not
have to have Oracle software installed on it to perform database operations.

• To pass the password of the client, configure the the middle-tier server to call the
OCIAttrSet() function as follows, passing OCI_ATTR_PASSWORD as the type of the
attribute being set.

OCIAttrSet(
 session_handle, /* Pointer to a handle whose attribute gets modified. */
 OCI_HTYPE_SESSION, /* Handle type: OCI user session handle. */
 password_ptr, /* Pointer to the value of the password attribute. */
 0, /* The size of the password attribute value is already
 known by the OCI library. */
 OCI_ATTR_PASSWORD, /* The attribute type. */
 error_handle); /* An error handle used to retrieve diagnostic
 information in the event of an error. */

Using Proxy Authentication with Enterprise Users
How the middle-tier responds for proxy authentication depends on how the user is
authenticated, either as an enterprise user or a password-authenticated user.

If the middle tier connects to the database as a client who is an enterprise user, then
either the distinguished name, or the X.509 certificate containing the distinguished
name is passed over instead of the database user name. If the user is a password-
authenticated enterprise user, then the middle tier must provide, as a minimum, a
globally unique name for the user. The database uses this name to look up the user in
Oracle Internet Directory.

• To configure proxy authentication with enterprise users, configure the application
server and the middle tier to use the appropriate Oracle Call Interface settings:

– To pass over the distinguished name of the client, configure the application
server to call the Oracle Call Interface method OCIAttrSet() with
OCI_ATTR_DISTINGUISHED_NAME as the attribute type, as follows:

OCIAttrSet(session_handle,
 OCI_HTYPE_SESSION,
 distinguished_name,
 0,
 OCI_ATTR_DISTINGUISHED_NAME,
 error_handle);

Chapter 3
Preserving User Identity in Multitiered Environments

3-79

– To pass over the entire certificate, configure the middle tier to call
OCIAttrSet() with OCI_ATTR_CERTIFICATE as the attribute type, as follows:

OCIAttrSet(session_handle,
 OCI_HTYPE_SESSION,
 certificate,
 certificate_length,
 OCI_ATTR_CERTIFICATE,
 error_handle);

If the type is not specified, then the database uses its default certificate type of X.509.

Note:

• OCI_ATTR_CERTIFICATE is Distinguished Encoding Rules (DER) encoded.

• Certificate based proxy authentication using OCI_ATTR_CERTIFICATE will
not be supported in future Oracle Database releases. Use the
OCI_ATTR_DISTINGUISHED_NAME or OCI_ATTR_USERNAME attribute instead

If you are using proxy authentication for password-authenticated enterprise users, then
use the same OCI attributes as for database users authenticated by password
(OCI_ATTR_USERNAME). Oracle Database first checks the user name against the
database. If it finds no user, then the database checks the user name in the directory.
This user name must be globally unique.

Using Client Identifiers to Identify Application Users Unknown to the
Database

Client identifiers preserve user identity in middle tier systems; they also can be used
independently of the global application context.

• About Client Identifiers
Oracle Database provides the CLIENT_IDENTIFIER attribute of the built-in USERENV
application context namespace for application users.

• How Client Identifiers Work in Middle Tier Systems
Many applications use session pooling to set up several sessions to be reused by
multiple application users.

• Use of the CLIENT_IDENTIFIER Attribute to Preserve User Identity
The CLIENT_IDENTIFIER predefined attribute of the built-in application context
namespace, USERENV, captures the application user name for use with a global
application context.

• Use of the CLIENT_IDENTIFIER Independent of Global Application Context
Using the CLIENT_IDENTIFIER attribute is especially useful for those applications in
which the users are unknown to the database.

• Setting the CLIENT_IDENTIFIER Independent of Global Application Context
You can set the CLIENT_IDENTIFIER setting with Oracle Call Interface to be
independent of the global application context.

Chapter 3
Preserving User Identity in Multitiered Environments

3-80

• Use of the DBMS_SESSION PL/SQL Package to Set and Clear the Client
Identifier
The DBMS_SESSION PL/SQL package manages client identifiers on both the middle
tier and the database itself.

• Enabling the CLIENTID_OVERWRITE Event System-Wide
The ALTER SYSTEM statement can enable the CLIENTID_OVERWRITE event system-
wide.

• Enabling the CLIENTID_OVERWRITE Event for the Current Session
The ALTER SESSION statement can enable the CLIENTID_OVERWRITE event for the
current session only.

• Disabling the CLIENTID_OVERWRITE Event
The ALTER SYSTEM statement can disable the CLIENTID_OVERWRITE event.

About Client Identifiers
Oracle Database provides the CLIENT_IDENTIFIER attribute of the built-in USERENV
application context namespace for application users.

These application users are known to an application but unknown to the database.
The CLIENT_IDENTIFIER attribute can capture any value that the application uses for
identification or access control, and passes it to the database. The CLIENT_IDENTIFIER
attribute is supported in OCI, JDBC/OCI, or Thin driver.

How Client Identifiers Work in Middle Tier Systems
Many applications use session pooling to set up several sessions to be reused by
multiple application users.

Users authenticate themselves to a middle-tier application, which uses a single identity
to log in to the database and maintains all the user connections. In this model,
application users are users who are authenticated to the middle tier of an application,
but who are not known to the database. You can use a CLIENT_IDENTIFIER attribute,
which acts like an application user proxy for these types of applications.

In this model, the middle tier passes a client identifier to the database upon the
session establishment. The client identifier could actually be anything that represents a
client connecting to the middle tier, for example, a cookie or an IP address. The client
identifier, representing the application user, is available in user session information
and can also be accessed with an application context (by using the USERENV naming
context). In this way, applications can set up and reuse sessions, while still being able
to keep track of the application user in the session. Applications can reset the client
identifier and thus reuse the session for a different user, enabling high performance.

Use of the CLIENT_IDENTIFIER Attribute to Preserve User Identity
The CLIENT_IDENTIFIER predefined attribute of the built-in application context
namespace, USERENV, captures the application user name for use with a global
application context.

You also can use the CLIENT_IDENTIFIER attribute independently.

When you use the CLIENT_IDENTIFIER attribute independently from a global
application context, you can set CLIENT_IDENTIFIER with the DBMS_SESSION interface.

Chapter 3
Preserving User Identity in Multitiered Environments

3-81

The ability to pass a CLIENT_IDENTIFIER to the database is supported in Oracle Call
Interface (OCI), JDBC/OCI, or Thin driver.

When you use the CLIENT_IDENTIFIER attribute with global application context, it
provides flexibility and high performance for building applications. For example,
suppose a Web-based application that provides information to business partners has
three types of users: gold partner, silver partner, and bronze partner, representing
different levels of information available. Instead of each user having his or her own
session set up with individual application contexts, the application could set up global
application contexts for gold partners, silver partners, and bronze partners. Then, use
the CLIENT_IDENTIFIER to point the session at the correct context to retrieve the
appropriate type of data. The application need only initialize the three global contexts
once and use the CLIENT_IDENTIFIER to access the correct application context to limit
data access. This provides performance benefits through session reuse and through
accessing global application contexts set up once, instead of having to initialize
application contexts for each session individually.

Related Topics

• Global Application Contexts
You can use a global application context to access application values across
database sessions, including an Oracle Real Application Clusters environment.

• Tutorial: Creating a Global Application Context That Uses a Client Session ID
This tutorial demonstrates how you can create a global application context that
uses a client session ID.

Use of the CLIENT_IDENTIFIER Independent of Global Application Context
Using the CLIENT_IDENTIFIER attribute is especially useful for those applications in
which the users are unknown to the database.

In these situations, the application typically connects as a single database user and all
actions are taken as that user.

Because all user sessions are created as the same user, this security model makes it
difficult to achieve data separation for each user. These applications can use the
CLIENT_IDENTIFIER attribute to preserve the real application user identity through to
the database.

With this approach, sessions can be reused by multiple users by changing the value of
the CLIENT_IDENTIFIER attribute, which captures the name of the real application user.
This avoids the overhead of setting up a separate session and separate attributes for
each user, and enables reuse of sessions by the application. When the
CLIENT_IDENTIFIER attribute value changes, the change is added to the next OCI,
JDBC/OCI, or Thin driver call for additional performance benefits.

For example, the user Daniel connects to a Web Expense application. Daniel is not a
database user; he is a typical Web Expense application user. The application
accesses the built-in application context namespace and sets DANIEL as the
CLIENT_IDENTIFIER attribute value. Daniel completes his Web Expense form and exits
the application. Then, Ajit connects to the Web Expense application. Instead of setting
up a new session for Ajit, the application reuses the session that currently exists for
Daniel, by changing the CLIENT_IDENTIFIER to AJIT. This avoids the overhead of
setting up a new connection to the database and the overhead of setting up a global
application context. The CLIENT_IDENTIFIER attribute can be set to any value on which
the application bases access control. It does not have to be the application user name.

Chapter 3
Preserving User Identity in Multitiered Environments

3-82

Setting the CLIENT_IDENTIFIER Independent of Global Application Context
You can set the CLIENT_IDENTIFIER setting with Oracle Call Interface to be
independent of the global application context.

• To set the CLIENT_IDENTIFIER attribute with OCI, use the
OCI_ATTR_CLIENT_IDENTIFIER attribute in the call to OCIAttrSet(). Then, on the
next request to the server, the information is propagated and stored in the server
sessions.

For example:

OCIAttrSet (session,

OCI_HTYPE_SESSION,
(dvoid *) "appuser1",
(ub4)strlen("appuser1"),
OCI_ATTR_CLIENT_IDENTIFIER,
*error_handle);

For applications that use JDBC, be aware that JDBC does not set the client identifier.
To set the client identifier in a connection pooling environment, use Dynamic
Monitoring Service (DMS) metrics. If DMS is not available, then use the
connection.setClientInfo method. For example:

connection.setClientInfo("E2E_CONTEXT.CLIENT_IDENTIFIER", "appuser");

See Also:

• Oracle Call Interface Programmer's Guide about how the
OCI_ATTR_CLIENT_IDENTIFIER user session handle attribute is used in
middle-tier applications

• Oracle Database JDBC Developer’s Guide for more information about
configuring client connections using JDBC and DMS metrics

• Oracle Database JDBC Developer’s Guide for more information about
the setClientInfo method

Use of the DBMS_SESSION PL/SQL Package to Set and Clear the Client
Identifier

The DBMS_SESSION PL/SQL package manages client identifiers on both the middle tier
and the database itself.

To use the DBMS_SESSION package to set and clear the CLIENT_IDENTIFIER value on
the middle tier, you must use the SET_IDENTIFIER and CLEAR_IDENTIFIER procedures.

The middle tier uses SET_IDENTIFIER to associate the database session with a
particular user or group. Then, the CLIENT_IDENTIFIER is an attribute of the session
and can be viewed in session information.

Chapter 3
Preserving User Identity in Multitiered Environments

3-83

If you plan to use the DBMS_SESSION.SET_IDENTIFIER procedure, then be aware of the
following:

• The maximum number of bytes for the client_id parameter of
DBMS_SESSION.SET_IDENTIFIER is 64 bytes. If it exceeds 64, then the additional
bytes are truncated.

• The DBMS_APPLICATION_INFO.SET_CLIENT_INFO procedure can overwrite the value
of the client identifier. Typically, these values should be the same, so if
SET_CLIENT_INFO is set, then its value can be automatically propagated to the
value set by SET_IDENTIFIER if the CLIENTID_OVERWRITE event is set to ON. You
can check the status of the CLIENTID_OVERWRITE event by running the SHOW
PARAMETER command for the EVENT parameter.

For example, assuming that CLIENTID_OVERWRITE is enabled:

SHOW PARAMETER EVENT

NAME TYPE VALUE
------------------------------ ------------------ ------------------
event string clientid_overwrite

Enabling the CLIENTID_OVERWRITE Event System-Wide
The ALTER SYSTEM statement can enable the CLIENTID_OVERWRITE event system-wide.

1. Enter the following ALTER SYSTEM statement:

ALTER SYSTEM SET EVENTS 'CLIENTID_OVERWRITE';

Or, enter the following line in your init.ora file:

event="clientid_overwrite"

2. Restart the database.

For example:

SHUTDOWN IMMEDIATE
STARTUP

See Also:

• Global Application Contexts for information about using client identifiers
in a global application context

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_SESSION package

Enabling the CLIENTID_OVERWRITE Event for the Current Session
The ALTER SESSION statement can enable the CLIENTID_OVERWRITE event for the
current session only.

1. Use the ALTER SESSION statement to set the CLIENTID_OVERWRITE value for the
session only.

Chapter 3
Preserving User Identity in Multitiered Environments

3-84

For example:

ALTER SESSION SET EVENTS 'CLIENTID_OVERWRITE OFF';

2. If you set the client identifier by using the
DBMS_APPLICATION_INFO.SET_CLIENT_INFO procedure, then run
DBMS_SESSION.SET_IDENTIFIER so that the client identifier settings are the same.

For example:

DBMS_SESSION.SET_IDENTIFIER(session_id_p);

Disabling the CLIENTID_OVERWRITE Event
The ALTER SYSTEM statement can disable the CLIENTID_OVERWRITE event.

1. Enter the following ALTER SYSTEM statement:

ALTER SYSTEM SET EVENTS 'CLIENTID_OVERWRITE OFF';

2. Restart the database.

For example:

SHUTDOWN IMMEDIATE
STARTUP

User Authentication Data Dictionary Views
Oracle Database provides data dictionary views that list information about user
authentication, such as roles that users have or profiles they use.

Table 3-4 lists the data dictionary views. For detailed information about these views,
see Oracle Database Reference.

Table 3-4 Data Dictionary Views That Describe User Authentication

View Description

DBA_PROFILES Displays information about profiles, including their settings and
limits

DBA_ROLES Displays the kind of authentication used for a database role to
log in to the database, such as NONE or GLOBAL (query the
AUTHENTICATION_TYPE column)

DBA_USERS Among other user information, displays the following:

• The kind of authentication the user used to log in to the
database, such as PASSWORD or EXTERNAL
(AUTHENTICATION_TYPE column)

• The list of versions of password versions (also known as
hashes) that exist for the user account
(PASSWORD_VERSIONS column)

DBA_USERS_WITH_DEFPWD Displays whether the user account password is a default
password

PROXY_USERS Displays users who are currently authorized to connect through
a middle tier

Chapter 3
User Authentication Data Dictionary Views

3-85

Table 3-4 (Cont.) Data Dictionary Views That Describe User Authentication

View Description

V$DBLINK Displays user accounts for existing database links (DB_LINK,
OWNER_ID columns); applies to the current pluggable database
(PDB)

V$PWFILE Lists the names and granted administrative privileges of the
administrative users who are included in the password file

V$SESSION Querying the USERNAME column displays concurrently logged in
users to the current PDB

Chapter 3
User Authentication Data Dictionary Views

3-86

4
Configuring Privilege and Role
Authorization

Privilege and role authorization controls the permissions that users have to perform
day-to-day tasks.

• About Privileges and Roles
Authorization permits only certain users to access, process, or alter data; it also
creates limitations on user access or actions.

• Who Should Be Granted Privileges?
You grant privileges to users so they can accomplish tasks required for their jobs.

• How the Oracle Multitenant Option Affects Privileges
In a multitenant environment, all users, including common users, can exercise
their privileges only within the current container.

• Managing Administrative Privileges
Administrative privileges can be used for both general and specific database
operations.

• Managing System Privileges
To perform actions on schema objects, you must be granted the appropriate
system privileges.

• Managing Commonly and Locally Granted Privileges
In a multitenant environment, privileges can be granted commonly for an entire
CDB or application container, or granted locally to a specific PDB.

• Managing Common Roles and Local Roles
A common role is a role that is created in the root; a local role is created in a PDB.

• Managing User Roles
A user role is a named collection of privileges that you can create and assign to
other users.

• Restricting Operations on PDBs Using PDB Lockdown Profiles
You can use PDB lockdown profiles in a multitenant environment to restrict sets of
user operations in pluggable databases (PDBs).

• Managing Object Privileges
Object privileges enable you to perform actions on schema objects, such as tables
or indexes.

• Table Privileges
Object privileges for tables enable table security at the DML or DDL level of
operation.

• View Privileges
You can apply DML object privileges to views, similar to tables.

• Procedure Privileges
The EXECUTE privilege enables users to run procedures and functions, either
standalone or in packages.

4-1

• Type Privileges
You can control system and object privileges for types, methods, and objects.

• Grants of User Privileges and Roles
The GRANT statement provides privileges for a user to perform specific actions,
such as executing a procedure.

• Revokes of Privileges and Roles from a User
When you revoke system or object privileges, be aware of the cascading effects of
revoking a privilege.

• Grants and Revokes of Privileges to and from the PUBLIC Role
You can grant and revoke privileges and roles from the role PUBLIC.

• Grants of Roles Using the Operating System or Network
Using the operating system or network to manage roles can help centralize the
role management in a large enterprise.

• How Grants and Revokes Work with SET ROLE and Default Role Settings
Privilege grants and the SET ROLE statement affect when and how grants and
revokes take place.

• User Privilege and Role Data Dictionary Views
You can use special queries to find information about various types of privilege
and role grants.

About Privileges and Roles
Authorization permits only certain users to access, process, or alter data; it also
creates limitations on user access or actions.

The limitations placed on (or removed from) users can apply to objects such as
schemas, entire tables, or table rows.

A user privilege is the right to run a particular type of SQL statement, or the right to
access an object that belongs to another user, run a PL/SQL package, and so on. The
types of privileges are defined by Oracle Database.

Roles are created by users (usually administrators) to group together privileges or
other roles. They are a way to facilitate the granting of multiple privileges or roles to
users.

Privileges can fall into the following general categories:

• System privileges. These privileges allow the grantee to perform standard
administrator tasks in the database. Restrict them only to trusted users. See the
following sections describe privileges:

– Managing Administrative Privileges

– Managing System Privileges

– Managing Commonly and Locally Granted Privileges

• Roles. A role groups several privileges and roles, so that they can be granted to
and revoked from users simultaneously. You must enable the role for a user
before the user can use it. See the following sections for more information:

– Managing Common Roles and Local Roles

– Managing User Roles

Chapter 4
About Privileges and Roles

4-2

• Object privileges. Each type of object has privileges associated with it. Managing
Object Privileges describes how to manage privileges for different types of objects.

• Table privileges. These privileges enable security at the DML (data manipulation
language) or DDL (data definition language) level.Table Privileges describes how
to manage table privileges.

• View privileges. You can apply DML object privileges to views, similar to tables.
See View Privileges for more information.

• Procedure privileges. Procedures, including standalone procedures and
functions, can be granted the EXECUTE privilege. See Procedure Privileges for
more information.

• Type privileges. You can grant system privileges to named types (object types,
VARRAYs, and nested tables). See Type Privileges for more information.

See Also:

Oracle Database Vault Administrator's Guide for information about how you
can create policies that analyze privilege use

Who Should Be Granted Privileges?
You grant privileges to users so they can accomplish tasks required for their jobs.

You should grant a privilege only to a user who requires that privilege to accomplish
the necessary work. Excessive granting of unnecessary privileges can compromise
security. For example, you never should grant SYSDBA or SYSOPER administrative
privilege to users who do not perform administrative tasks.

You can grant privileges to a user in two ways:

• You can grant privileges to users explicitly. For example, you can explicitly
grant to user psmith the privilege to insert records into the employees table.

• You can grant privileges to a role (a named group of privileges), and then
grant the role to one or more users. For example, you can grant the privileges
to select, insert, update, and delete records from the employees table to the role
named clerk, which in turn you can grant to users psmith and robert.

Because roles allow for easier and better management of privileges, you should
usually grant privileges to roles and not to specific users.

Chapter 4
Who Should Be Granted Privileges?

4-3

See Also:

• Guidelines for Securing User Accounts and Privileges for best practices
to follow when granting privileges

• Oracle Database Vault Administrator’s Guide if you are concerned about
excessive privilege grants

• Oracle Database SQL Language Reference for the complete list of
system privileges and their descriptions

How the Oracle Multitenant Option Affects Privileges
In a multitenant environment, all users, including common users, can exercise their
privileges only within the current container.

However, a user connected to the root can perform certain operations that affect other
pluggable databases (PDBs). These operations include ALTER PLUGGABLE DATABASE,
CREATE USER, CREATE ROLE, and ALTER USER. The common user must possess the
commonly granted privileges that enable these operations. A common user connected
to the root can see metadata pertaining to PDBs by way of the container data objects
(for example, multitenant container database (CDB) views and V$ views) in the root,
provided that the common user has been granted privileges required to access these
views and his CONTAINER_DATA attribute has been set to allow seeing data about
various PDBs. The common user cannot query tables or views in a PDB.

Common users cannot exercise their privileges across other PDBs. They must first
switch to the PDB that they want, and then exercise their privileges from there. To
switch to a different container, the common user must have the SET CONTAINER
privilege. The SET CONTAINER privilege must be granted either commonly or in the
container to which the user is attempting to switch. Alternatively, the common user can
start a new database session whose initial current container is the container this user
wants, relying on the CREATE SESSION privilege in that PDB.

Be aware that commonly granted privileges may interfere with the security configured
for individual PDBs. For example, suppose an application PDB database administrator
wants to prevent any user in the PDB from modifying a particular application common
object. A privilege (such as UPDATE) granted commonly to PUBLIC or to a common user
or common role on the object would circumvent the PDB database administrator’s
intent.

Related Topics

• Enabling Common Users to View CONTAINER_DATA Object Information
Common users can view information about CONTAINER_DATA objects in the root or
for data in specific PDBs.

Managing Administrative Privileges
Administrative privileges can be used for both general and specific database
operations.

Chapter 4
How the Oracle Multitenant Option Affects Privileges

4-4

• About Administrative Privileges
For better separation of duty, Oracle Database provides administrative privileges
that are tailored for commonly performed specific administrative tasks.

• Grants of Administrative Privileges to Users
As with all powerful privileges, only grant administrative privileges to trusted users.

• SYSDBA and SYSOPER Privileges for Standard Database Operations
The SYSDBA and SYSOPER administrative privileges enable you to perform standard
database operations.

• SYSBACKUP Administrative Privilege for Backup and Recovery Operations
The SYSBACKUP administrative privilege is used to perform backup and recovery
operations from either Oracle Recovery Manager (RMAN) and or through
SQL*Plus.

• SYSDG Administrative Privilege for Oracle Data Guard Operations
You can log in as user SYSDG with the SYSDG administrative privilege to perform
Data Guard operations.

• SYSKM Administrative Privilege for Transparent Data Encryption
The SYSKM administrative privilege enables the SYSKM user to manage Transparent
Data Encryption (TDE) wallet operations.

• SYSRAC Administrative Privilege for Oracle Real Application Clusters
The SYSRAC administrative privilege is used by the Oracle Real Application
Clusters (Oracle RAC) Clusterware agent.

About Administrative Privileges
For better separation of duty, Oracle Database provides administrative privileges that
are tailored for commonly performed specific administrative tasks.

These tasks include operations for backup and recovery, Oracle Data Guard, and
encryption key management for Transparent Data Encryption (TDE).

You can find the administrative privileges that a user has by querying the
V$PWFILE_USERS dynamic view, which lists users in the password file.

In previous releases, you needed to have the SYSDBA administrative privilege to
perform these tasks. To support backward compatibility, you still can use the SYSDBA
privilege for these tasks, but Oracle recommends that you use the administrative
privileges described in this section.

Users who have been granted administrative privileges can be altered to be schema-
only accounts.Users who have been granted administrative privileges can be altered
to be schema-only accounts.

The use of administrative privileges is mandatorily audited.

Related Topics

• Auditing Administrative Users
You can create unified audit policies to capture the actions of administrative user
accounts, such as SYS.

Grants of Administrative Privileges to Users
As with all powerful privileges, only grant administrative privileges to trusted users.

Chapter 4
Managing Administrative Privileges

4-5

However, be aware that there is a restriction for users whose names have non-ASCII
characters (for example, the umlaut in the name HÜBER). You can grant administrative
privileges to these users, but if the Oracle database instance is down, the
authentication using the granted privilege is not supported if the user name has non-
ASCII characters. If the database instance is up, then the authentication is supported.

SYSDBA and SYSOPER Privileges for Standard Database Operations
The SYSDBA and SYSOPER administrative privileges enable you to perform standard
database operations.

These database operations can include tasks such as database startups and
shutdowns, creating the server parameter file (SPFILE), or altering the database
archive log. In a multitenant environment, you can grant the SYSDBA and SYSOPER
administrative privileges to application common users (but not to CDB common users).

You can find if a user has been granted an administrative privilege on a local (PDB)
level, for a CDB root, or for an application root by querying the SCOPE column of the
V$PWFILE_USERS dynamic view.

You cannot grant the SYSDBA or SYSOPER administrative privilege to users who have
been created with no authentication.

See Also:

Oracle Database Administrator’s Guide for detailed information about the
SYSDBA and SYSOPER administrative privileges

SYSBACKUP Administrative Privilege for Backup and Recovery
Operations

The SYSBACKUP administrative privilege is used to perform backup and recovery
operations from either Oracle Recovery Manager (RMAN) and or through SQL*Plus.

To connect to the database as SYSBACKUP using a password, you must create a
password file for it. See Oracle Database Administrator’s Guide for more information
about creating password files.

You cannot grant the SYSBACKUP administrative privilege to users who have been
created with no authentication.

This privilege enables you to perform the following operations:

• STARTUP

• SHUTDOWN

• ALTER DATABASE

• ALTER SYSTEM

• ALTER SESSION

• ALTER TABLESPACE

Chapter 4
Managing Administrative Privileges

4-6

• CREATE CONTROLFILE

• CREATE ANY DIRECTORY

• CREATE ANY TABLE

• CREATE ANY CLUSTER

• CREATE PFILE

• CREATE RESTORE POINT (including GUARANTEED restore points)

• CREATE SESSION

• CREATE SPFILE

• DROP DATABASE

• DROP TABLESPACE

• DROP RESTORE POINT (including GUARANTEED restore points)

• FLASHBACK DATABASE

• RESUMABLE

• UNLIMITED TABLESPACE

• SELECT ANY DICTIONARY

• SELECT ANY TRANSACTION

• SELECT

– X$ tables (that is, the fixed tables)

– V$ and GV$ views (that is, the dynamic performance views)

– APPQOSSYS.WLM_CLASSIFIER_PLAN

– SYSTEM.LOGSTDBY$PARAMETERS

• DELETE/INSERT

– SYS.APPLY$_SOURCE_SCHEMA

– SYSTEM.LOGSTDBY$PARAMETERS

• EXECUTE

– SYS.DBMS_BACKUP_RESTORE

– SYS.DBMS_RCVMAN

– SYS.DBMS_DATAPUMP

– SYS.DBMS_IR

– SYS.DBMS_PIPE

– SYS.SYS_ERROR

– SYS.DBMS_TTS

– SYS.DBMS_TDB

– SYS.DBMS_PLUGTS

– SYS.DBMS_PLUGTSP

• SELECT_CATALOG_ROLE

Chapter 4
Managing Administrative Privileges

4-7

In addition, the SYSBACKUP privilege enables you to connect to the database even if the
database is not open.

See Also:

Oracle Database Backup and Recovery User’s Guide for more information
about backup and recovery operations

SYSDG Administrative Privilege for Oracle Data Guard Operations
You can log in as user SYSDG with the SYSDG administrative privilege to perform Data
Guard operations.

You can use this privilege with either Data Guard Broker or the DGMGRL command-line
interface. In order to connect to the database as SYSDG using a password, you must
create a password file for it.

You cannot grant the SYSYSDG administrative privilege to users who have been created
with no authentication.

The SYSDG privilege enables the following operations:

• STARTUP

• SHUTDOWN

• ALTER DATABASE

• ALTER SESSION

• ALTER SYSTEM

• CREATE RESTORE POINT (including GUARANTEED restore points)

• CREATE SESSION

• DROP RESTORE POINT (including GUARANTEED restore points)

• FLASHBACK DATABASE

• SELECT ANY DICTIONARY

• SELECT

– X$ tables (that is, the fixed tables)

– V$ and GV$ views (that is, the dynamic performance views)

– APPQOSSYS.WLM_CLASSIFIER_PLAN

• DELETE

– APPQOSSYS.WLM_CLASSIFIER_PLAN

• EXECUTE

– SYS.DBMS_DRS

In addition, the SYSDG privilege enables you to connect to the database even if it is not
open.

Chapter 4
Managing Administrative Privileges

4-8

See Also:

• Oracle Database Administrator’s Guide for more information about
creating password files

• Oracle Data Guard Concepts and Administration for more information
about Oracle Data Guard

SYSKM Administrative Privilege for Transparent Data Encryption
The SYSKM administrative privilege enables the SYSKM user to manage Transparent
Data Encryption (TDE) wallet operations.

In order to connect to the database as SYSKM using a password, you must create a
password file for it.

You cannot grant the SYSKM administrative privilege to users who have been created
with no authentication.

The SYSKM administrative privilege enables the following operations:

• ADMINISTER KEY MANAGEMENT

• CREATE SESSION

• SELECT (only when database is open)

– SYS.V$ENCRYPTED_TABLESPACES

– SYS.V$ENCRYPTION_WALLET

– SYS.V$WALLET

– SYS.V$ENCRYPTION_KEYS

– SYS.V$CLIENT_SECRETS

– SYS.DBA_ENCRYPTION_KEY_USAGE

In addition, the SYSKM privilege enables you to connect to the database even if it is not
open.

See Also:

• Oracle Database Administrator’s Guide for more information about
creating password files

• Oracle Database Advanced Security Guide for more information about
Transparent Data Encryption

SYSRAC Administrative Privilege for Oracle Real Application Clusters
The SYSRAC administrative privilege is used by the Oracle Real Application Clusters
(Oracle RAC) Clusterware agent.

Chapter 4
Managing Administrative Privileges

4-9

The SYSRAC administrative privilege provides only the minimal privileges necessary for
performing day-to-day Oracle RAC operations. For example, this privilege is used for
Oracle RAC utilities such as SRVCTL.

You cannot grant the SYSRAC administrative privilege to users who have been created
with no authentication.

The SYSRAC administrative privilege enables the following operations:

• STARTUP

• SHUTDOWN

• ALTER DATABASE MOUNT

• ALTER DATABASE OPEN

• ALTER DATABASE OPEN READ ONLY

• ALTER DATABASE CLOSE NORMAL

• ALTER DATABASE DISMOUNT

• ALTER SESSION SET EVENTS

• ALTER SESSION SET _NOTIFY_CRS

• ALTER SESSION SET CONTAINER

• ALTER SYSTEM REGISTER

• ALTER SYSTEM SET local_listener|remote_listener|listener_networks

In addition to these privileges, the SYSRAC user will have access to the following views:

• V$PARAMETER

• V$DATABASE

• V$PDBS

• CDB_SERVICE$

• DBA_SERVICES

• V$ACTIVE_SERVICES

• V$SERVICES

The SYSRAC user is also granted the EXECUTE privilege for the following PL/SQL
packages:

• DBMS_DRS

• DBMS_SERVICE

• DBMS_SERVICE_PRVT

• DBMS_SESSION

• DBMS_HA_ALERTS_PRVT

• Dequeue messaging SYS.SYS$SERVICE_METRICS

Related Topics

• Oracle Real Application Clusters Administration and Deployment Guide

Chapter 4
Managing Administrative Privileges

4-10

Managing System Privileges
To perform actions on schema objects, you must be granted the appropriate system
privileges.

• About System Privileges
A system privilege is the right to perform an action or to perform actions on
schema objects.

• Why Is It Important to Restrict System Privileges?
System privileges are very powerful, so only grant them to trusted users. You
should also secure the data dictionary and SYS schema objects.

• Grants and Revokes of System Privileges
You can grant or revoke system privileges to users and roles.

• Who Can Grant or Revoke System Privileges?
Only two types of users can grant system privileges to other users or revoke those
privileges from them.

• About ANY Privileges and the PUBLIC Role
System privileges that use the ANY keyword enable you to set privileges for an
entire category of objects in the database.

About System Privileges
A system privilege is the right to perform an action or to perform actions on schema
objects.

For example, the privileges to create tablespaces and to delete the rows of any table
in a database are system privileges.

There are over 100 distinct system privileges. Each system privilege allows a user to
perform a particular database operation or class of database operations. Remember
that system privileges are very powerful. Only grant them when necessary to roles and
trusted users of the database. To find the system privileges that have been granted to
a user, you can query the DBA_SYS_PRIVS data dictionary view.

See Also:

• Oracle Database SQL Language Reference for a complete list of system
privileges and their descriptions

• How Commonly Granted System Privileges Work

Why Is It Important to Restrict System Privileges?
System privileges are very powerful, so only grant them to trusted users. You should
also secure the data dictionary and SYS schema objects.

Chapter 4
Managing System Privileges

4-11

• About the Importance of Restricting System Privileges
System privileges are very powerful, so by default the database is configured to
prevent typical (non-administrative) users from exercising the ANY system
privileges.

• Restricting System Privileges by Securing the Data Dictionary
The O7_DICTIONARY_ACCESSIBILITY initialization parameter controls restrictions on
system privileges when you upgrade from Oracle Database release 7 to Oracle8i
and later releases.

• User Access to Objects in the SYS Schema
Users with explicit object privileges or those who connect with administrative
privileges (SYSDBA) can access objects in the SYS schema.

About the Importance of Restricting System Privileges
System privileges are very powerful, so by default the database is configured to
prevent typical (non-administrative) users from exercising the ANY system privileges.

For example, users are prevented from exercising ANY system privileges such as
UPDATE ANY TABLE on the data dictionary.

Related Topics

• Guidelines for Securing User Accounts and Privileges
Oracle provides guidelines to secure user accounts and privileges.

Restricting System Privileges by Securing the Data Dictionary
The O7_DICTIONARY_ACCESSIBILITY initialization parameter controls restrictions on
system privileges when you upgrade from Oracle Database release 7 to Oracle8i and
later releases.

If the parameter is set to TRUE, then access to objects in the SYS schema is allowed
(Oracle Database release 7 behavior). Because the ANY privilege applies to the data
dictionary, a malicious user with ANY privilege could access or alter data dictionary
tables.

• To secure the data dictionary, set the O7_DICTIONARY_ACCESSIBILITY initialization
parameter to FALSE, which is the default value. This feature is called the dictionary
protection mechanism.

To set the O7_DICTIONARY_ACCESSIBILTY initialization parameter, you can modify it
in the initSID.ora file. Alternatively, you can log on to SQL*Plus as user SYS with
the SYSDBA administrative privilege and then enter an ALTER SYSTEM statement,
assuming you have started the database using a server parameter file (SPFILE).

Example 4-1 shows how to set the O7_DICTIONARY_ACCESSIBILTY initialization
parameter to FALSE by issuing an ALTER SYSTEM statement in SQL*Plus.

Example 4-1 Setting O7_DICTIONARY_ACCESSIBILITY to FALSE

ALTER SYSTEM SET O7_DICTIONARY_ACCESSIBILITY=FALSE SCOPE=SPFILE;

When you set O7_DICTIONARY_ACCESSIBILITY to FALSE, system privileges that enable
access to objects in any schema (for example, users who have ANY privileges, such as
CREATE ANY PROCEDURE) do not allow access to objects in the SYS schema. This means
that access to the objects in the SYS schema (data dictionary objects) is restricted to
users who connect using the SYSDBA administrative privilege. Remember that the SYS

Chapter 4
Managing System Privileges

4-12

user must log in with either the SYSDBA or SYSOPER privilege; otherwise, an ORA-28009:
connection as SYS should be as SYSDBA or SYSOPER error is raised. If you set
O7_DICTIONARY_ACCESSIBILITY to TRUE, then you would be able to log in to the
database as user SYS without having to specify the SYSDBA or SYSOPER privilege.

System privileges that provide access to objects in other schemas do not give other
users access to objects in the SYS schema. For example, the SELECT ANY TABLE
privilege allows users to access views and tables in other schemas, but does not
enable them to select dictionary objects (base tables of dynamic performance views,
regular views, packages, and synonyms). You can, however, grant these users explicit
object privileges to access objects in the SYS schema.

See Also:

Oracle Database Reference for more information about the
O7_DICTIONARY_ACCESSIBILITY initialization parameter

User Access to Objects in the SYS Schema
Users with explicit object privileges or those who connect with administrative privileges
(SYSDBA) can access objects in the SYS schema.

Table 4-1 lists roles that you can grant to users who need access to objects in the SYS
schema.

Table 4-1 Roles to Allow Access to SYS Schema Objects

Role Description

SELECT_CATALOG_ROLE Grant this role to allow users SELECT privileges on data
dictionary views.

EXECUTE_CATALOG_ROLE Grant this role to allow users EXECUTE privileges for packages
and procedures in the data dictionary.

Additionally, you can grant the SELECT ANY DICTIONARY system privilege to users who
require access to tables created in the SYS schema. This system privilege allows query
access to any object in the SYS schema, including tables created in that schema. It
must be granted individually to each user requiring the privilege. It is not included in
GRANT ALL PRIVILEGES, but it can be granted through a role.

Note:

You should grant these roles and the SELECT ANY DICTIONARY system
privilege with extreme care, because the integrity of your system can be
compromised by their misuse.

Grants and Revokes of System Privileges
You can grant or revoke system privileges to users and roles.

Chapter 4
Managing System Privileges

4-13

If you grant system privileges to roles, then you can use the roles to exercise system
privileges. For example, roles permit privileges to be made selectively available.
Ensure that you follow the separation of duty guidelines described in Guidelines for
Securing Roles.

Use either of the following methods to grant or revoke system privileges to or from
users and roles:

• GRANT and REVOKE SQL statements

• Oracle Enterprise Manager Cloud Control

Related Topics

• User Privilege and Role Data Dictionary Views
You can use special queries to find information about various types of privilege
and role grants.

Who Can Grant or Revoke System Privileges?
Only two types of users can grant system privileges to other users or revoke those
privileges from them.

These users are as follows:

• Users who were granted a specific system privilege with the ADMIN OPTION

• Users with the system privilege GRANT ANY PRIVILEGE

For this reason, only grant these privileges to trusted users.

About ANY Privileges and the PUBLIC Role
System privileges that use the ANY keyword enable you to set privileges for an entire
category of objects in the database.

For example, the CREATE ANY PROCEDURE system privilege permits a user to create a
procedure anywhere in the database. The behavior of an object created by users with
the ANY privilege is not restricted to the schema in which it was created. For example, if
user JSMITH has the CREATE ANY PROCEDURE privilege and creates a procedure in the
schema JONES, then the procedure will run as JONES. However, JONES may not be
aware that the procedure JSMITH created is running as him (JONES). If JONES has DBA
privileges, letting JSMITH run a procedure as JONES could pose a security violation.

The PUBLIC role is a special role that every database user account automatically has
when the account is created. By default, it has no privileges granted to it, but it does
have numerous grants, mostly to Java objects. You cannot drop the PUBLIC role, and a
manual grant or revoke of this role has no meaning, because the user account will
always assume this role. Because all database user accounts assume the PUBLIC role,
it does not appear in the DBA_ROLES and SESSION_ROLES data dictionary views.

You can grant privileges to the PUBLIC role, but remember that this makes the
privileges available to every user in the Oracle database. For this reason, be careful
about granting privileges to the PUBLIC role, particularly powerful privileges such as the
ANY privileges and system privileges. For example, if JSMITH has the CREATE PUBLIC
SYNONYM system privilege, he could redefine an interface that he knows everyone else
uses, and then point to it with the PUBLIC SYNONYM that he created. Instead of

Chapter 4
Managing System Privileges

4-14

accessing the correct interface, users would access the interface of JSMITH, which
could possibly perform illegal activities such as stealing the login credentials of users.

These types of privileges are very powerful and could pose a security risk if given to
the wrong person. Be careful about granting privileges using ANY or PUBLIC. As with all
privileges, you should follow the principles of "least privilege" when granting these
privileges to users.

To protect the data dictionary (the contents of the SYS schema) against users who
have one or more of the powerful ANY system privileges, set the
O7_DICTIONARY_ACCESSIBILITY initialization parameter to FALSE. You can set this
parameter by using an ALTER SYSTEM statement or by modifying the initSID.ora file.

Related Topics

• Example 4-1

• Guidelines for Securing a Database Installation and Configuration
Oracle provides guidelines to secure the database installation and configuration.

Managing Commonly and Locally Granted Privileges
In a multitenant environment, privileges can be granted commonly for an entire CDB or
application container, or granted locally to a specific PDB.

• About Commonly and Locally Granted Privileges
In a multitenant environment, both common users and local users can grant
privileges to one another.

• How Commonly Granted System Privileges Work
Users can exercise system privileges only within the PDB in which they were
granted.

• How Commonly Granted Object Privileges Work
Object privileges on common objects applies to the object as well as all associated
links on this common object.

• Granting or Revoking Privileges to Access a PDB
You can grant and revoke privileges for PDB access in a multitenant environment.

• Example: Granting a Privilege in a Multitenant Environment
You can use the GRANT statement to grant privileges in a multitenant environment.

• Enabling Common Users to View CONTAINER_DATA Object Information
Common users can view information about CONTAINER_DATA objects in the root or
for data in specific PDBs.

About Commonly and Locally Granted Privileges
In a multitenant environment, both common users and local users can grant privileges
to one another.

Privileges by themselves are neither common nor local. How the privileges are applied
depends on whether the privilege is granted commonly or granted locally.

For commonly granted privileges:

• A privilege that is granted commonly can be used in every existing and future
container.

Chapter 4
Managing Commonly and Locally Granted Privileges

4-15

• Only common users can grant privileges commonly, and only if the grantee is
common.

• A common user can grant privileges to another common user or to a common role.

• The grantor must be connected to the root and must specify CONTAINER=ALL in the
GRANT statement.

• Both system and object privileges can be commonly granted. (Object privileges
become actual only with regard to the specified object.)

• When a common user connects to or switches to a given container, this user's
ability to perform various activities (such as creating a table) is controlled by
privileges granted commonly as well as privileges granted locally in the given
container.

• Do not grant privileges to PUBLIC commonly.

For locally granted privileges:

• A privilege granted locally can be used only in the container in which it was
granted. When the privilege is granted in the root, it applies only to the root.

• Both common users and local users can grant privileges locally.

• A common user and a local user can grant privileges to other common or local
roles.

• The grantor must be connected to the container and must specify
CONTAINER=CURRENT in the GRANT statement.

• Any user can grant a privilege locally to any other user or role (both common and
local) or to the PUBLIC role.

Related Topics

• Oracle Multitenant Administrator's Guide

• How the PUBLIC Role Works in a Multitenant Environment
All privileges that Oracle grants to the PUBLIC role are granted locally.

How Commonly Granted System Privileges Work
Users can exercise system privileges only within the PDB in which they were granted.

For example, if a system privilege is locally granted to a common user A in a PDB B,
user A can exercise that privilege only while connected to PDB B.

System privileges can apply in the root and in all existing and future PDBs if the
following requirements are met:

• The system privilege grantor is a common user and the grantee is a common user,
a common role, or the PUBLIC role. Do not commonly grant system privileges to
the PUBLIC role, because this in effect makes the system privilege available to all
users.

• The system privilege grantor possesses the ADMIN OPTION for the commonly
granted privilege

• The GRANT statement must contain the CONTAINER=ALL clause.

Chapter 4
Managing Commonly and Locally Granted Privileges

4-16

The following example shows how to commonly grant a privilege to the common user
c##hr_admin.

CONNECT SYSTEM
Enter password: password
Connected.

GRANT CREATE ANY TABLE TO c##hr_admin CONTAINER=ALL;

How Commonly Granted Object Privileges Work
Object privileges on common objects applies to the object as well as all associated
links on this common object.

These links include all metadata links, data links (previously called object links), or
extended data links that are associated with it in the root and in all PDBs belonging to
the container (including future PDBs) if certain requirements are met.

These requirements are as follows:

• The object privilege grantor is a common user and the grantee is a common user,
a common role, or the PUBLIC role.

• The object privilege grantor possesses the commonly granted GRANT OPTION for
the privilege

• The GRANT statement contains the CONTAINER=ALL clause.

The following example shows how to grant an object privilege to the common user
c##hr_admin so that he can select from the DBA_PDBS view in the CDB root or in any of
the associated PDBs that he can access.

CONNECT SYSTEM
Enter password: password
Connected.

GRANT SELECT ON DBA_OBJECTS TO c##hr_admin
CONTAINER=ALL;

Related Topics

• Oracle Multitenant Administrator's Guide

• How the PUBLIC Role Works in a Multitenant Environment
All privileges that Oracle grants to the PUBLIC role are granted locally.

Granting or Revoking Privileges to Access a PDB
You can grant and revoke privileges for PDB access in a multitenant environment.

To grant a privilege in a multitenant environment:

• Include the CONTAINER clause in the GRANT or REVOKE statement.

Setting CONTAINER to ALL applies the privilege to all existing and future containers;
setting it to CURRENT applies the privilege to the local container only. Omitting the
CONTAINER clause applies the privilege to the local container. If you issue the GRANT

Chapter 4
Managing Commonly and Locally Granted Privileges

4-17

statement from the root and omit the CONTAINER clause, then the privilege is applied
locally.

Related Topics

• Oracle Database SQL Language Reference

Example: Granting a Privilege in a Multitenant Environment
You can use the GRANT statement to grant privileges in a multitenant environment.

Example 4-2 shows how to commonly grant the CREATE TABLE privilege to common
user c##hr_admin so that this user can use this privilege in all existing and future
containers.

Example 4-2 Granting a Privilege in a Multitenant Environment

CONNECT SYSTEM
Enter password: password
Connected.

GRANT CREATE TABLE TO c##hr_admin CONTAINER=ALL;

Enabling Common Users to View CONTAINER_DATA Object
Information

Common users can view information about CONTAINER_DATA objects in the root or for
data in specific PDBs.

• Viewing Data About the Root, CDB, and PDBs While Connected to the Root
You can restrict view information for the X$ table and the V$, GV$ and CDB_* views
when common users perform queries.

• Enabling Common Users to Query Data in Specific PDBs
You can enable common users to access data pertaining to specific PDBs by
adjusting the users’ CONTAINER_DATA attribute.

Viewing Data About the Root, CDB, and PDBs While Connected to the Root
You can restrict view information for the X$ table and the V$, GV$ and CDB_* views
when common users perform queries.

The X$ table and these views contain information about the application root and its
associated application PDBs or, if you are connected to the CDB root, the entire CDB.

Restricting this information is useful when you do not want to expose sensitive
information about other PDBs. To enable this functionality, Oracle Database provides
these tables and views as container data objects. You can find if a specific table or
view is a container data object by querying the TABLE_NAME, VIEW_NAME, and
CONTAINER_DATA columns of the USER_|DBA_|ALL_VIEWS|TABLES dictionary views.

To find information about the default (user-level) and object-specific
CONTAINER_DATA attributes:

1. In SQL*Plus or SQL Developer, log in to the root.

Chapter 4
Managing Commonly and Locally Granted Privileges

4-18

2. Query the CDB_CONTAINER_DATA data dictionary view.

For example:

COLUMN USERNAME FORMAT A15
COLUMN DEFAULT_ATTR FORMAT A7
COLUMN OWNER FORMAT A15
COLUMN OBJECT_NAME FORMAT A15
COLUMN ALL_CONTAINERS FORMAT A3
COLUMN CONTAINER_NAME FORMAT A10
COLUMN CON_ID FORMAT A6

SELECT USERNAME, DEFAULT_ATTR, OWNER, OBJECT_NAME,
 ALL_CONTAINERS, CONTAINER_NAME, CON_ID
FROM CDB_CONTAINER_DATA
ORDER BY OBJECT_NAME;

USERNAME DEFAULT OWNER OBJECT_NAME ALL CONTAINERS
CON_ID
--------------- ------- --------------- --------------- --- ----------

C##HR_ADMIN N SYS V$SESSION N
CDB$ROOT 1
C##HR_ADMIN N SYS V$SESSION N
SALESPDB 1
C##HR_ADMIN Y N
HRPDB 1
C##HR_ADMIN Y N
CDB$ROOT 1
DBSNMP Y
Y 1
SYSTEM Y
Y 1

Related Topics

• Oracle Database Reference

Enabling Common Users to Query Data in Specific PDBs
You can enable common users to access data pertaining to specific PDBs by adjusting
the users’ CONTAINER_DATA attribute.

To enable common users to access data about specific PDBs:

• Issue the ALTER USER statement in the root.

Example 4-3 Setting the CONTAINER_DATA Attribute

This example shows how to issue the ALTER USER statement to enable the common
user c##hr_admin to view information pertaining to the CDB$ROOT, SALES_PDB, and
HRPDB containers in the V$SESSION view (assuming this user can query that view).

CONNECT SYSTEM
Enter password: password
Connected.

Chapter 4
Managing Commonly and Locally Granted Privileges

4-19

ALTER USER c##hr_admin
SET CONTAINER_DATA = (CDB$ROOT, SALESPDB, HRPDB)
FOR V$SESSION CONTAINER=CURRENT;

In this specification:

• SET CONTAINER_DATA lists containers, data pertaining to which can be accessed by
the user.

• FOR V$SESSION specifies the CONTAINER_DATA dynamic view, which common user
c##hr_admin will query.

• CONTAINER = CURRENT must be specified because when you are connected to the
root, CONTAINER=ALL is the default for the ALTER USER statement, but modification
of the CONTAINER_DATA attribute must be restricted to the root.

If you want to enable user c##hr_admin to view information that pertains to the
CDB$ROOT, SALES_PDB, HRPDB containers in all CONTAINER_DATA objects that this user
can access, then omit FOR V$SESSION. For example:

ALTER USER c##hr_admin
SET CONTAINER_DATA = (CDB$ROOT, SALESPDB, HRPDB)
CONTAINER=CURRENT;

Related Topics

• Oracle Database SQL Language Reference

Managing Common Roles and Local Roles
A common role is a role that is created in the root; a local role is created in a PDB.

• About Common Roles and Local Roles
In a multitenant environment, database roles can be specific to a PDB or used
throughout the entire system container or application container.

• How Common Roles Work
Common roles are visible in the root and in every PDB of a container within which
they are defined in a multitenant environment.

• How the PUBLIC Role Works in a Multitenant Environment
All privileges that Oracle grants to the PUBLIC role are granted locally.

• Privileges Required to Create, Modify, or Drop a Common Role
Only common users who have the commonly granted CREATE ROLE, ALTER ROLE,
and DROP ROLE privileges can create, alter, or drop common roles.

• Rules for Creating Common Roles
When you create a common role, you must follow special rules.

• Creating a Common Role
You can use the CREATE ROLE statement to create a common role.

• Rules for Creating Local Roles
To create a local role, you must follow special rules.

• Creating a Local Role
You can use the CREATE ROLE statement to create a role.

Chapter 4
Managing Common Roles and Local Roles

4-20

• Role Grants and Revokes for Common Users and Local Users
Role grants and revokes apply only to the scope of access of the common user or
the local user.

About Common Roles and Local Roles
In a multitenant environment, database roles can be specific to a PDB or used
throughout the entire system container or application container.

A common role is a role whose identity and (optional) password are created in the root
of a container and will be known in the root and in all existing and future PDBs
belonging to that container.

A local role exists in only one PDB and can only be used within this PDB. It does not
have any commonly granted privileges.

Note the following:

• Common users can both create and grant common roles to other common and
local users.

• You can grant a role (local or common) to a local user or role only locally.

• If you grant a common role locally, then the privileges of that common role apply
only in the container where the role is granted.

• Local users cannot create common roles, but they can grant them to common and
other local users.

• The CONTAINER = ALL clause is the default when you create a common role in the
CDB root or an application root.

Related Topics

• Predefined Roles in an Oracle Database Installation
Oracle Database provides a set of predefined roles to help in database
administration.

How Common Roles Work
Common roles are visible in the root and in every PDB of a container within which they
are defined in a multitenant environment.

A privilege can be granted commonly to a common role if:

• The grantor is a common user.

• The grantor possesses the commonly granted ADMIN OPTION for the privilege that
is being granted.

• The GRANT statement contains the CONTAINER=ALL clause.

If the common role contains locally granted privileges, then these privileges apply only
within the PDB in which they were granted to the common role. A local role cannot be
granted commonly.

For example, suppose the CDB common user c##hr_mgr has been commonly granted
the DBA role. This means that user c##hr_mgr can use the privileges associated with
the DBA role in the root and in every PDB in the multitenant environment. However, if
the CDB common user c##hr_mgr has only been locally granted the DBA role for the
hr_pdb PDB, then this user can only use the DBA role's privileges in the hr_pdb PDB.

Chapter 4
Managing Common Roles and Local Roles

4-21

How the PUBLIC Role Works in a Multitenant Environment
All privileges that Oracle grants to the PUBLIC role are granted locally.

This feature enables you to revoke privileges or roles that have been granted to the
PUBLIC role individually in each PDB as needed. If you must grant any privileges to the
PUBLIC role, then grant them locally. Never grant privileges to PUBLIC commonly.

Related Topics

• About Commonly and Locally Granted Privileges
In a multitenant environment, both common users and local users can grant
privileges to one another.

Privileges Required to Create, Modify, or Drop a Common Role
Only common users who have the commonly granted CREATE ROLE, ALTER ROLE, and
DROP ROLE privileges can create, alter, or drop common roles.

Common users can also create local roles, but these roles are available only in the
PDB in which they were created.

Rules for Creating Common Roles
When you create a common role, you must follow special rules.

The rules are as follows:

• Ensure that you are in the correct root. For the creation of common roles, you
must be in the correct root, either the CDB root or the application root. You cannot
create common roles from a PDB. To check if you are in the correct root, run one
of the following:

– To confirm that you are in the CDB root, you can issue the show_con_name
command. The output should be CDB$ROOT.

– To confirm that you are in an application root, verify that the following query
returns YES:

SELECT APPLICATION_ROOT FROM V$PDBS WHERE
CON_ID=SYS_CONTEXT('USERENV', 'CON_ID');

– Ensure that the name that you give the common role starts with the
value of the COMMON_USER_PREFIX parameter (which defaults to C##).
Note that this requirement does not apply to the names of existing Oracle-
supplied roles, such as DBA or RESOURCE.

• Optionally, set the CONTAINER clause to ALL. As long as you are in the root, if
you omit the CONTAINER = ALL clause, then by default the role is created as a
common role for the CDB root or the application root.

Creating a Common Role
You can use the CREATE ROLE statement to create a common role.

Chapter 4
Managing Common Roles and Local Roles

4-22

1. Connect to the root of the CDB or the application container in which you want to
create the common role.

For example:

CONNECT SYSTEM
Enter password: password
Connected.

2. Run the CREATE ROLE statement with the CONTAINER clause set to ALL.

For example:

CREATE ROLE c##sec_admin IDENTIFIED BY password CONTAINER=ALL;

Related Topics

• Creating a Role
You can create a role that is authenticated with or without a password. You also
can create external or global roles.

• Creating a Common Role in Enterprise Manager
Common roles can be used to assign common privileges to common users.

Rules for Creating Local Roles
To create a local role, you must follow special rules.

These rules are as follows:

• You must be connected to the PDB in which you want to create the role, and have
the CREATE ROLE privilege.

• The name that you give the local role must not start with the value of the
COMMON_USER_PREFIX parameter (which defaults to C##).

• You can include CONTAINER=CURRENT in the CREATE ROLE statement to specify the
role as a local role. If you are connected to a PDB and omit this clause, then the
CONTAINER=CURRENT clause is implied.

• You cannot have common roles and local roles with the same name. However,
you can use the same name for local roles in different PDBs. To find the names of
existing roles, query the CDB_ROLES and DBA_ROLES data dictionary views.

Creating a Local Role
You can use the CREATE ROLE statement to create a role.

1. Connect to the PDB in which you want to create the local role.

For example:

CONNECT SYSTEM@hrpdb
Enter password: password
Connected.

2. Run the CREATE ROLE statement with the CONTAINER clause set to CURRENT.

Chapter 4
Managing Common Roles and Local Roles

4-23

For example:

CREATE ROLE sec_admin CONTAINER=CURRENT;

Role Grants and Revokes for Common Users and Local Users
Role grants and revokes apply only to the scope of access of the common user or the
local user.

Common users can grant and revoke common roles to and from other common users.
A local user can grant a common role to any user in a PDB, including common users,
but this grant applies only within the PDB.

The following example shows how to grant the common user c##sec_admin the
AUDIT_ADMIN common role for use in all containers.

CONNECT SYSTEM
Enter password: password
Connected.

GRANT AUDIT_ADMIN TO c##sec_admin CONTAINER=ALL;

Similarly, the next example shows how local user aud_admin can grant the common
user c##sec_admin the AUDIT_ADMIN common role for use within the hrpdb PDB.

CONNECT aud_admin@hrpdb
Enter password: password
Connected.

GRANT AUDIT_ADMIN TO c##sec_admin CONTAINER=CURRENT;

This example shows how a local user aud_admin can revoke a role from another user
in a PDB. If you omit the CONTAINER clause, then CURRENT is implied.

CONNECT aud_admin@hrpdb
Enter password: password
Connected.

REVOKE sec_admin FROM psmith CONTAINER=CURRENT;

Related Topics

• Revoking Common Privilege Grants in Enterprise Manager
You can revoke common privilege grants from the root.

Managing User Roles
A user role is a named collection of privileges that you can create and assign to other
users.

• About User Roles
User roles are useful in a variety of situations, such as restricting DDL usage.

Chapter 4
Managing User Roles

4-24

• Predefined Roles in an Oracle Database Installation
Oracle Database provides a set of predefined roles to help in database
administration.

• Creating a Role
You can create a role that is authenticated with or without a password. You also
can create external or global roles.

• Specifying the Type of Role Authorization
You can configure a role to be authorized through different sources, such the
database or an external source.

• Granting and Revoking Roles
You can grant or revoke privileges to and from roles, and then grant these roles to
users or to other roles.

• Dropping Roles
Dropping a role affects the security domains of users or roles who had been
granted the role.

• Restricting SQL*Plus Users from Using Database Roles
You should restrict SQL*Plus users from using database roles, which helps to
safeguard the database from intruder attacks.

• Role Privileges and Secure Application Roles
A secure application role can be enabled only by an authorized PL/SQL package
or procedure.

About User Roles
User roles are useful in a variety of situations, such as restricting DDL usage.

• What Are User Roles?
A user role is a named group of related privileges that you can grant as a group to
users or other roles.

• The Functionality of Roles
Roles are useful for quickly and easily granting permissions to users.

• Properties of Roles and Why They Are Advantageous
Roles have special properties that make their management very easy, such
reduced privilege administration.

• Typical Uses of Roles
In general, you create a role to manage privileges.

• Common Uses of Application Roles
You can use application roles to control privileges to use applications.

• Common Uses of User Roles
You can create a user role for a group of database users with common privilege
grant requirements.

• How Roles Affect the Scope of a User's Privileges
Each role and user has its own unique security domain.

• How Roles Work in PL/SQL Blocks
Role behavior in a PL/SQL block is determined by the type of block and by
definer's rights or invoker's rights.

Chapter 4
Managing User Roles

4-25

• How Roles Aid or Restrict DDL Usage
A user requires one or more privileges to successfully execute a DDL statement,
depending on the statement.

• How Operating Systems Can Aid Roles
In some environments, you can administer database security using the operating
system.

• How Roles Work in a Distributed Environment
In a distributed database environment, all necessary roles must be set as the
default role for a distributed (remote) session.

What Are User Roles?
A user role is a named group of related privileges that you can grant as a group to
users or other roles.

Managing and controlling privileges is easier when you use roles.

Within a database, each role name must be unique, different from all user names and
all other role names. Unlike schema objects, roles are not contained in any schema.
Therefore, a user who creates a role can be dropped with no effect on the role.

Related Topics

• Managing Common Roles and Local Roles
A common role is a role that is created in the root; a local role is created in a PDB.

See Also:

Managing Common Roles and Local Roles

The Functionality of Roles
Roles are useful for quickly and easily granting permissions to users.

Although you can use Oracle Database-defined roles, you have more control and
continuity if you create your own roles that contain only the privileges pertaining to
your requirements. Oracle may change or remove the privileges in an Oracle
Database-defined role.

Roles have the following functionality:

• A role can be granted system or object privileges.

• Any role can be granted to any database user.

• Each role granted to a user is, at a given time, either enabled or disabled. A user's
security domain includes the privileges of all roles currently enabled for the user
and excludes the privileges of any roles currently disabled for the user. Oracle
Database allows database applications and users to enable and disable roles to
provide selective availability of privileges.

• A role can be granted to other roles. However, a role cannot be granted to itself
and cannot be granted circularly. For example, role role1 cannot be granted to
role role2 if role role2 has previously been granted to role role1.

Chapter 4
Managing User Roles

4-26

• If a role is not password authenticated or a secure application role, then you can
grant the role indirectly to the user. An indirectly granted role is a role granted to
the user through another role that has already been granted to this user. For
example, suppose you grant user psmith the role1 role. Then you grant the role2
and role3 roles to the role1 role. Roles role2 and role3 are now under role1.
This means psmith has been indirectly granted the roles role2 and role3, in
addition to the direct grant of role1. Enabling the direct role1 for psmith enables
the indirect roles role2 and role3 for this user as well.

• Optionally, you can make a directly granted role a default role. You enable or
disable the default role status of a directly granted role by using the DEFAULT ROLE
clause of the ALTER USER statement. Ensure that the DEFAULT ROLE clause refers
only to roles that have been directly granted to the user. To find the directly
granted roles for a user, query the DBA_ROLE_PRIVS data dictionary view. This view
does not include the user's indirectly granted roles. To find roles that are granted
to other roles, query the ROLE_ROLE_PRIVS view.

• If the role is password authenticated or a secure application role, then you cannot
grant it indirectly to the user, nor can you make it a default role. You only can grant
this type of role directly to the user. Typically, you enable password authenticated
or secure application roles by using the SET ROLE statement.

Properties of Roles and Why They Are Advantageous
Roles have special properties that make their management very easy, such reduced
privilege administration.

Table 4-2 describes the properties of roles that enable easier privilege management
within a database.

Table 4-2 Properties of Roles and Their Description

Property Description

Reduced privilege
administration

Rather than granting the same set of privileges explicitly to
several users, you can grant the privileges for a group of related
users to a role, and then only the role must be granted to each
member of the group.

Dynamic privilege
management

If the privileges of a group must change, then only the privileges
of the role need to be modified. The security domains of all users
granted the group's role automatically reflect the changes made
to the role.

Selective availability of
privileges

You can selectively enable or disable the roles granted to a user.
This allows specific control of a user's privileges in any given
situation.

Application awareness The data dictionary records which roles exist, so you can design
applications to query the dictionary and automatically enable (or
disable) selective roles when a user attempts to execute the
application by way of a given user name.

Application-specific security You can protect role use with a password. Applications can be
created specifically to enable a role when supplied the correct
password. Users cannot enable the role if they do not know the
password.

Database administrators often create roles for a database application. You should
grant a secure application role all privileges necessary to run the application. You then

Chapter 4
Managing User Roles

4-27

can grant the secure application role to other roles or users. An application can have
several different roles, each granted a different set of privileges that allow for more or
less data access while using the application.

The DBA can create a role with a password to prevent unauthorized use of the
privileges granted to the role. Typically, an application is designed so that when it
starts, it enables the proper role. As a result, an application user does not need to
know the password for an application role.

Related Topics

• How Roles Aid or Restrict DDL Usage
A user requires one or more privileges to successfully execute a DDL statement,
depending on the statement.

Typical Uses of Roles
In general, you create a role to manage privileges.

Reasons are as follows:

• To manage the privileges for a database application

• To manage the privileges for a user group

Figure 4-1 describes the two uses of roles.

Figure 4-1 Common Uses for Roles

PAY_CLERK Role MANAGER Role REC_CLERK Role

ACCTS_PAY Role ACCTS_REC Role

User Roles

Application Roles

Application Privileges
Privileges to
execute the
ACCTS_PAY
application

Privileges to
execute the
ACCTS_REC
application

Users

Related Topics

• Common Uses of Application Roles
You can use application roles to control privileges to use applications.

• Common Uses of User Roles
You can create a user role for a group of database users with common privilege
grant requirements.

Chapter 4
Managing User Roles

4-28

Common Uses of Application Roles
You can use application roles to control privileges to use applications.

You should grant an application role all privileges necessary to run a given database
application. Then, grant the secure application role to other roles or to specific users.

An application can have several different roles, with each role assigned a different set
of privileges that allow for more or less data access while using the application.

Common Uses of User Roles
You can create a user role for a group of database users with common privilege grant
requirements.

You can manage user privileges by granting secure application roles and privileges to
the user role and then granting the user role to appropriate users.

How Roles Affect the Scope of a User's Privileges
Each role and user has its own unique security domain.

The security domain of a role includes the privileges granted to the role plus those
privileges granted to any roles that are granted to the role.

The security domain of a user includes privileges on all schema objects in the
corresponding schema, the privileges granted to the user, and the privileges of roles
granted to the user that are currently enabled. (A role can be simultaneously enabled
for one user and disabled for another.) This domain also includes the privileges and
roles granted to the role PUBLIC. The PUBLIC role represents all users in the database.

How Roles Work in PL/SQL Blocks
Role behavior in a PL/SQL block is determined by the type of block and by definer's
rights or invoker's rights.

• Roles Used in Named Blocks with Definer's Rights
All roles are disabled in any named PL/SQL block that executes with definer's
rights.

• Roles Used in Named Blocks with Invoker's Rights and Anonymous PL/SQL
Blocks
Named PL/SQL blocks that execute with invoker's rights and anonymous PL/SQL
blocks are executed based on privileges granted through enabled roles.

Roles Used in Named Blocks with Definer's Rights
All roles are disabled in any named PL/SQL block that executes with definer's rights.

Examples of named PL/SQL blocks are stored procedures, functions, and triggers.

Roles are not used for privilege checking and you cannot set roles within a definer's
rights procedure.

The SESSION_ROLES data dictionary view shows all roles that are currently enabled and
if a PL/SQL block executes with definer’s rights. If a named PL/SQL block that

Chapter 4
Managing User Roles

4-29

executes with definer's rights queries SESSION_ROLES, then the query does not return
any rows.

See Also:

Oracle Database Reference for more information about the SESSION_ROLES
data dictionary view

Roles Used in Named Blocks with Invoker's Rights and Anonymous PL/SQL Blocks
Named PL/SQL blocks that execute with invoker's rights and anonymous PL/SQL
blocks are executed based on privileges granted through enabled roles.

Current roles are used for privilege checking within an invoker's rights PL/SQL block.
You can use dynamic SQL to set a role in the session.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for an
explanation of how invoker's and definer's rights can be used for name
resolution and privilege checking

• Oracle Database PL/SQL Packages and Types Reference for
information about dynamic SQL in PL/SQL

How Roles Aid or Restrict DDL Usage
A user requires one or more privileges to successfully execute a DDL statement,
depending on the statement.

For example, to create a table, the user must have the CREATE TABLE or CREATE ANY
TABLE system privilege.

To create a view of a table that belongs to another user, the creator must have the
CREATE VIEW or CREATE ANY VIEW system privilege and either the SELECT object
privilege for the table or the SELECT ANY TABLE system privilege.

Oracle Database avoids the dependencies on privileges received by way of roles by
restricting the use of specific privileges in certain DDL statements. The following rules
describe these privilege restrictions concerning DDL statements:

• All system privileges and object privileges that permit a user to perform a DDL
operation are usable when received through a role. For example:

– System privileges: CREATE TABLE, CREATE VIEW, and CREATE PROCEDURE
privileges

– Object privileges: ALTER and INDEX privileges for a table

You cannot use the REFERENCES object privilege for a table to define the
foreign key of a table if the privilege is received through a role.

Chapter 4
Managing User Roles

4-30

• All system privileges and object privileges that allow a user to perform a DML
operation that is required to issue a DDL statement are not usable when received
through a role. The security domain does not contain roles when a CREATE VIEW
statement is used. For example, a user who is granted the SELECT ANY TABLE
system privilege or the SELECT object privilege for a table through a role cannot
use either of these privileges to create a view on a table that belongs to another
user. This is because views are definer's rights objects, so when creating them
you cannot use any privileges (neither system privileges or object privileges)
granted to you through a role. If the privilege is granted directly to you, then you
can use the privilege. However, if the privilege is revoked at a later time, then the
view definition becomes invalid ("contains errors") and must recompiled before it
can be used again.

The following example further clarifies the permitted and restricted uses of privileges
received through roles.

Assume that a user is:

• Granted a role that has the CREATE VIEW system privilege

• Directly granted a role that has the SELECT object privilege for the employees table

• Directly granted the SELECT object privilege for the departments table

Given these directly and indirectly granted privileges:

• The user can issue SELECT statements on both the employees and departments
tables.

• Although the user has both the CREATE VIEW and SELECT privilege for the
employees table through a role, the user cannot create a view on the employees
table, because the SELECT object privilege for the employees table was granted
through a role.

• The user can create a view on the departments table, because the user has the
CREATE VIEW privilege through a role and the SELECT privilege for the departments
table directly.

How Operating Systems Can Aid Roles
In some environments, you can administer database security using the operating
system.

The operating system can be used to grant and revoke database roles and to manage
their password authentication. This capability is not available on all operating systems.

See Also:

Your operating system-specific Oracle Database documentation for details
about managing roles through the operating system

How Roles Work in a Distributed Environment
In a distributed database environment, all necessary roles must be set as the default
role for a distributed (remote) session.

Chapter 4
Managing User Roles

4-31

These roles cannot be enabled when the user connects to a remote database from
within a local database session. For example, the user cannot execute a remote
procedure that attempts to enable a role at the remote site.

See Also:

Oracle Database Heterogeneous Connectivity User's Guide

Predefined Roles in an Oracle Database Installation
Oracle Database provides a set of predefined roles to help in database administration.

These predefined roles, listed in Table 4-3, are automatically defined for Oracle
databases when you run the standard scripts (such as catalog.sql and catproc.sql)
that are part of database creation, and they are considered common roles. If you
install other options or products, then other predefined roles may be created. You can
find roles that are created and maintained by Oracle by querying the ROLE and
ORACLE_MAINTAINED columns of the DBA_ROLES data dictionary view. If the output for
ORACLE_MAINTAINED is Y, then you must not modify the role except by running the
script that was used to create it.

Table 4-3 Oracle Database Predefined Roles

Predefined Role Description

ADM_PARALLEL_EXECUTE_TASK Provides privileges to update table data in parallel by using the
DBMS_PARALLEL_EXECUTE PL/SQL package.

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about the DBMS_PARALLEL_EXECUTE PL/SQL package.

AQ_ADMINISTRATOR_ROLE Provides privileges to administer Advanced Queuing. Includes ENQUEUE
ANY QUEUE, DEQUEUE ANY QUEUE, and MANAGE ANY QUEUE, SELECT
privileges on Advanced Queuing tables and EXECUTE privileges on
Advanced Queuing packages.

AQ_USER_ROLE De-supported, but kept mainly for release 8.0 compatibility. Provides
EXECUTE privileges on the DBMS_AQ and DBMS_AQIN packages.

AUDIT_ADMIN Provides privileges to create unified and fine-grained audit policies, use the
AUDIT and NOAUDIT SQL statements, view audit data, and manage the
audit trail administration

See Also: Who Can Perform Auditing?

AUDIT_VIEWER Provides privileges to view and analyze audit data

See Also: Who Can Perform Auditing?

AUTHENTICATEDUSER Used by the XDB protocols to define any user who has logged in to the
system.

See Also: Oracle XML DB Developer’s Guide for more information about
how this role is used for DBUriServlet security

CAPTURE_ADMIN Provides the privileges necessary to create and manage privilege analysis
policies.

See Also: Who Can Perform Privilege Analysis? for more information

Chapter 4
Managing User Roles

4-32

Table 4-3 (Cont.) Oracle Database Predefined Roles

Predefined Role Description

CDB_DBA Provides the privileges required for administering a CDB, such as SET
CONTAINER, SELECT ON PDB_PLUG_IN_VIOLATIONS, and SELECT ON
CDB_LOCAL_ADMIN_PRIVS. If your site requires additional privileges, then
you can create a role (either common or local) to cover these privileges, and
then grant this role to the CDB_DBA role.

See Also: Oracle Database Administrator’s Guide for information about
administrating CDBs

CONNECT Provides the CREATE SESSION system privilege.

This role is provided for compatibility with previous releases of Oracle
Database. You can determine the privileges encompassed by this role by
querying the DBA_SYS_PRIVS data dictionary view.

Note: Oracle recommends that you design your own roles for database
security rather than relying on this role. This role may not be created
automatically by future releases of Oracle Database.

See Also: Oracle Database Reference for a description of the
DBA_SYS_PRIVS view

CSW_USR_ROLE Provides user privileges to manage the Catalog Services for the Web
(CSW) component of Oracle Spatial.

See Also: Oracle Spatial and Graph Developer's Guide for more
information

CTXAPP Provides privileges to create Oracle Text indexes and index preferences,
and to use PL/SQL packages. This role should be granted to Oracle Text
users.

See Also: Oracle Text Application Developer's Guide for more information

CWM_USER Provides privileges to manage Common Warehouse Metadata (CWM),
which is a repository standard used by Oracle data warehousing and
decision support.

See Also: Oracle Database Data Warehousing Guide for more information

DATAPUMP_EXP_FULL_DATABASE Provides privileges to export data from an Oracle database using Oracle
Data Pump.

Caution: This is a very powerful role because it provides a user access to
any data in any schema in the database. Use caution when granting this
role to users.

See Also: Oracle Database Utilities for more information

DATAPUMP_IMP_FULL_DATABASE Provides privileges to import data into an Oracle database using Oracle
Data Pump.

Caution: This is a very powerful role because it provides a user access to
any data in any schema in the database. Use caution when granting this
role to users.

See Also: Oracle Database Utilities for more information

Chapter 4
Managing User Roles

4-33

Table 4-3 (Cont.) Oracle Database Predefined Roles

Predefined Role Description

DBA Provides a large number of system privileges, including the ANY privileges
(such as the DELETE ANY TABLE and GRANT ANY PRIVILEGE privileges).

This role is provided for compatibility with previous releases of Oracle
Database. You can find the privileges that are encompassed by this role by
querying the DBA_SYS_PRIVS data dictionary view.

Note: Oracle recommends that you design your own roles for database
security rather than relying on this role. This role may not be created
automatically by future releases of Oracle Database.

See Also: Oracle Database Reference for a description of the
DBA_SYS_PRIVS view

DBFS_ROLE Provides access to the DBFS (the Database Filesystem) packages and
objects.

See Also: Oracle Database SecureFiles and Large Objects Developer's
Guide

EJBCLIENT Provides privileges to connect to EJBs from a Java stored procedure.

EM_EXPRESS_ALL Enables users to connect to Oracle Enterprise Manager (EM) Express and
use all the functionality provided by EM Express (read and write access to
all EM Express features). The EM_EXPRESS_ALL role includes the
EM_EXPRESS_BASIC role.

See Also: Oracle Database 2 Day DBA for more information

EM_EXRESS_BASIC Enables users to connect to EM Express and to view the pages in read-only
mode. The EM_EXPRESS_BASIC role includes the SELECT_CATALOG_ROLE
role.

See Also: Oracle Database 2 Day DBA for more information

EXECUTE_CATALOG_ROLE Provides EXECUTE privileges on objects in the data dictionary.

EXP_FULL_DATABASE Provides the privileges required to perform full and incremental database
exports using the Export utility (later replaced with Oracle Data Pump). It
includes these privileges: SELECT ANY TABLE, BACKUP ANY TABLE,
EXECUTE ANY PROCEDURE, EXECUTE ANY TYPE, ADMINISTER RESOURCE
MANAGER, and INSERT, DELETE, and UPDATE on the tables SYS.INCVID,
SYS.INCFIL, and SYS.INCEXP. Also includes the following roles:
EXECUTE_CATALOG_ROLE and SELECT_CATALOG_ROLE.

This role is provided for convenience in using the export and import utilities.

Caution: This is a very powerful role because it provides a user access to
any data in any schema in the database. Use caution when granting this
role to users.

See Also: Oracle Database Utilities for more information

GATHER_SYSTEM_STATISTICS Provides privileges to update system statistics, which are collected using the
DBMS_STATS.GATHER_SYSTEM_STATISTICS procedure

See Also: Oracle Database SQL Tuning Guide for more information about
managing optimizer statistics

GLOBAL_AQ_USER_ROLE Provides privileges to establish a connection to an LDAP server, for use with
Oracle Database Advanced Queuing.

See Also: Oracle Database Advanced Queuing User's Guide for more
information

Chapter 4
Managing User Roles

4-34

Table 4-3 (Cont.) Oracle Database Predefined Roles

Predefined Role Description

HS_ADMIN_EXECUTE_ROLE Provides the EXECUTE privilege for users who want to use the
Heterogeneous Services (HS) PL/SQL packages.

See Also: Oracle Database Heterogeneous Connectivity User's Guide for
more information

HS_ADMIN_ROLE Provides privileges to both use the Heterogeneous Services (HS) PL/SQL
packages and query the HS-related data dictionary views.

See Also: Oracle Database Heterogeneous Connectivity User's Guide for
more information

HS_ADMIN_SELECT_ROLE Provides privileges to query the Heterogeneous Services data dictionary
views.

See Also: Oracle Database Heterogeneous Connectivity User's Guidefor
more information

IMP_FULL_DATABASE Provides the privileges required to perform full database imports using the
Import utility (later replaced with Oracle Data Pump). Includes an extensive
list of system privileges (use view DBA_SYS_PRIVS to view privileges) and
the following roles: EXECUTE_CATALOG_ROLE and SELECT_CATALOG_ROLE.

This role is provided for convenience in using the export and import utilities.

Caution: This is a very powerful role because it provides a user access to
any data in any schema in the database. Use caution when granting this
role to users.

See Also: Oracle Database Utilitiesfor more information

JAVADEBUGPRIV Provides privileges to run the Oracle Database Java applications debugger.

See Also: Oracle Database Java Developer’s Guide for more information
about managing security for Oracle Java applications

JAVAIDPRIV Deprecated for this release.

JAVASYSPRIV Provides major permissions to use Java2, including updating Oracle JVM-
protected packages.

See Also: Oracle Database Java Developer’s Guide for more information
about managing security for Oracle Java applications

JAVAUSERPRIV Provides limited permissions to use Java2.

See Also: Oracle Database Java Developer's Guide for more information
about managing security for Oracle Java applications

JAVA_ADMIN Provides administrative permissions to update policy tables for Oracle
Database Java applications.

See Also: Oracle Database Java Developer’s Guide for more information
about managing security for Oracle Java applications

JMXSERVER Provides privileges to start and maintain a JMX agent in a database
session.

See Also: Oracle Database Java Developer’s Guide for more information
about managing Oracle Java applications

LBAC_DBA Provides permissions to use the SA_SYSDBA PL/SQL package.

See Also: Oracle Label Security Administrator’s Guide for more information

LOGSTDBY_ADMINISTRATOR Provides administrative privileges to manage the SQL Apply (logical standby
database) environment.

See Also: Oracle Data Guard Concepts and Administration for more
information

Chapter 4
Managing User Roles

4-35

Table 4-3 (Cont.) Oracle Database Predefined Roles

Predefined Role Description

OEM_ADVISOR Provides privileges to create, drop, select (read), load (write), and delete a
SQL tuning set through the DBMS_SQLTUNE PL/SQL package, and to access
to the Advisor framework using the ADVISOR PL/SQL package.

See Also: Oracle Database SQL Tuning Guide for more information

OEM_MONITOR Provides privileges needed by the Management Agent component of Oracle
Enterprise Manager to monitor and manage the database.

See Also: Oracle Database SQL Tuning Guide for more information

OLAP_DBA Provides administrative privileges to create dimensional objects in different
schemas for Oracle OLAP.

See Also: Oracle OLAP User’s Guide for more information

OLAP_USER Provides application developers privileges to create dimensional objects in
their own schemas for Oracle OLAP.

See Also: Oracle OLAP User’s Guide for more information

OLAP_XS_ADMIN Provides privileges to administer security for Oracle OLAP.

See Also: Oracle OLAP User’s Guide for more information

OPTIMIZER_PROCESSING_RATE Provides privileges to execute the GATHER_PROCESSING_RATE,
SET_PROCESSING_RATE, and DELETE_PROCESSING_RATE procedures in
the DBMS_STATS package. These procedures manage the processing rate
of a system for automatic degree of parallelism (Auto DOP). Auto DOP uses
these processing rates to determine the optimal degree of parallelism for a
SQL statement.

See Also: Oracle Database SQL Tuning Guide for more information

PDB_DBA Granted automatically to the local user that is created when you create a
new PDB from the seed PDB. No privileges are provided with this role.

See Also: Oracle Database Administrator’s Guide for more information
about creating PDBs using the seed

PROVISIONER Provides privileges to register and update global callbacks for Oracle
Database Real Application sessions and to provision principals.

See Also: Oracle Database Real Application Security Administrator's and
Developer's Guide for more information.

RECOVERY_CATALOG_OWNER Provides privileges for owner of the recovery catalog. Includes: CREATE
SESSION, ALTER SESSION, CREATE SYNONYM, CREATE ANY SYNONYM,
DROP ANY SYNONYM, CREATE VIEW, CREATE DATABASE LINK, CREATE
TABLE, CREATE CLUSTER, CREATE SEQUENCE, CREATE TRIGGER, CREATE
ANY TRIGGER, QUERY REWRITE, CREATE ANY CONTEXT, EXECUTE ON
DBMS_RLS, ADMINISTER DATABASE, and CREATE PROCEDURE

See Also: Oracle Database Backup and Recovery User’s Guide for more
information.

Chapter 4
Managing User Roles

4-36

Table 4-3 (Cont.) Oracle Database Predefined Roles

Predefined Role Description

RESOURCE Provides the following system privileges: CREATE CLUSTER, CREATE
INDEXTYPE, CREATE OPERATOR, CREATE PROCEDURE, CREATE SEQUENCE,
CREATE TABLE, CREATE TRIGGER, CREATE TYPE.

Be aware that RESOURCE no longer provides the UNLIMITED TABLESPACE
system privilege.

This role is provided for compatibility with previous releases of Oracle
Database. You can determine the privileges encompassed by this role by
querying the DBA_SYS_PRIVS data dictionary view.

Note: Oracle recommends that you design your own roles for database
security rather than relying on this role. This role may not be created
automatically by future releases of Oracle Database.

See Also: Oracle Database Reference for a description of the
DBA_SYS_PRIVS view

SCHEDULER_ADMIN Allows the grantee to execute the procedures of the DBMS_SCHEDULER
package. It includes all of the job scheduler system privileges and is
included in the DBA role.

See Also: Oracle Database Administrator’s Guide for more information
about the DBMS_SCHEDULER package

SELECT_CATALOG_ROLE Provides SELECT privilege on objects in the data dictionary.

SODA_APP Provides privileges to use the SODA APIs, in particular, to create, drop, and
list document collections.

SPATIAL_CSW_ADMIN Provides administrative privileges to manage the Catalog Services for the
Web (CSW) component of Oracle Spatial.

See Also: Oracle Spatial and Graph Developer's Guide for more
information

SPATIAL_WFS_ADMIN Provides administrative privileges to manage the Web Feature Service
(WFS) component of Oracle Spatial.

See Also: Oracle Spatial and Graph Developer's Guide for more
information

WFS_USR_ROLE Provides user privileges for the Web Feature Service (WFS) component of
Oracle Spatial.

See Also: Oracle Spatial and Graph Developer's Guide for more
information

WM_ADMIN_ROLE Provides administrative privileges for Oracle Workspace Manager. This
enables users to run any DBMS_WM procedures on all version enabled tables,
workspaces, and savepoints regardless of their owner. It also enables the
user to modify the system parameters specific to Workspace Manager.

See Also: Oracle Database Workspace Manager Developer's Guide for
more information

XDBADMIN Allows the grantee to register an XML schema globally, as opposed to
registering it for use or access only by its owner. It also lets the grantee
bypass access control list (ACL) checks when accessing Oracle XML DB
Repository.

See Also: Oracle XML DB Developer’s Guide for information about XML
schemas and the XML DB Repository

Chapter 4
Managing User Roles

4-37

Table 4-3 (Cont.) Oracle Database Predefined Roles

Predefined Role Description

XDB_SET_INVOKER Allows the grantee to define invoker's rights handlers and to create or
update the resource configuration for XML repository triggers. By default,
Oracle Database grants this role to the DBA role but not to the XDBADMIN
role.

See Also: Oracle XML DB Developer’s Guide for information about Oracle
Database XML repository triggers

XDB_WEBSERVICES Allows the grantee to access Oracle Database Web services over HTTPS.
However, it does not provide the user access to objects in the database that
are public. To allow public access, you need to grant the user the
XDB_WEBSERVICES_WITH_PUBLIC role. For a user to use these Web
services, SYS must enable the Web service servlets.

See Also: Oracle XML DB Developer’s Guide for information about Oracle
Database Web services

XDB_WEBSERVICES_OVER_HTTP Allows the grantee to access Oracle Database Web services over HTTP.
However, it does not provide the user access to objects in the database that
are public. To allow public access, you need to grant the user the
XDB_WEBSERVICES_WITH_PUBLIC role.

See Also: Oracle XML DB Developer’s Guide for information about Oracle
Database Web services

XDB_WEBSERVICES_WITH_PUBLIC Allows the grantee access to public objects through Oracle Database Web
services.

See Also: Oracle XML DB Developer’s Guide for information about Oracle
Database Web services

XS_CACHE_ADMIN In Oracle Database Real Application Security, enables the grantee to
manage the mid-tier cache. It is required for caching the security policy at
the mid-tier level for the checkAcl (authorization) method of the
XSAccessController class. Grant this role to the application connection
user or the Real Application Security dispatcher.

See Also: Oracle Database Real Application Security Administrator's and
Developer's Guide for more information

XS_NSATTR_ADMIN In Oracle Database Real Application Security, enables the grantee to
manage and manipulate the namespace and attribute for a session. Grant
this role to the Real Application Security session user.

See Also: Oracle Database Real Application Security Administrator's and
Developer's Guide for information about managing Real Application Security
sessions

XS_RESOURCE In Oracle Database Real Application Security, enables the grantee to
manage objects in the attached schema, through the XS_ACL PL/SQL
package. This package creates procedures to create and manage access
control lists (ACLs). It contains the ADMIN SEC POLICY privilege. It is
similar to the Oracle Database RESOURCE role.

See Also: Oracle Database Real Application Security Administrator's and
Developer's Guide for more information

Chapter 4
Managing User Roles

4-38

Table 4-3 (Cont.) Oracle Database Predefined Roles

Predefined Role Description

XS_SESSION_ADMIN In Oracle Database Real Application Security, enables the grantee to
manage the life cycle of a session, including the ability to create, attach,
detach, and destroy the session. Grant this role to the application
connection user or Real Application Security dispatcher.

See Also: Oracle Database Real Application Security Administrator's and
Developer's Guide for information about managing Real Application Security
sessions

Note:

Each installation should create its own roles and assign only those privileges
that are needed, thus retaining detailed control of the privileges in use. This
process also removes any need to adjust existing roles, privileges, or
procedures whenever Oracle Database changes or removes roles that
Oracle Database defines. For example, the CONNECT role now has only one
privilege: CREATE SESSION.

Creating a Role
You can create a role that is authenticated with or without a password. You also can
create external or global roles.

• About the Creation of Roles
You can create a role by using the CREATE ROLE statement.

• Creating a Role That Is Authenticated With a Password
You can create a password authenticated role by using the IDENTIFIED BY clause.

• Creating a Role That Has No Password Authentication
You can create a role that does not require a password by omitting the IDENTIFIED
BY clause.

• Creating a Role That Is External or Global
External or global roles allow services that are outside the database to associate
database roles to authenticated users.

• Altering a Role
The ALTER ROLE statement can modify the authorization method for a role.

About the Creation of Roles
You can create a role by using the CREATE ROLE statement.

To create the role, you must have the CREATE ROLE system privilege. Typically, only
security administrators have this system privilege. After you create a role, the role has
no privileges associated with it. Your next step is to grant either privileges or other
roles to the new role.

You must give each role that you create a unique name among existing user names
and role names of the database. Roles are not contained in the schema of any user. In

Chapter 4
Managing User Roles

4-39

a database that uses a multi-byte character set, Oracle recommends that each role
name contain at least one single-byte character. If a role name contains only multi-
byte characters, then the encrypted role name and password combination is
considerably less secure. See Guideline 1 in Guidelines for Securing Passwords for
password guidelines.

You can use the IDENTIFIED BY clause to authorize the role with a password. This
clause specifies how the user must be authorized before the role can be enabled for
use by a specific user to which it has been granted. If you do not specify this clause, or
if you specify NOT IDENTIFIED, then no authorization is required when the role is
enabled. Roles can be specified to be authorized by the following:

• The database using a password

• An application using a specified package

• Externally by the operating system, network, or other external source

• Globally by an enterprise directory service

As an alternative to creating password-protected roles, Oracle recommends that you
use secure application roles instead.

Note the following restrictions about the creation of roles:

• A role and a user cannot have the same name.

• The role name cannot start with the value of the COMMON_USER_PREFIX parameter
(which defaults to C##) unless this role is a CDB common role.

Related Topics

• Role Privileges and Secure Application Roles
A secure application role can be enabled only by an authorized PL/SQL package
or procedure.

• Creating Secure Application Roles to Control Access to Applications
A secure application role is only enabled through its associated PL/SQL package
or procedure.

• Rules for Creating Common Roles
When you create a common role, you must follow special rules.

Creating a Role That Is Authenticated With a Password
You can create a password authenticated role by using the IDENTIFIED BY clause.

• To create a password-authenticated role, use the CREATE ROLE statement with the
IDENTIFIED BY clause.

For example:

CREATE ROLE clerk IDENTIFIED BY password;

Chapter 4
Managing User Roles

4-40

Note:

• You can enable password-protected roles in a proxy session. Both
secure application roles and password-protected roles provide a secure
method for enabling a role in a session. Oracle recommends using
secure password roles instead of password-protected roles where the
password has to be maintained and transmitted over insecure channels
or if more than one person needs to know the password. Password-
protected roles in a proxy session are suitable for situations where
automation is used to set the role.

• If you set the SQLNET.ALLOWED_LOGON_VERSION_SERVER parameter is to 11
or higher, then you must recreate roles that have been created with the
IDENTIFIED BY clause.

Related Topics

• Role Privileges and Secure Application Roles
A secure application role can be enabled only by an authorized PL/SQL package
or procedure.

• Management of Case Sensitivity for Secure Role Passwords
For better security, you should ensure that the passwords for secure roles are
case sensitive.

Creating a Role That Has No Password Authentication
You can create a role that does not require a password by omitting the IDENTIFIED BY
clause.

• Use the CREATE ROLE statement with no clauses to create a role that has no
password authentication.

For example:

CREATE ROLE salesclerk;

Creating a Role That Is External or Global
External or global roles allow services that are outside the database to associate
database roles to authenticated users.

Database external roles are associated with operating system and RADIUS groups.
This way, database user authorization can be managed externally from the database.

An external user must be authorized by an external service, such as an operating
system or a third-party service, before the external user can enable the role.

Global roles are used by globally authenticated users, using centrally managed users
or Oracle Enterprise User Security. A global user must be authorized to use the role by
the enterprise directory service before the role is enabled at login time.

• To create a role that is to be authorized externally, include the IDENTIFIED
EXTERNALLY clause in the CREATE ROLE statement.
For example:

Chapter 4
Managing User Roles

4-41

CREATE ROLE clerk_external IDENTIFIED EXTERNALLY;

• To create a role to be authorized globally, use the CREATE ROLE statement.

For example:

CREATE ROLE clerk_global IDENTIFIED GLOBALLY;

You can authorize roles globally to a user through a directory service mapping such as
with centrally managed users.

Related Topics

• Grants of Roles Using the Operating System or Network
Using the operating system or network to manage roles can help centralize the
role management in a large enterprise.

• Configuring RADIUS Authentication
RADIUS is a client/server security protocol widely used to enable remote
authentication and access.

• Mapping a Directory Group to a Global Role
Database global roles mapped to directory groups give member users additional
privileges and roles above what they have been granted through their login
schemas.

• Oracle Database Enterprise User Security Administrator's Guide

Altering a Role
The ALTER ROLE statement can modify the authorization method for a role.

To alter the authorization method for a role, you must have the ALTER ANY ROLE
system privilege or have been granted the role with ADMIN option.

Remember that you can only directly grant secure application roles or password-
authenticated roles to a user. Be aware that if you create a common role in the root,
you cannot change it to a local role.

• To alter a role, use the ALTER ROLE statement.

For example, to alter the clerk role to specify that the user must be authorized by
an external source before enabling the role:

ALTER ROLE clerk IDENTIFIED EXTERNALLY;

Specifying the Type of Role Authorization
You can configure a role to be authorized through different sources, such the database
or an external source.

• Authorizing a Role by Using the Database
You can protect a role authorized by the database by assigning the role a
password.

• Authorizing a Role by Using an Application
An application role can be enabled only by applications that use an authorized
PL/SQL package.

• Authorizing a Role by Using an External Source
Oracle Database supports the use of external roles but with certain limitations.

Chapter 4
Managing User Roles

4-42

• Authorizing a Role by Using the Operating System
Oracle Database supports role authentication through the operating system but
with certain limitations.

• Authorizing a Role by Using a Network Client
Oracle Database supports role authentication by a network client but you must be
aware of security risks.

• Authorizing a Global Role by an Enterprise Directory Service
A global role enables a global user to be authorized only by an enterprise directory
service.

Authorizing a Role by Using the Database
You can protect a role authorized by the database by assigning the role a password.

If a user is granted a role protected by a password, then you can enable or disable the
role by supplying the proper password for the role in the SET ROLE statement. You
cannot authenticate a password-authenticated role on logon, even if you add it to the
list of default roles. You must explicitly enable it with the SET ROLE statement using the
required password.

1. Use the CREATE ROLE statement with the IDENTIFIED BY clause to create the
password-authenticated role.

Creating a Role That Is Authenticated With a Password shows a CREATE ROLE
statement that creates a role called clerk. When the role is enabled, the password
must be supplied.

2. Use the SET ROLE statement to set the password-authenticated role.

The following example shows how to set a password-authenticated role by using
the SET ROLE statement.

SET ROLE clerk IDENTIFIED BY password;

In a database that uses a multibyte character set, passwords for roles must
include only single-byte characters. Multibyte characters are not accepted in
passwords. See Guideline 1 in Guidelines for Securing Passwords for password
guidelines.

Authorizing a Role by Using an Application
An application role can be enabled only by applications that use an authorized PL/SQL
package.

Application developers do not need to secure a role by embedding passwords inside
applications. Instead, they can create an application role (secure application role) and
specify which PL/SQL package is authorized to enable the role.

• To create a role enabled by an authorized PL/SQL package, use the IDENTIFIED
USING package_name clause in the CREATE ROLE SQL statement.

For example, to indicate that the role admin_role is an application role and the role
can only be enabled by any module defined inside the PL/SQL package hr.admin:

CREATE ROLE admin_role IDENTIFIED USING hr.admin;

Chapter 4
Managing User Roles

4-43

Related Topics

• Role Privileges and Secure Application Roles
A secure application role can be enabled only by an authorized PL/SQL package
or procedure.

• Creating Secure Application Roles to Control Access to Applications
A secure application role is only enabled through its associated PL/SQL package
or procedure.

Authorizing a Role by Using an External Source
Oracle Database supports the use of external roles but with certain limitations.

You can define an external role locally in the database, but you cannot grant the
external role to global users, to global roles, or to any other roles in the database. You
can create roles that are authorized by the operating system or network clients.

• To authorize a role by using an external source, use the CREATE ROLE statement
with the IDENTIFIED EXTERNALLY clause.

For example:

CREATE ROLE accts_rec IDENTIFIED EXTERNALLY;

Authorizing a Role by Using the Operating System
Oracle Database supports role authentication through the operating system but with
certain limitations.

Role authentication through the operating system is useful only when the operating
system is able to dynamically link operating system privileges with applications.

When a user starts an application, the operating system grants an operating system
privilege to the user. The granted operating system privilege corresponds to the role
associated with the application. At this point, the application can enable the application
role. When the application is terminated, the previously granted operating system
privilege is revoked from the operating system account of the user.

• If a role is authorized by the operating system, then configure information for each
user at the operating system level. This operation is operating system dependent.

If roles are granted by the operating system, then you do not need to have the
operating system authorize them also.

Related Topics

• Grants of Roles Using the Operating System or Network
Using the operating system or network to manage roles can help centralize the
role management in a large enterprise.

Authorizing a Role by Using a Network Client
Oracle Database supports role authentication by a network client but you must be
aware of security risks.

If users connect to the database over Oracle Net, then by default, the operating
system cannot authenticate their roles. This includes connections through a shared
server configuration, as this connection requires Oracle Net. This restriction is the

Chapter 4
Managing User Roles

4-44

default because a remote user could impersonate another operating system user over
a network connection. Oracle recommends that you set REMOTE_OS_ROLES to FALSE,
which is the default.

• If you are not concerned with this security risk and want to use operating system
role authentication for network clients, then set the initialization parameter
REMOTE_OS_ROLES in the database initialization parameter file to TRUE.

The change takes effect the next time you start the instance and mount the database.

Authorizing a Global Role by an Enterprise Directory Service
A global role enables a global user to be authorized only by an enterprise directory
service.

You define the global role locally in the database by granting privileges and roles to it,
but you cannot grant the global role itself to any user or other role in the database.
When a global user attempts to connect to the database, the enterprise directory is
queried to obtain any global roles associated with the user. Global roles are one
component of enterprise user security. A global role only applies to one database, but
you can grant it to an enterprise role defined in the enterprise directory. An enterprise
role is a directory structure that contains global roles on multiple databases and can be
granted to enterprise users.

• To create a global role to be authorized by an enterprise directory service, use the
CREATE ROLE statement with the IDENTIFIED GLOBALLY clause.

For example:

CREATE ROLE supervisor IDENTIFIED GLOBALLY;

See Also:

• Global User Authentication and Authorization for a general discussion of
global authentication and authorization of users, and its role in enterprise
user management

• Oracle Database Enterprise User Security Administrator's Guide for
information about implementing enterprise user management

Granting and Revoking Roles
You can grant or revoke privileges to and from roles, and then grant these roles to
users or to other roles.

• About Granting and Revoking Roles
You can grant system or object privileges to a role, and grant any role to any
database user or to another role.

• Who Can Grant or Revoke Roles?
The GRANT ANY ROLE system privilege enables users to grant or revoke any role
except global roles to or from other users or roles.

• Granting and Revoking Roles to and from Program Units
You can grant roles to function, procedure, and PL/SQL package program units.

Chapter 4
Managing User Roles

4-45

About Granting and Revoking Roles
You can grant system or object privileges to a role, and grant any role to any database
user or to another role.

However, a role cannot be granted to itself, nor can the role be granted circularly, that
is, role X cannot be granted to role Y if role Y has previously been granted to role X.

To provide selective availability of privileges, Oracle Database permits applications
and users to enable and disable roles. Each role granted to a user is, at any given
time, either enabled or disabled. The security domain of a user includes the privileges
of all roles currently enabled for the user and excludes the privileges of any roles
currently disabled for the user.

A role granted to a role is called an indirectly granted role. You can explicitly enable or
disable it for a user. However, whenever you enable a role that contains other roles,
you implicitly enable all indirectly granted roles of the directly granted role.

You grant roles by using the GRANT statement, and revoke them by using the REVOKE
statement. Privileges are granted to and revoked from roles using the same
statements.

You cannot grant a secure role (that is, an IDENTIFIED BY role, IDENTIFIED USING
role, or IDENTIFIED EXTERNALLY role) to either another secure role or to a non-secure
role. You can use the SET ROLE statement to enable the secure role for the session.

Who Can Grant or Revoke Roles?
The GRANT ANY ROLE system privilege enables users to grant or revoke any role except
global roles to or from other users or roles.

A global role is managed in a directory, such as Oracle Internet Directory, but its
privileges are contained within a single database. By default, the SYS or SYSTEM user
has the GRANT ANY ROLE privilege. You should grant this system privilege
conservatively because it is very powerful.

Any user granted a role with the ADMIN OPTION can grant or revoke that role to or from
other users or roles of the database. This option allows administrative powers for roles
to be granted on a selective basis.

See Also:

Oracle Database Enterprise User Security Administrator's Guide for
information about global roles

Granting and Revoking Roles to and from Program Units
You can grant roles to function, procedure, and PL/SQL package program units.

The role then becomes enabled during the execution of the program unit, but not
during the compilation of the program unit. This enables you to temporarily escalate

Chapter 4
Managing User Roles

4-46

privileges in the PL/SQL code without granting the role directly to the user. It also
increases security for applications and helps to enforce the principle of least privilege.

• Use the GRANT or REVOKE statement to grant or revoke a role to a program unit.

The following example shows how to grant the same role to the PL/SQL package
checkstats_pkg:

GRANT clerk_admin TO package psmith.checkstats_pkg;

This example shows how to revoke the clerk_admin role from the PL/SQL package
checkstats_pkg:

REVOKE clerk_admin FROM package psmith.checkstats_pkg;

The following example shows how to grant the role clerk_admin to the procedure
psmith.check_stats_proc.

GRANT clerk_admin TO PROCEDURE psmith.checkstats_proc;

Related Topics

• Using Code Based Access Control for Definer's Rights and Invoker's Rights
Code based access control, used to attach database roles to PL/SQL functions,
procedures, or packages, works well with invoker's rights and definer's
procedures.

Dropping Roles
Dropping a role affects the security domains of users or roles who had been granted
the role.

That is, the security domains of all users and roles that were granted to the dropped
role are changed to reflect the absence of the dropped role privileges.

All indirectly granted roles of the dropped role are also removed from affected security
domains. Dropping a role automatically removes the role from all user default role lists.

Because the existence of objects is not dependent on the privileges received through
a role, tables and other objects are not dropped when a role is dropped.

To drop a role, you must have the DROP ANY ROLE system privilege or have been
granted the role with the ADMIN option.

• To drop a role, use the DROP ROLE statement.

For example, to drop the role CLERK:

DROP ROLE clerk;

Restricting SQL*Plus Users from Using Database Roles
You should restrict SQL*Plus users from using database roles, which helps to
safeguard the database from intruder attacks.

• Potential Security Problems of Using Ad Hoc Tools
Ad hoc tools can pose problems if malicious users have access to such tools.

Chapter 4
Managing User Roles

4-47

• How the PRODUCT_USER_PROFILE System Table Can Limit Roles
The SYSTEM schema PRODUCT_USER_PROFILE table can disable SQL and SQL*Plus
commands in the SQL*Plus environment for each user.

• How Stored Procedures Can Encapsulate Business Logic
Stored procedures encapsulate privileges use with business logic so that
privileges are only exercised in the context of a well-formed business transaction.

Potential Security Problems of Using Ad Hoc Tools
Ad hoc tools can pose problems if malicious users have access to such tools.

Prebuilt database applications explicitly control the potential actions of a user,
including the enabling and disabling of user roles while using the application. By
contrast, ad hoc query tools such as SQL*Plus, permit a user to submit any SQL
statement (which may or may not succeed), including enabling and disabling a granted
role.

Potentially, an application user can exercise the privileges attached to that application
to issue destructive SQL statements against database tables by using an ad hoc tool.

For example, consider the following scenario:

• The Vacation application has a corresponding vacation role.

• The vacation role includes the privileges to issue SELECT, INSERT, UPDATE, and
DELETE statements against the emp_tab table.

• The Vacation application controls the use of privileges obtained through the
vacation role.

Now, consider a user who has been granted the vacation role. Suppose that, instead
of using the Vacation application, the user executes SQL*Plus. At this point, the user
is restricted only by the privileges granted to him explicitly or through roles, including
the vacation role. Because SQL*Plus is an ad hoc query tool, the user is not restricted
to a set of predefined actions, as with designed database applications. The user can
query or modify data in the emp_tab table as he or she chooses.

How the PRODUCT_USER_PROFILE System Table Can Limit Roles
The SYSTEM schema PRODUCT_USER_PROFILE table can disable SQL and SQL*Plus
commands in the SQL*Plus environment for each user.

SQL*Plus, not the Oracle Database, enforces this security. You can even restrict
access to the GRANT, REVOKE, and SET ROLE commands to control user ability to change
their database privileges.

The PRODUCT_USER_PROFILE table enables you to list roles that you do not want users
to activate with an application. You can also explicitly disable the use of various
commands, such as SET ROLE.

For example, you could create an entry in the PRODUCT_USER_PROFILE table to:

• Disallow the use of the clerk and manager roles with SQL*Plus

• Disallow the use of SET ROLE with SQL*Plus

Suppose user Marla connects to the database using SQL*Plus. Marla has the clerk,
manager, and analyst roles. As a result of the preceding entry in
PRODUCT_USER_PROFILE, Marla is only able to exercise her analyst role with SQL*Plus.

Chapter 4
Managing User Roles

4-48

Also, when Ginny attempts to issue a SET ROLE statement, she is explicitly prevented
from doing so because of the entry in the PRODUCT_USER_PROFILE table prohibiting use
of SET ROLE.

Be aware that the PRODUCT_USER_PROFILE table does not completely guarantee
security, for multiple reasons. In the preceding example, while SET ROLE is disallowed
with SQL*Plus, if Marla had other privileges granted to her directly, then she could
exercise these using SQL*Plus.

See Also:

SQL*Plus User's Guide and Reference for more information about the
PRODUCT_USER_PROFILE table

How Stored Procedures Can Encapsulate Business Logic
Stored procedures encapsulate privileges use with business logic so that privileges
are only exercised in the context of a well-formed business transaction.

For example, an application developer can create a procedure to update the employee
name and address in the employees table, which enforces that the data can only be
updated in normal business hours.

In addition, rather than grant a human resources clerk the UPDATE privilege on the
employees table, a security administrator may grant the privilege on the procedure
only. Then, the human resources clerk can exercise the privilege only in the context of
the procedures, and cannot update the employees table directly.

Role Privileges and Secure Application Roles
A secure application role can be enabled only by an authorized PL/SQL package or
procedure.

The PL/SQL package itself reflects the security policies that are necessary to control
access to the application.

This method of role creation restricts the enabling of this type of role to the invoking
application. For example, the application can perform authentication and customized
authorization, such as checking whether the user has connected through a proxy.

This type of role strengthens security because passwords are not embedded in
application source code or stored in a table. This way, the actions the database
performs are based on the implementation of your security policies, and these
definitions are stored in one place, the database, rather than in your applications. If
you need to modify the policy, you do so in one place without having to modify your
applications. No matter how users connect to the database, the result is always the
same, because the policy is bound to the role.

To enable the secure application role, you must execute its underlying package by
invoking it directly from the application when the user logs in, before the user
exercises the privileges granted by the secure application role. You cannot use a
logon trigger to enable a secure application role, nor can you have this type of role be
a default role.

Chapter 4
Managing User Roles

4-49

When you enable the secure application role, Oracle Database verifies that the
authorized PL/SQL package is on the calling stack, that is, it verifies that the
authorized PL/SQL package is issuing the command to enable the role.

You can use secure application roles to ensure the existence of a database
connection. Because a secure application role is a role implemented by a package, the
package can validate that users can connect to the database through a middle tier or
from a specific IP address. In this way, the secure application role prevents users from
accessing data outside an application. They are forced to work within the framework of
the application privileges that they have been granted.

Related Topics

• Creating Secure Application Roles to Control Access to Applications
A secure application role is only enabled through its associated PL/SQL package
or procedure.

Restricting Operations on PDBs Using PDB Lockdown
Profiles

You can use PDB lockdown profiles in a multitenant environment to restrict sets of
user operations in pluggable databases (PDBs).

This section contains the following topics:

• About PDB Lockdown Profiles
A PDB lockdown profile is a named set of features that controls a group of
operations.

• PDB Lockdown Profile Inheritance
PDB lockdown profiles have inheritance behaviors between the CDB root, the
application root, and their associated PDBs.

• Default PDB Lockdown Profiles
Oracle Database provides a set of default PDB lockdown profiles that you can
customize for your site requirements.

• Creating a PDB Lockdown Profile
To create a PDB lockdown profile, you must have the CREATE LOCKDOWN PROFILE
system privilege.

• Enabling or Disabling a PDB Lockdown Profile
To enable or disable a PDB lockdown profile, use the PDB_LOCKDOWN initialization
parameter

• Dropping a PDB Lockdown Profile
To drop a PDB lockdown profile, you must have the DROP LOCKDOWN PROFILE
system privilege and be logged into the CDB or application root.

About PDB Lockdown Profiles
A PDB lockdown profile is a named set of features that controls a group of operations.

In some cases, you can enable or disable operations individually. For example, a PDB
lockdown profile can contain settings to disable specific clauses that come with the
ALTER SYSTEM statement.

Chapter 4
Restricting Operations on PDBs Using PDB Lockdown Profiles

4-50

PDB lockdown profiles restrict user access to the functionality the features provided,
similar to resource limits that are defined for users. As the name suggests, you use
PDB lockdown profiles in a CDB, for an application container, or for a PDB or
application PDB. You can create custom profiles to accommodate the requirements of
your site. PDB profiles enable you to define custom security policies for an application.
In addition, you can create a lockdown profile that is based on another profile, called a
base profile. You can configure this profile to be dynamically updated when the base
profile is modified, or configure it to be static (unchanging) when the base profile is
updated. Lockdown profiles are designed for both Oracle Cloud and on-premises
environments.

When identities are shared between PDBs, elevated privileges may exist. You can use
lockdown profiles to prevent this elevation of privileges. Identities can be shared in the
following situations:

• At the operating system level, when the database interacts with operating system
resources such as files or processes

• At the network level, when the database communicates with other systems, and
network identity is important

• Inside the database, as PDBs access or create common objects or they
communicate across container boundaries using features such as database links

The features that use shared identifies and that benefit from PDB lockdown profiles
are in the following categories:

• Network access features. These are operations that use the network to
communicate outside the PDB. For example, the PL/SQL packages UTL_TCP,
UTL_HTTP, UTL_MAIL, UTL_SNMP, UTL_INADDR, and DBMS_DEBUG_JDWP perform these
kinds of operations. Currently, ACLs are used to control this kind of access to
share network identity.

• Common user or object access. These are operations in which a local user in
the PDB can proxy through common user accounts or access objects in a
common schema. These kinds of operations include adding or replacing objects in
a common schema, granting privileges to common objects, accessing common
directory objects, granting the INHERIT PRIVILEGES role to a common user, and
manipulating a user proxy to a common user.

• Operating System access. For example, you can restrict access to the UTL_FILE
or DBMS_FILE_TRANSFER PL/SQL packages.

• Connections. For example, you can restrict common users from connecting to the
PDB or you can restrict a local user who has the SYSOPER administrative privilege
from connecting to a PDB that is open in restricted mode.

The general procedure for creating a PDB lockdown profile is to first create it in the
CDB root or the application root using the CREATE LOCKDOWN PROFILE statement, and
then use the ALTER LOCKDOWN PROFILE statement to add the restrictions.

To enable a PDB lockdown profile, you can use the ALTER SYSTEM statement to set the
PDB_LOCKDOWN parameter. You can find information about existing PDB lockdown
profiles by connecting to CDB or application root and querying the
DBA_LOCKDOWN_PROFILES data dictionary view. A local user can find the contents of a
PDB lockdown parameter by querying the V$LOCKDOWN_RULES dynamic data dictionary
view.

Chapter 4
Restricting Operations on PDBs Using PDB Lockdown Profiles

4-51

PDB Lockdown Profile Inheritance
PDB lockdown profiles have inheritance behaviors between the CDB root, the
application root, and their associated PDBs.

• The inheritance path between PDBs and their respective roots is as follows:

– The PDB_LOCKDOWN parameter setting in a CDB PDB takes precedence over
the PDB_LOCKDOWN parameter setting in the CDB root. Similarly, the
PDB_LOCKDOWN setting in an application PDB takes precedence over a
PDB_LOCKDOWN setting in the application root.

– If a CDB PDB (or an application PDB) does not have the PDB_LOCKDOWN
parameter set, then the PDB inherits the settings of the PDB_LOCKDOWN
parameter in the CDB root (or the application root).

– If the application root does not have the PDB_LOCKDOWN parameter set, then the
application root inherits the settings of the PDB_LOCKDOWN parameter in the
CDB root.

• If the PDB_LOCKDOWN parameter in a CDB PDB or an application PDB is set to a
CDB lockdown profile, then the PDB ignores any lockdown profiles that are set by
the PDB_LOCKDOWN parameter in the CDB root or the application root.

• PDB lockdown parameters can inherit rules that are stipulated in an application
lockdown profile, including the disable rules that come from a CDB lockdown
profile that was set in its nearest ancestor (that is, an application root or the CDB
root). This applies in the case of when a PDB_LOCKDOWN parameter in an application
PDB is set to an application lockdown profile while the PDB_LOCKDOWN parameter in
the application root or the CDB root is set to a CDB lockdown profile.

• Sometimes a conflict arises between the rules that comprise a CDB lockdown
profile and an application lockdown profile. In this case, the rules in the CDB
lockdown profile take precedence. For example, the setting for an OPTION_VALUE
clause in the CDB lockdown profile takes precedence over the setting for the
OPTION_VALUE clause in an application lockdown profile.

Default PDB Lockdown Profiles
Oracle Database provides a set of default PDB lockdown profiles that you can
customize for your site requirements.

By default, most of these profiles are empty. They are designed to be a placeholder or
template for you to configure, depending on your deployment requirements.

Detailed information about these profiles is as follows:

• PRIVATE_DBAAS incorporates restrictions that are suitable for private Cloud
Database-as-a-Service (DBaaS) deployments. These restrictions are:

– Must have the same database administrator for each PDB

– Different users permitted to connect to the database

– Different applications permitted

PRIVATE_DBAAS permits users to connect to the PDBs but prevents them from
using Oracle Database administrative features.

Chapter 4
Restricting Operations on PDBs Using PDB Lockdown Profiles

4-52

• SAAS incorporates restrictions that are suitable for Software-as-a-Service (SaaS)
deployments. These restrictions are:

– Must have the same database administrator for each PDB

– Different users permitted to connect to the database

– Must use the same application

The SAAS lockdown profile is more restrictive than the PRIVATE_DBAAS profile.
Users can be different, but the application code is the same; users are prevented
from directly connecting and must connect only through the application; and users
are not granted the ability to perform any administrative features.

• PUBLIC_DBAAS incorporates restrictions that are suitable for public Cloud Database-
as-a-Service (DBaaS) deployments. The restrictions are as follows:

– Different DBAs in each PDB

– Different users

– Different applications

The PUBLIC_DBAAS lockdown profile is the most restrictive of the lockdown profiles.

Creating a PDB Lockdown Profile
To create a PDB lockdown profile, you must have the CREATE LOCKDOWN PROFILE
system privilege.

After you create the lockdown profile, you can add restrictions before enabling it.

1. Connect to the CDB root or the application root as a user who has the CREATE
LOCKDOWN PROFILE system privilege.

For example, to connect to the CDB root:

CONNECT c##sec_admin
Enter password: password

2. Run the CREATE LOCKDOWN PROFILE statement to create the profile by using the
following syntax:

CREATE LOCKDOWN PROFILE profile_name
[FROM static_base_profile | INCLUDING dynamic_base_profile];

In this specification:

• profile_name is the name that you assign the lockdown profile. You can find
existing names by querying the PROFILE_NAMES column of the
DBA_LOCKDOWN_PROFILES data dictionary view.

• FROM static_base_profile creates a new lockdown profile by using the
values from an existing profile. Any subsequent changes to the base profile
will not affect the new profile.

• INCLUDING dynamic_base_profile also creates a new lockdown profile by
using the values from an existing base profile, except that this new lockdown
profile will inherit the DISABLE STATEMENT rules that comprise the base profile,
as well as any subsequent changes to the base profile. If rules that are
explicitly added to the new profile conflict with the rules in the base profile,

Chapter 4
Restricting Operations on PDBs Using PDB Lockdown Profiles

4-53

then the rules in the base profile take precedence. For example, an
OPTION_VALUE clause in the base profile takes precedence over the
OPTION_VALUE clause in the new profile.

The following two PDB lockdown profile statements demonstrate how the
inheritance works:

CREATE LOCKDOWN PROFILE hr_prof INCLUDING PRIVATE_DBAAS;
CREATE LOCKDOWN PROFILE hr_prof2 FROM hr_prof;

In the first statement, hr_prof inherits any changes made to the PRIVATE_DBAAS
base profile. If a new statement is enabled for PRIVATE_DBAAS, then it is enabled
for hr_prof. In the second statement, in contrast, when hr_prof changes, then
hr_prof2 does not change because it is independent of its base profile.

3. Run the ALTER LOCKDOWN PROFILE statement to provide restrictions for the profile.

For example:

ALTER LOCKDOWN PROFILE hr_prof DISABLE STATEMENT = ('ALTER SYSTEM');
ALTER LOCKDOWN PROFILE hr_prof ENABLE STATEMENT = ('ALTER SYSTEM')
clause = ('flush shared_pool');
ALTER LOCKDOWN PROFILE hr_prof DISABLE FEATURE = ('XDB_PROTOCOLS');

In the preceding example:

• DISABLE STATEMENT = ('ALTER SYSTEM') disables the use of all ALTER
SYSTEM statements for the PDB.

• ENABLE STATEMENT = ('ALTER SYSTEM') clause = ('flush shared_pool')
enables only the use of the FLUSH_SHARED_POOL clause for ALTER SYSTEM.

• DISABLE FEATURE = ('XDB_PROTOCOLS') prohibits the use of the XDB
protocols (FTP, HTTP, HTTPS) by this PDB

After you create a PDB lockdown profile, you are ready to enable it by using the
ALTER SYSTEM SET PDB_LOCKDOWN SQL statement.

Enabling or Disabling a PDB Lockdown Profile
To enable or disable a PDB lockdown profile, use the PDB_LOCKDOWN initialization
parameter

You can use ALTER SYSTEM SET PDB_LOCKDOWN to enable a lockdown profile in any of
the following contexts:

• CDB (affects all PDBs)

• Application root (affects all application PDBs in the container)

• Application PDB

• PDB

Chapter 4
Restricting Operations on PDBs Using PDB Lockdown Profiles

4-54

Note:

It is not necessary to restart the instance to enable the profile. When the
ALTER SYSTEM SET PDB_LOCKDOWN statement completes, the profile rules take
effect immediately.

When you set PDB_LOCKDOWN in the CDB root, every PDB and application root inherits
this setting unless PDB_LOCKDOWN is set at the container level. To disable lockdown
profiles, set PDB_LOCKDOWN to null. If you set this parameter to null in the CDB root, then
lockdown profiles are disabled for all PDBs except those that explicitly set a profile
within the PDB.

A CDB common user who has been commonly granted the SYSDBA administrative
privilege or the ALTER SYSTEM system privilege can set PDB_LOCKDOWN only to a
lockdown profile that was created in the CDB root. An application common user with
the application common SYSDBA administrative privilege or the ALTER SYSTEM system
privilege can set PDB_LOCKDOWN only to a lockdown profile created in an application
root.

1. Log in to the desired container as a user who has the commonly granted ALTER
SYSTEM or commonly granted SYSDBA privilege.

For example, to enable the profile for all PDBs, log in to the CDB root:

CONNECT c##sec_admin
Enter password: password

2. Run the ALTER SYSTEM SET PDB_LOCKDOWN statement.

For example, the following statement enables the lockdown profile named hr_prof
for all PDBs:

ALTER SYSTEM SET PDB_LOCKDOWN = hr_prof;

The following statement resets the PDB_LOCKDOWN parameter:

ALTER SYSTEM RESET PDB_LOCKDOWN;

This variation of the preceding statement includes the SCOPE clause::

ALTER SYSTEM RESET PDB_LOCKDOWN SCOPE = BOTH;

The following statement disables all lockdown profiles in the CDB except those
that are explicitly set at the PDB level:

ALTER SYSTEM SET PDB_LOCKDOWN = '' SCOPE = BOTH;

To find the names of PDB lockdown profiles, query the PROFILE_NAME column of
the DBA_LOCKDOWN_PROFILES data dictionary view.

Chapter 4
Restricting Operations on PDBs Using PDB Lockdown Profiles

4-55

3. Optionally, review information about the profiles by querying
DBA_LOCKDOWN_PROFILES.

For example, run the following query:

SET LINESIZE 150
COL PROFILE_NAME FORMAT a20
COL RULE FORMAT a20
COL CLAUSE FORMAT a25

SELECT PROFILE_NAME, RULE, CLAUSE, STATUS FROM CDB_LOCKDOWN_PROFILES;

Sample output appears below:

PROFILE_NAME RULE CLAUSE
STATUS
-------------------- -------------------- -------------------------

HR_PROF XDB_PROTOCOLS
DISABLE
HR_PROF ALTER SYSTEM
DISABLE
HR_PROF ALTER SYSTEM FLUSH SHARED_POOL
ENABLE
HR_PROF2
EMPTY
PRIVATE_DBAAS
EMPTY
PUBLIC_DBAAS
EMPTY
SAAS
EMPTY

Dropping a PDB Lockdown Profile
To drop a PDB lockdown profile, you must have the DROP LOCKDOWN PROFILE system
privilege and be logged into the CDB or application root.

You can find the names of existing PDB lockdown profiles by querying the
DBA_LOCKDOWN_PROFILES data dictionary view.

1. Connect to the CDB root or the application root as a user who has the DROP
LOCKDOWN PROFILE system privilege.

For example, to connect to the CDB root:

CONNECT c##sec_admin
Enter password: password

2. Run the DROP LOCKDOWN_PROFILE statement.

For example:

DROP LOCKDOWN PROFILE hr_prof2;

3. Optionally, review the current list of profiles by querying DBA_LOCKDOWN_PROFILES.

Chapter 4
Restricting Operations on PDBs Using PDB Lockdown Profiles

4-56

For example, run the following query:

SET LINESIZE 150
COL PROFILE_NAME FORMAT a20
COL RULE FORMAT a20
COL CLAUSE FORMAT a25

SELECT PROFILE_NAME, RULE, CLAUSE, STATUS FROM CDB_LOCKDOWN_PROFILES;

Sample output appears below:

PROFILE_NAME RULE CLAUSE
STATUS
-------------------- -------------------- -------------------------

HR_PROF XDB_PROTOCOLS
DISABLE
HR_PROF ALTER SYSTEM
DISABLE
HR_PROF ALTER SYSTEM FLUSH SHARED_POOL
ENABLE
PRIVATE_DBAAS
EMPTY
PUBLIC_DBAAS
EMPTY
SAAS
EMPTY

Managing Object Privileges
Object privileges enable you to perform actions on schema objects, such as tables or
indexes.

• About Object Privileges
An object privilege grants permission to perform a particular action on a specific
schema object.

• Who Can Grant Object Privileges?
A user automatically has all object privileges for schema objects contained in his
or her schema.

• Grants and Revokes of Object Privileges
You can grant privileges to or revoke privileges from objects either directly to a
user or through roles.

• READ and SELECT Object Privileges
The READ and SELECT privileges provide different layers of query privileges.

• Object Privilege Use with Synonyms
The CREATE SYNONYM statement create synonyms for database objects.

• Sharing Application Common Objects
Database objects can be configured so that their metadata links, data links, and
extended data links can be shared in the application root.

Chapter 4
Managing Object Privileges

4-57

About Object Privileges
An object privilege grants permission to perform a particular action on a specific
schema object.

Different object privileges are available for different types of schema objects. The
privilege to delete rows from the departments table is an example of an object
privilege.

Some schema objects, such as clusters, indexes, triggers, and database links, do not
have associated object privileges. Their use is controlled with system privileges. For
example, to alter a cluster, a user must own the cluster or have the ALTER ANY CLUSTER
system privilege.

Some examples of object privileges include the right to:

• Use an edition

• Update a table

• Select rows from another user's table

• Execute a stored procedure of another user

See Also:

• How Commonly Granted Object Privileges Work

• Oracle Database SQL Language Reference for a list of object privileges
and the operations they authorize

Who Can Grant Object Privileges?
A user automatically has all object privileges for schema objects contained in his or
her schema.

A user with the GRANT ANY OBJECT PRIVILEGE system privilege can grant any specified
object privilege to another user with or without the WITH GRANT OPTION clause of the
GRANT statement. A user with the GRANT ANY OBJECT PRIVILEGE privilege can also use
that privilege to revoke any object privilege that was granted either by the object owner
or by some other user with the GRANT ANY OBJECT PRIVILEGE privilege.

If the grantee does not have the GRANT ANY OBJECT PRIVILEGE privilege or had been
granted the privilege without the WITH GRANT OPTION clause of the GRANT statement,
then this user cannot grant the privilege to other users.

The WITH GRANT OPTION can be used only with object privilege grants to users. It
cannot be used for object privilege grants to roles.

Chapter 4
Managing Object Privileges

4-58

See Also:

Oracle Database SQL Language Reference for information about GRANT and
GRANT ANY OBJECT PRIVILEGE

Grants and Revokes of Object Privileges
You can grant privileges to or revoke privileges from objects either directly to a user or
through roles.

• About Granting and Revoking Object Privileges
Object privileges can be granted to and revoked from users and roles.

• How the ALL Clause Grants or Revokes All Available Object Privileges
Each type of object has different privileges associated with it, which can be
controlled by the ALL clause.

About Granting and Revoking Object Privileges
Object privileges can be granted to and revoked from users and roles.

If you grant object privileges to roles, then you can make the privileges selectively
available To grant object privileges, you can use the GRANT statement; to revoke object
privileges, you can use the REVOKE statement.

How the ALL Clause Grants or Revokes All Available Object Privileges
Each type of object has different privileges associated with it, which can be controlled
by the ALL clause.

You can specify ALL [PRIVILEGES] to grant or revoke all available object privileges for
an object. ALL is not a privilege. Rather, it is a shortcut, or a way of granting or
revoking all object privileges with one GRANT and REVOKE statement. If all object
privileges are granted using the ALL shortcut, then individual privileges can still be
revoked.

Similarly, you can revoke all individually granted privileges by specifying ALL. However,
if you REVOKE ALL, and revoking causes integrity constraints to be deleted (because
they depend on a REFERENCES privilege that you are revoking), then you must include
the CASCADE CONSTRAINTS option in the REVOKE statement.

Example 4-4 revokes all privileges on the orders table in the HR schema using CASCADE
CONSTRAINTS.

Example 4-4 Revoking All Object Privileges Using CASCADE CONSTRAINTS

REVOKE ALL
 ON ORDERS FROM HR
 CASCADE CONSTRAINTS;

READ and SELECT Object Privileges
The READ and SELECT privileges provide different layers of query privileges.

Chapter 4
Managing Object Privileges

4-59

• About Managing READ and SELECT Object Privileges
You can grant users either the READ or the SELECT object privilege.

• Enabling Users to Use the READ Object Privilege to Query Any Table in the
Database
The READ ANY TABLE system privilege provides the READ object privilege for
querying any table in the database.

• Restrictions on the READ and READ ANY TABLE Privileges
There are special restrictions on the READ and READ ANY TABLE privileges.

About Managing READ and SELECT Object Privileges
You can grant users either the READ or the SELECT object privilege.

The grant of these privileges depend on the level of access that you want to allow the
user.

Follow these guidelines:

• If you want the user only to be able to query tables, views, materialized views, or
synonyms, then you should grant the READ object privilege. For example:

GRANT READ ON HR.EMPLOYEES TO psmith;

• If you want the user to be able to perform the following actions in addition to
performing the query, then you should grant the user the SELECT object privilege:

– LOCK TABLE table_name IN EXCLUSIVE MODE;

– SELECT ... FROM table_name FOR UPDATE;

For example:

GRANT SELECT ON HR.EMPLOYEES TO psmith;

In either case, user psmith would use a SELECT statement to perform query.

Related Topics

• Auditing the READ ANY TABLE and SELECT ANY TABLE Privileges
The CREATE AUDIT POLICY statement can audit the READ ANY TABLE and SELECT
ANY TABLE privileges.

Enabling Users to Use the READ Object Privilege to Query Any Table in the
Database

The READ ANY TABLE system privilege provides the READ object privilege for querying
any table in the database.

• To enable a user to have the READ object privilege for any table in the database,
grant the user the READ ANY TABLE system privilege.

For example:

GRANT READ ANY TABLE TO psmith;

As with the READ object privilege, the READ ANY TABLE system privilege does not
enable users to lock tables in exclusive mode nor select tables for update operations.
Conversely, the SELECT ANY TABLE system privilege enables users to lock the rows of

Chapter 4
Managing Object Privileges

4-60

a table, or lock the entire table, through a SELECT ... FOR UPDATE statement, in
addition to querying any table.

Restrictions on the READ and READ ANY TABLE Privileges
There are special restrictions on the READ and READ ANY TABLE privileges.

These privileges are as follows:

• The READ object privilege has no effect on the requirements of the SQL92_SECURITY
standard. If the SQL92_SECURITY initialization parameter has been set to TRUE, then
its requirement that users must be granted the SELECT object privilege in addition
to UPDATE or DELETE in order to execute the UPDATE or DELETE statements is not
relaxed to require that READ is sufficient instead of SELECT.

• If Oracle Database Vault is enabled, remember that the SQL92_SECURITY
initialization parameter is automatically set to TRUE. Hence, UPDATE and DELETE
statements will fail if the user has only been granted the READ object privilege or
the READ ANY TABLE system privilege. In this case, you must grant the user the
SELECT object privilege or, if the user is a trusted user, the SELECT ANY TABLE
system privilege.

Object Privilege Use with Synonyms
The CREATE SYNONYM statement create synonyms for database objects.

You can create synonyms for the following objects: tables, views, sequences,
operators, procedures, stored functions, packages, materialized views, Java class
schema objects, user-defined object types, or other synonyms.

If you grant users the privilege to use the synonym, then the object privileges granted
on the underlying objects apply whether the user references the base object by name
or by using the synonym.

For example, suppose user OE creates the following synonym for the CUSTOMERS table:

CREATE SYNONYM customer_syn FOR CUSTOMERS;

Then OE grants the READ privilege on the customer_syn synonym to user HR.

GRANT READ ON customer_syn TO HR;

User HR then tries either of the following queries:

SELECT COUNT(*) FROM OE.customer_syn;

SELECT COUNT(*) FROM OE.CUSTOMERS;

Both queries will yield the same result:

 COUNT(*)

 319

Be aware that when you grant the synonym to another user, the grant applies to the
underlying object that the synonym represents, not to the synonym itself. For example,
if user HR queries the ALL_TAB_PRIVS data dictionary view for his privileges, he will
learn the following:

Chapter 4
Managing Object Privileges

4-61

SELECT TABLE_SCHEMA, TABLE_NAME, PRIVILEGE
FROM ALL_TAB_PRIVS
WHERE TABLE_SCHEMA = 'OE';

TABLE_SCHEMA TABLE_NAME PRIVILEGE
------------ ---------- ------------------
OE CUSTOMER READ
OE OE INHERIT PRIVILEGES

The results show that in addition to other privileges, he has the READ privilege for the
underlying object of the customer_syn synonym, which is the OE.CUSTOMER table.

At this point, if user OE then revokes the READ privilege on the customer_syn synonym
from HR, here are the results if HR checks his privileges again:

TABLE_SCHEMA TABLE_NAME PRIVILEGE
------------ ---------- ------------------
OE OE INHERIT PRIVILEGES

User HR no longer has the READ privilege for the OE.CUSTOMER table. If he tries to query
the OE.CUSTOMERS table, then the following error appears:

SELECT COUNT(*) FROM OE.CUSTOMERS;

ERROR at line 1:
ORA-00942: table or view does not exist

Sharing Application Common Objects
Database objects can be configured so that their metadata links, data links, and
extended data links can be shared in the application root.

• Metadata-Linked Application Common Objects
A metadata link enables database objects in an application pluggable database
(PDB) to share metadata with objects in the application root.

• Data-Linked Application Common Objects
Data links manage references and privileges for objects in a multitenant
environment.

• Extended Data-Linked Application Common Objects
Extended data links can combine data from an application pluggable database
(PDB) with an application root.

See Also:

Oracle Database Administrator’s Guide for information about creating
application common objects: metadata-linked objects, data-linked objects,
and extended data-linked objects

Metadata-Linked Application Common Objects
A metadata link enables database objects in an application pluggable database (PDB)
to share metadata with objects in the application root.

Chapter 4
Managing Object Privileges

4-62

Metadata links are useful for reducing disk and memory requirements because they
store only one copy of an object’s metadata (such as the source code for a PL/SQL
package) for identically defined objects (such as Oracle-suppled PL/SQL packages).
This improves the performance of upgrade operations because changes to this
metadata will be made in one place, the application root.

You must configure the metadata link from the application root. You can use the
DBMS_PDB.SET_MEDATADATA_LINKED PL/SQL procedure to change the database object
to a metadata link.

The following example shows how to use the DBMS_PDB.SET_METADATA_LINKED
procedure to change the update_emp_rating procedure in the hr_mgr schema to a
metadata-linked application common object.

Example 4-5 Changing an Object to a Metadata-Linked Application Common
Object

BEGIN
 DBMS_PDB.SET_METADATA_LINKED (
 SCHEMA_NAME => 'hr_mgr',
 OBJECT_NAME => 'update_emp_rating',
 NAMESPACE => 1);
END;
/

Any common user can own metadata links. Metadata links can only be used to share
the metadata of application common objects that their creator in the application root
owns.

To find if an object has a metadata link, query the SHARING column of the DBA_OBJECTS
data dictionary view.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_PDB.SET_METADATA_LINKED procedure

Data-Linked Application Common Objects
Data links manage references and privileges for objects in a multitenant environment.

A data link (previously called an object link) enables references to, and privilege grants
on, objects in an application root from an application pluggable database (PDB) that
belong to the same application container.

If an application common user who owns an application common object wants to grant
access to that object to a user in a PDB, then the application common user can
accomplish this by granting the privilege on a data link that points to the common
object. For example, you can create data links for objects such as tables, views,
clusters, sequences, or PL/SQL packages if you want to ensure that an operation on
the object (such as a query, a DML, an EXECUTE statement, and so on) that refers to
this operation affects the same object regardless of the container in which the
operation is performed.

Chapter 4
Managing Object Privileges

4-63

You must configure the data link from an application root. You can use the
DBMS_PDB.SET_DATA_LINKED PL/SQL procedure to change the data link. You should
use this procedure only when you want to convert an existing object to become data
linked.

The following example shows how to use the DBMS_PDB.SET_DATA_LINKED procedure to
change the emp_ratings table in the hr_mgr schema to a data-linked application
common object.

Example 4-6 Changing an Object to a Data-Linked Application Common Object

BEGIN
 DBMS_PDB.SET_DATA_LINKED (
 SCHEMA_NAME => 'hr_mgr',
 OBJECT_NAME => 'emp_ratings',
 NAMESPACE => 1);
END;
/

Any common user can own data links.

To find if an object has an data link, query the SHARING column of the DBA_OBJECTS
data dictionary view. The NAMESPACE column of this view provides the namespace
number.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_PDB.SET_DATA_LINKED procedure

Extended Data-Linked Application Common Objects
Extended data links can combine data from an application pluggable database (PDB)
with an application root.

An extended data link enables a data link to combine data found in a table in the PDB
with data from a corresponding table in the application root.

You can think of an extended data link as a hybrid of a metadata link and a data link.
An extended data-link object in an application PDB inherits metadata from the
extended data link object in the application root. The data for the object is stored in the
application root and, optionally, in each application PDB. You can create extended
data links for tables and views only. When you query the DBA_OBJECTS data dictionary
view for an extended data link object, this view returns extended data link-related rows
from both the application PDB and the application root.

You must configure the extended data link from an application root. You can use the
DBMS_PDB.SET_EXT_DATA_LINKED PL/SQL procedure to change the database object to
an extended data link.

The following example shows how to use the DBMS_PDB.SET_EXT_DATA_LINKED
procedure to change the emp_salaries data dictionary view in the hr_mgr schema to
an extended data-linked application common object.

Chapter 4
Managing Object Privileges

4-64

Example 4-7 Changing an Object to an Extended Data-Linked Application
Common Object

BEGIN
 DBMS_PDB.SET_EXT_DATA_LINKED (
 SCHEMA_NAME => 'hr_mgr',
 OBJECT_NAME => 'emp_salaries',
 NAMESPACE => 1);
END;
/

Any common user can own extended data links.

To find if an object has an extended data link, query the SHARING column of the
DBA_OBJECTS data dictionary view.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_PDB.SET_EXT_DATA_LINKED procedure

Table Privileges
Object privileges for tables enable table security at the DML or DDL level of operation.

• How Table Privileges Affect Data Manipulation Language Operations
You can grant privileges to use the DELETE, INSERT, SELECT, and UPDATE DML
operations on tables and views.

• How Table Privileges Affect Data Definition Language Operations
The ALTER, INDEX, and REFERENCES privileges allow DDL operations to be
performed on a table.

How Table Privileges Affect Data Manipulation Language Operations
You can grant privileges to use the DELETE, INSERT, SELECT, and UPDATE DML
operations on tables and views.

Grant these privileges only to users and roles that need to query or manipulate data in
a table.

You can restrict INSERT and UPDATE privileges for a table to specific columns of the
table. With a selective INSERT privilege, a privileged user can insert a row with values
for the selected columns. All other columns receive NULL or the default value of the
column. With a selective UPDATE privilege, a user can update only specific column
values of a row. You can use selective INSERT and UPDATE privileges to restrict user
access to sensitive data.

For example, if you do not want data entry users to alter the salary column of the
employees table, then selective INSERT or UPDATE privileges can be granted that
exclude the salary column. Alternatively, a view that excludes the salary column
could satisfy this need for additional security.

Chapter 4
Table Privileges

4-65

See Also:

Oracle Database SQL Language Reference for more information about DML
operations

How Table Privileges Affect Data Definition Language Operations
The ALTER, INDEX, and REFERENCES privileges allow DDL operations to be performed on
a table.

Because these privileges allow other users to alter or create dependencies on a table,
you should grant these privileges conservatively. A user attempting to perform a DDL
operation on a table may need additional system or object privileges. For example, to
create a trigger on a table, the user requires both the ALTER TABLE object privilege for
the table and the CREATE TRIGGER system privilege.

As with the INSERT and UPDATE privileges, you can grant the REFERENCES privilege on
specific columns of a table. The REFERENCES privilege enables the grantee to use the
table on which the grant is made as a parent key to any foreign keys that the grantee
wishes to create in his or her own tables. This action is controlled with a special
privilege because the presence of foreign keys restricts the data manipulation and
table alterations that can be done to the parent key. A column-specific REFERENCES
privilege restricts the grantee to using the named columns (which, of course, must
include at least one primary or unique key of the parent table).

See Also:

Oracle Database Concepts for more information about how data integrity
works with primary keys, unique keys, and integrity constraints

View Privileges
You can apply DML object privileges to views, similar to tables.

• Privileges Required to Create Views
To create a view, you must have specific privileges.

• The Use of Views to Increase Table Security
Database views can increase table security by restricting the data that users can
see.

Privileges Required to Create Views
To create a view, you must have specific privileges.

Object privileges for a view allow various DML operations, which affect the base tables
from which the view is derived.

These privileges to create a view are as follows:

Chapter 4
View Privileges

4-66

• You must be granted one of the following system privileges, either explicitly or
through a role:

– The CREATE VIEW system privilege (to create a view in your schema)

– The CREATE ANY VIEW system privilege (to create a view in the schema of
another user)

• You must be explicitly granted one of the following privileges:

– The SELECT, INSERT, UPDATE, or DELETE object privileges on all base objects
underlying the view

– The SELECT ANY TABLE, INSERT ANY TABLE, UPDATE ANY TABLE, or DELETE ANY
TABLE system privileges

• In addition, before you can grant other users access to you view, you must have
object privileges to the base objects with the GRANT OPTION clause or appropriate
system privileges with the ADMIN OPTION clause. If you do not have these
privileges, then you cannot to grant other users access to your view. If you try, an
ORA-01720: grant option does not exist for object_name error is raised, with
object_name referring to the view's underlying object for which you do not have
the sufficient privilege.

See Also:

Oracle Database SQL Language Reference

The Use of Views to Increase Table Security
Database views can increase table security by restricting the data that users can see.

To use a view, the user must have the appropriate privileges but only for the view
itself, not its underlying objects. However, if access privileges for the underlying
objects of the view are removed, then the user no longer has access.

This behavior occurs because the security domain that is used when a user queries
the view is that of the definer of the view. If the privileges on the underlying objects are
revoked from the view's definer, then the view becomes invalid, and no one can use
the view. Therefore, even if a user has been granted access to the view, the user may
not be able to use the view if the definer's rights have been revoked from the view's
underlying objects.

For example, suppose User A creates a view. User A has definer's rights on the
underlying objects of the view. User A then grants the SELECT privilege on that view to
User B so that User B can query the view. But if User A no longer has access to the
underlying objects of that view, then User B no longer has access either.

Views add two more levels of security for tables, column-level security and value-
based security, as follows:

• A view can provide access to selected columns of base tables. For example,
you can define a view on the employees table to show only the employee_id,
last_name, and manager_id columns:

CREATE VIEW employees_manager AS
 SELECT last_name, employee_id, manager_id FROM employees;

Chapter 4
View Privileges

4-67

• A view can provide value-based security for the information in a table. A
WHERE clause in the definition of a view displays only selected rows of base tables.
Consider the following two examples:

CREATE VIEW lowsal AS
 SELECT * FROM employees
 WHERE salary < 10000;

The lowsal view allows access to all rows of the employees table that have a
salary value less than 10000. Notice that all columns of the employees table are
accessible in the lowsal view.

CREATE VIEW own_salary AS
 SELECT last_name, salary
 FROM employees
 WHERE last_name = USER;

In the own_salary view, only the rows with an last_name that matches the current
user of the view are accessible. The own_salary view uses the user pseudo
column, whose values always refer to the current user. This view combines both
column-level security and value-based security.

Procedure Privileges
The EXECUTE privilege enables users to run procedures and functions, either
standalone or in packages.

• The Use of the EXECUTE Privilege for Procedure Privileges
The EXECUTE privilege is a very powerful privilege that should be handled with
caution.

• Procedure Execution and Security Domains
The EXECUTE object privilege for a procedure can be used to execute a procedure
or compile a program unit that references the procedure.

• System Privileges Required to Create or Replace a Procedure
You must have specific privileges to create or replace a procedure in your own
schema or in another user’s schema.

• System Privileges Required to Compile a Procedure
You must have specific privileges to compile both standalone procedures and
procedures that are part of a package.

• How Procedure Privileges Affect Packages and Package Objects
The powerful EXECUTE privilege enables users to run any public procedures or
functions within a package.

The Use of the EXECUTE Privilege for Procedure Privileges
The EXECUTE privilege is a very powerful privilege that should be handled with
caution.

The EXECUTE privilege is the only object privilege for procedures, including
standalone procedures and functions, and for those within packages.

You should grant this privilege only to users who must run a procedure or compile
another procedure that calls a desired procedure. You can find the privileges that a
user has been granted by querying the DBA_SYS_PRIVS data dictionary view.

Chapter 4
Procedure Privileges

4-68

Procedure Execution and Security Domains
The EXECUTE object privilege for a procedure can be used to execute a procedure or
compile a program unit that references the procedure.

Oracle Database performs a run-time privilege check when any PL/SQL unit is called.
A user with the EXECUTE ANY PROCEDURE system privilege can execute any procedure in
the database. Privileges to run procedures can be granted to a user through roles.

See Also:

• About Definer's Rights and Invoker's Rights

• Oracle Database PL/SQL Packages and Types Reference for more
information about how Oracle Database checks privileges at run-time

System Privileges Required to Create or Replace a Procedure
You must have specific privileges to create or replace a procedure in your own
schema or in another user’s schema.

To create or replace a procedure in your own schema, you must have the CREATE
PROCEDURE system privilege. To create or replace a procedure in another user's
schema, you must have the CREATE ANY PROCEDURE system privilege.

The user who owns the procedure also must have privileges for schema objects
referenced in the procedure body. To create a procedure, you need to have been
explicitly granted the necessary privileges (system or object) on all objects referenced
by the procedure. You cannot obtain the required privileges through roles. This
includes the EXECUTE privilege for any procedures that are called inside the procedure
being created.

Note:

Triggers require that privileges on referenced objects be granted directly to
the owner of the trigger. Anonymous PL/SQL blocks can use any privilege,
whether the privilege is granted explicitly or through a role.

System Privileges Required to Compile a Procedure
You must have specific privileges to compile both standalone procedures and
procedures that are part of a package.

To compile a standalone procedure, you should run the ALTER PROCEDURE statement
with the COMPILE clause. To compile a procedure that is part of a package, you should
run the ALTER PACKAGE statement.

The following example shows how to compile a standalone procedure.

Chapter 4
Procedure Privileges

4-69

ALTER PROCEDURE psmith.remove_emp COMPILE;

If the standalone or packaged procedure is in another user's schema, you must have
the ALTER ANY PROCEDURE privilege to recompile it. You can recompile procedures in
your own schema without any privileges.

How Procedure Privileges Affect Packages and Package Objects
The powerful EXECUTE privilege enables users to run any public procedures or
functions within a package.

• About the Effect of Procedure Privileges on Packages and Package Objects
The EXECUTE object privilege for a package applies to any procedure or function
within this package.

• Example: Procedure Privileges Used in One Package
The CREATE PACKAGE BODY statement can create a package body that contains
procedures to manage procedure privileges used in one package.

• Example: Procedure Privileges and Package Objects
The CREATE PACKAGE BODY statement can create a package body containing
procedure definitions to manage procedure privileges and package objects.

About the Effect of Procedure Privileges on Packages and Package Objects
The EXECUTE object privilege for a package applies to any procedure or function within
this package.

A user with theEXECUTE object privilege for a package can execute any public
procedure or function in the package, and can access or modify the value of any public
package variable.

You cannot grant specific EXECUTE privileges for individual constructs in a package.
Therefore, you may find it useful to consider two alternatives for establishing security
when developing procedures, functions, and packages for a database application. The
following examples describe these alternatives.

Example: Procedure Privileges Used in One Package
The CREATE PACKAGE BODY statement can create a package body that contains
procedures to manage procedure privileges used in one package.

Example 4-8 shows four procedures created in the bodies of two packages.

Example 4-8 Procedure Privileges Used in One Packagee

CREATE PACKAGE BODY hire_fire AS
 PROCEDURE hire(...) IS
 BEGIN
 INSERT INTO employees . . .
 END hire;
 PROCEDURE fire(...) IS
 BEGIN
 DELETE FROM employees . . .
 END fire;
END hire_fire;

CREATE PACKAGE BODY raise_bonus AS

Chapter 4
Procedure Privileges

4-70

 PROCEDURE give_raise(...) IS
 BEGIN
 UPDATE employees SET salary = . . .
 END give_raise;
 PROCEDURE give_bonus(...) IS
 BEGIN
 UPDATE employees SET bonus = . . .
 END give_bonus;
END raise_bonus;

The following GRANT EXECUTE statements enable the big_bosses and little_bosses
roles to run the appropriate procedures:

GRANT EXECUTE ON hire_fire TO big_bosses;
GRANT EXECUTE ON raise_bonus TO little_bosses;

Example: Procedure Privileges and Package Objects
The CREATE PACKAGE BODY statement can create a package body containing
procedure definitions to manage procedure privileges and package objects.

Example 4-9 shows four procedure definitions within the body of a single package.
Two additional standalone procedures and a package are created specifically to
provide access to the procedures defined in the main package.

Example 4-9 Procedure Privileges and Package Objects

CREATE PACKAGE BODY employee_changes AS
 PROCEDURE change_salary(...) IS BEGIN ... END;
 PROCEDURE change_bonus(...) IS BEGIN ... END;
 PROCEDURE insert_employee(...) IS BEGIN ... END;
 PROCEDURE delete_employee(...) IS BEGIN ... END;
END employee_changes;

CREATE PROCEDURE hire
 BEGIN
 employee_changes.insert_employee(...)
 END hire;

CREATE PROCEDURE fire
 BEGIN
 employee_changes.delete_employee(...)
 END fire;

PACKAGE raise_bonus IS
 PROCEDURE give_raise(...) AS
 BEGIN
 employee_changes.change_salary(...)
 END give_raise;

 PROCEDURE give_bonus(...)
 BEGIN
 employee_changes.change_bonus(...)
 END give_bonus;

Using this method, the procedures that actually do the work (the procedures in the
employee_changes package) are defined in a single package and can share declared
global variables, cursors, on so on. By declaring top-level procedures, hire and fire,
and an additional package, raise_bonus, you can grant selective EXECUTE privileges
on procedures in the main package:

Chapter 4
Procedure Privileges

4-71

GRANT EXECUTE ON hire, fire TO big_bosses;
GRANT EXECUTE ON raise_bonus TO little_bosses;

Be aware that granting EXECUTE privilege for a package provides uniform access to all
package objects.

Type Privileges
You can control system and object privileges for types, methods, and objects.

• System Privileges for Named Types
System privileges for named types can enable users to perform actions such as
creating named types in their own schemas.

• Object Privileges for Named Types
The only object privilege that applies to named types is EXECUTE.

• Method Execution Model for Named Types
The method execution for named types is the same as any other stored PL/SQL
procedure.

• Privileges Required to Create Types and Tables Using Types
To create a type, you must have the appropriate privileges.

• Example: Privileges for Creating Types and Tables Using Types
The EXECUTE privilege with the GRANT OPTION is required for users to grant the
EXECUTE privilege on a type to other users.

• Privileges on Type Access and Object Access
Existing column-level and table-level privileges for DML statements apply to both
column objects and row objects.

• Type Dependencies
As with stored objects, such as procedures and tables, types that are referenced
by other objects are called dependencies.

System Privileges for Named Types
System privileges for named types can enable users to perform actions such as
creating named types in their own schemas.

Table 4-4 lists system privileges for named types (object types, VARRAYs, and nested
tables).

Table 4-4 System Privileges for Named Types

Privilege Enables you to ...

CREATE TYPE Create named types in your own schemas

CREATE ANY TYPE Create a named type in any schema

ALTER ANY TYPE Alter a named type in any schema

DROP ANY TYPE Drop a named type in any schema

EXECUTE ANY TYPE Use and reference a named type in any schema

The RESOURCE role includes the CREATE TYPE system privilege. The DBA role includes all
of these privileges.

Chapter 4
Type Privileges

4-72

Object Privileges for Named Types
The only object privilege that applies to named types is EXECUTE.

If the EXECUTE privilege exists on a named type, then a user can use the named type
to:

• Define a table

• Define a column in a relational table

• Declare a variable or parameter of the named type

The EXECUTE privilege permits a user to invoke the methods in the type, including the
type constructor. This is similar to the EXECUTE privilege on a stored PL/SQL
procedure.

Method Execution Model for Named Types
The method execution for named types is the same as any other stored PL/SQL
procedure.

Users must be granted the appropriate privileges for using the named types, such as
the EXECUTE privilege. As with all privilege grants, only grant these privileges to trusted
users. You can find the privileges that a user has been granted by querying the
DBA_SYS_PRIVS data dictionary view.

Related Topics

• Procedure Privileges
The EXECUTE privilege enables users to run procedures and functions, either
standalone or in packages.

Privileges Required to Create Types and Tables Using Types
To create a type, you must have the appropriate privileges.

These privileges are as follows:

• You must have the CREATE TYPE system privilege to create a type in your schema
or the CREATE ANY TYPE system privilege to create a type in the schema of another
user. These privileges can be acquired explicitly or through a role.

• The owner of the type must be explicitly granted the EXECUTE object privileges to
access all other types referenced within the definition of the type, or have been
granted the EXECUTE ANY TYPE system privilege. The owner cannot obtain the
required privileges through roles.

• If the type owner intends to grant access to the type to other users, then the owner
must receive the EXECUTE privileges to the referenced types with the GRANT OPTION
or the EXECUTE ANY TYPE system privilege with the ADMIN OPTION. If not, then the
type owner has insufficient privileges to grant access on the type to other users.

To create a table using types, you must meet the requirements for creating a table and
the following additional requirements:

• The owner of the table must have been directly granted the EXECUTE object
privilege to access all types referenced by the table, or has been granted the

Chapter 4
Type Privileges

4-73

EXECUTE ANY TYPE system privilege. The owner cannot exercise the required
privileges if these privileges were granted through roles.

• If the table owner intends to grant access to the table to other users, then the
owner must have the EXECUTE privilege to the referenced types with the GRANT
OPTION or the EXECUTE ANY TYPE system privilege with the ADMIN OPTION. If not,
then the table owner has insufficient privileges to grant access on the table.

Related Topics

• Table Privileges
Object privileges for tables enable table security at the DML or DDL level of
operation.

Example: Privileges for Creating Types and Tables Using Types
The EXECUTE privilege with the GRANT OPTION is required for users to grant the EXECUTE
privilege on a type to other users.

Assume that three users exist with the CONNECT and RESOURCE roles:

• user1

• user2

• user3

The following DDL is run in the schema of user1:

CREATE TYPE type1 AS OBJECT (
 attr1 NUMBER);

CREATE TYPE type2 AS OBJECT (
 attr2 NUMBER);

GRANT EXECUTE ON type1 TO user2;
GRANT EXECUTE ON type2 TO user2 WITH GRANT OPTION;

The following DDL is performed in the schema of user2:

CREATE TABLE tab1 OF user1.type1;
CREATE TYPE type3 AS OBJECT (
 attr3 user1.type2);
CREATE TABLE tab2 (
 col1 user1.type2);

The following statements succeed because user2 has EXECUTE privilege on
user1.type2 with the GRANT OPTION:

GRANT EXECUTE ON type3 TO user3;
GRANT SELECT ON tab2 TO user3;

However, the following grant fails because user2 does not have EXECUTE privilege on
user1.type1 with the GRANT OPTION:

GRANT SELECT ON tab1 TO user3;

The following statements can be successfully run by user3:

CREATE TYPE type4 AS OBJECT (
 attr4 user2.type3);
CREATE TABLE tab3 OF type4;

Chapter 4
Type Privileges

4-74

Note:

The CONNECT role presently retains only the CREATE SESSION and SET
CONTAINER privileges.

Privileges on Type Access and Object Access
Existing column-level and table-level privileges for DML statements apply to both
column objects and row objects.

Table 4-5 lists the privileges for object tables.

Table 4-5 Privileges for Object Tables

Privilege Enables you to...

SELECT Access an object and its attributes from the table

UPDATE Modify the attributes of the objects that make up the rows in the table

INSERT Create new objects in the table

DELETE Delete rows

Similar table privileges and column privileges apply to column objects. Retrieving
instances does not in itself reveal type information. However, clients must access
named type information to interpret the type instance images. When a client requests
type information, Oracle Database checks for the EXECUTE privilege on the type.

Consider the following schema:

CREATE TYPE emp_type (
 eno NUMBER, ename CHAR(31), eaddr addr_t);
CREATE TABLE emp OF emp_t;

In addition, consider the following two queries:

SELECT VALUE(emp) FROM emp;
SELECT eno, ename FROM emp;

For either query, Oracle Database checks the SELECT privilege of the user for the emp
table. For the first query, the user must obtain the emp_type type information to
interpret the data. When the query accesses the emp_type type, Oracle Database
checks the EXECUTE privilege of the user.

The second query, however, does not involve named types, so Oracle Database does
not check type privileges.

In addition, by using the schema from the previous section, user3 can perform the
following queries:

SELECT tab1.col1.attr2 FROM user2.tab1 tab1;
SELECT attr4.attr3.attr2 FROM tab3;

Note that in both SELECT statements, user3 does not have explicit privileges on the
underlying types, but the statement succeeds because the type and table owners have
the necessary privileges with the GRANT OPTION.

Chapter 4
Type Privileges

4-75

Oracle Database checks privileges on the following events, and returns an error if the
client does not have the privilege for the action:

• Pinning an object in the object cache using its REF value causes Oracle Database
to check for the SELECT privilege on the containing object table.

• Modifying an existing object or flushing an object from the object cache causes
Oracle Database to check for the UPDATE privilege on the destination object table.

• Flushing a new object causes Oracle Database to check for the INSERT privilege
on the destination object table.

• Deleting an object causes Oracle Database to check for the DELETE privilege on
the destination table.

• Pinning an object of a named type causes Oracle Database to check EXECUTE
privilege on the object.

Modifying the attributes of an object in a client third-generation language application
causes Oracle Database to update the entire object. Therefore, the user needs the
UPDATE privilege on the object table. Having the UPDATE privilege on only certain
columns of the object table is not sufficient, even if the application only modifies
attributes corresponding to those columns. Therefore, Oracle Database does not
support column-level privileges for object tables.

Type Dependencies
As with stored objects, such as procedures and tables, types that are referenced by
other objects are called dependencies.

There are some special issues for types on which tables depend. Because a table
contains data that relies on the type definition for access, any change to the type
causes all stored data to become inaccessible. Changes that can cause this are when
necessary privileges required to use the type are revoked, or the type or dependent
types are dropped. If these actions occur, then the table becomes invalid and cannot
be accessed.

A table that is invalid because of missing privileges can automatically become valid
and accessible if the required privileges are granted again. A table that is invalid
because a dependent type was dropped can never be accessed again, and the only
permissible action is to drop the table.

Because of the severe effects that revoking a privilege on a type or dropping a type
can cause, the SQL statements REVOKE and DROP TYPE , by default, implement
restricted semantics. This means that if the named type in either statement has table
or type dependents, then an error is received and the statement cancels. However, if
the FORCE clause for either statement is used, then the statement always succeeds. If
there are depended-upon tables, then they are invalidated.

See Also:

Oracle Database SQL Language Reference for details about using the
REVOKE and DROP TYPE SQL statements

Chapter 4
Type Privileges

4-76

Grants of User Privileges and Roles
The GRANT statement provides privileges for a user to perform specific actions, such as
executing a procedure.

• Granting System Privileges and Roles to Users and Roles
Before you grant system privileges and roles to users and roles, be aware of how
privileges for these types of grants work.

• Granting Object Privileges to Users and Roles
You can grant object privileges to users and roles, and enable the grantee to grant
the privilege to other users.

Granting System Privileges and Roles to Users and Roles
Before you grant system privileges and roles to users and roles, be aware of how
privileges for these types of grants work.

• Privileges for Grants of System Privileges and Roles to Users and Roles
You can use the GRANT SQL statement to grant system privileges and roles to
users and roles.

• Example: Granting a System Privilege and a Role to a User
You can use the GRANT statement to grant system privileges and roles to users.

• Example: Granting the EXECUTE Privilege on a Directory Object
You can use the GRANT statement to grant the EXECUTE privilege on a directory
object.

• Use of the ADMIN Option to Enable Grantee Users to Grant the Privilege
The WITH ADMIN OPTION clause can be used to expand the capabilities of a
privilege grant.

• Creating a New User with the GRANT Statement
You can create a new user and grant this user a privilege in one GRANT SQL
statement.

Privileges for Grants of System Privileges and Roles to Users and Roles
You can use the GRANT SQL statement to grant system privileges and roles to users
and roles.

The following privileges are required:

• To grant a system privilege, a user must be granted the system privilege with the
ADMIN option or must be granted the GRANT ANY PRIVILEGE system privilege.

• To grant a role, a user must be granted the role with the ADMIN option or was
granted the GRANT ANY ROLE system privilege.

Note:

Object privileges cannot be granted along with system privileges and roles in
the same GRANT statement.

Chapter 4
Grants of User Privileges and Roles

4-77

Example: Granting a System Privilege and a Role to a User
You can use the GRANT statement to grant system privileges and roles to users.

Example 4-10 grants the system privilege CREATE SESSION and the accts_pay role to
the user jward.

Example 4-10 Granting a System Privilege and a Role to a User

GRANT CREATE SESSION, accts_pay TO jward;

Example: Granting the EXECUTE Privilege on a Directory Object
You can use the GRANT statement to grant the EXECUTE privilege on a directory
object.

Example 4-10 grants the EXECUTE privilege on the exec_dir directory object to the user
jward.

Example 4-11 Granting the EXECUTE Privilege on a Directory Object

GRANT EXECUTE ON DIRECTORY exec_dir TO jward;

Use of the ADMIN Option to Enable Grantee Users to Grant the Privilege
The WITH ADMIN OPTION clause can be used to expand the capabilities of a privilege
grant.

These capabilities are as follows:

• The grantee can grant or revoke the system privilege or role to or from any other
user or role in the database. Users cannot revoke a role from themselves.

• The grantee can grant the system privilege or role with the ADMIN option.

• The grantee of a role can alter or drop the role.

Example 4-12 grants the new_dba role with the WITH ADMIN OPTION clause to user
michael.

Example 4-12 Granting the ADMIN Option

GRANT new_dba TO michael WITH ADMIN OPTION;

User michael is able to not only use all of the privileges implicit in the new_dba role, but
he can also grant, revoke, and drop the new_dba role as deemed necessary. Because
of these powerful capabilities, use caution when granting system privileges or roles
with the ADMIN option. These privileges are usually reserved for a security
administrator, and are rarely granted to other administrators or users of the system. Be
aware that when a user creates a role, the role is automatically granted to the creator
with the ADMIN option.

Creating a New User with the GRANT Statement
You can create a new user and grant this user a privilege in one GRANT SQL statement.

In most cases, you will want to grant the user the CREATE SESSION privilege.

Chapter 4
Grants of User Privileges and Roles

4-78

• To create a new user with the GRANT statement, include the privilege and the
IDENTIFIED BY clause.

For example, to create user psmith as a new user while granting psmith the CREATE
SESSION system privilege:

GRANT CREATE SESSION TO psmith IDENTIFIED BY password;

If you specify a password using the IDENTIFIED BY clause, and the user name does
not exist in the database, then a new user with that user name and password is
created.

Related Topics

• Creating User Accounts
A user account can have restrictions such as profiles, a default role, and
tablespace restrictions.

• Minimum Requirements for Passwords
Oracle provides a set of minimum requirements for passwords.

Granting Object Privileges to Users and Roles
You can grant object privileges to users and roles, and enable the grantee to grant the
privilege to other users.

• About Granting Object Privileges to Users and Roles
You can use the GRANT statement to grant object privileges to roles and users.

• How the WITH GRANT OPTION Clause Works
The WITH GRANT OPTION clause with the GRANT statement can enable a grantee to
grant object privileges to other users.

• Grants of Object Privileges on Behalf of the Object Owner
The GRANT ANY OBJECT PRIVILEGE system privilege enables users to grant and
revoke any object privilege on behalf of the object owner.

• Grants of Privileges on Columns
You can grant INSERT, UPDATE, or REFERENCES privileges on individual columns in a
table.

• Row-Level Access Control
You can provide access control at the row level, that is, within objects, but not with
the GRANT statement.

About Granting Object Privileges to Users and Roles
You can use the GRANT statement to grant object privileges to roles and users.

To grant an object privilege, you must fulfill one of the following conditions:

• You own the object specified.

• You have been granted the GRANT ANY OBJECT PRIVILEGE system privilege. This
privilege enables you to grant and revoke privileges on behalf of the object owner.

• The WITH GRANT OPTION clause was specified when you were granted the object
privilege.

Chapter 4
Grants of User Privileges and Roles

4-79

Note:

System privileges and roles cannot be granted along with object
privileges in the same GRANT statement.

The following example grants the READ, INSERT, and DELETE object privileges for all
columns of the emp table to the users jfee and tsmith.

GRANT READ, INSERT, DELETE ON emp TO jfee, tsmith;

To grant all object privileges on the salary view to user jfee, use the ALL keyword as
shown in the following example:

GRANT ALL ON salary TO jfee;

Note:

A grantee cannot regrant access to objects unless the original grant included
the GRANT OPTION. Thus in the example just given, jfee cannot use the
GRANT statement to grant object privileges to anyone else.

How the WITH GRANT OPTION Clause Works
The WITH GRANT OPTION clause with the GRANT statement can enable a grantee to
grant object privileges to other users.

The user whose schema contains an object is automatically granted all associated
object privileges with the WITH GRANT OPTION clause. This special privilege allows the
grantee several expanded privileges:

• The grantee can grant the object privilege to any user in the database, with or
without the GRANT OPTION, and to any role in the database.

• If both of the following conditions are true, then the grantee can create views on
the table, and grant the corresponding privileges on the views to any user or role
in the database:

– The grantee receives object privileges for the table with the GRANT OPTION.

– The grantee has the CREATE VIEW or CREATE ANY VIEW system privilege.

Note:

The WITH GRANT OPTION clause is not valid if you try to grant an object
privilege to a role. Oracle Database prevents the propagation of object
privileges through roles so that grantees of a role cannot propagate object
privileges received by means of roles.

Chapter 4
Grants of User Privileges and Roles

4-80

Grants of Object Privileges on Behalf of the Object Owner
The GRANT ANY OBJECT PRIVILEGE system privilege enables users to grant and revoke
any object privilege on behalf of the object owner.

This privilege provides a convenient means for database and application
administrators to grant access to objects in any schema without requiring that they
connect to the schema. Login credentials do not need to be maintained for schema
owners who have this privilege, which reduces the number of connections required
during configuration.

This system privilege is part of the Oracle Database supplied DBA role and is thus
granted (with the ADMIN option) to any user connecting AS SYSDBA (user SYS). As with
other system privileges, the GRANT ANY OBJECT PRIVILEGE system privilege can only
be granted by a user who possesses the ADMIN option.

The recorded grantor of access rights to an object is either the object owner or the
person exercising the GRANT ANY OBJECT PRIVILEGE system privilege. If the grantor
with GRANT ANY OBJECT PRIVILEGE does not have the object privilege with the GRANT
OPTION, then the object owner is shown as the grantor. Otherwise, when that grantor
has the object privilege with the GRANT OPTION, then that grantor is recorded as the
grantor of the grant.

Note:

The audit record generated by the GRANT statement always shows the actual
user who performed the grant.

For example, consider the following scenario. User adams possesses the GRANT ANY
OBJECT PRIVILEGE system privilege. He does not possess any other grant privileges.
He issues the following statement:

GRANT SELECT ON HR.EMPLOYEES TO blake WITH GRANT OPTION;

If you examine the DBA_TAB_PRIVS view, then you will see that hr is shown as the
grantor of the privilege:

SELECT GRANTEE, GRANTOR, PRIVILEGE, GRANTABLE
 FROM DBA_TAB_PRIVS
 WHERE TABLE_NAME = 'EMPLOYEES' and OWNER = 'HR';

GRANTEE GRANTOR PRIVILEGE GRANTABLE
-------- ------- ----------- ----------
BLAKE HR SELECT YES

Now assume that user blake also has the GRANT ANY OBJECT PRIVILEGE system. He
issues the following statement:

GRANT SELECT ON HR.EMPLOYEES TO clark;

In this case, when you query the DBA_TAB_PRIVS view again, you see that blake is
shown as being the grantor of the privilege:

Chapter 4
Grants of User Privileges and Roles

4-81

GRANTEE GRANTOR PRIVILEGE GRANTABLE
-------- -------- --------- ----------
BLAKE HR SELECT YES
CLARK BLAKE SELECT NO

This occurs because blake already possesses the SELECT privilege on HR.EMPLOYEES
with the GRANT OPTION.

Related Topics

• Revokes of Object Privileges on Behalf of the Object Owner
The GRANT ANY OBJECT PRIVILEGE system privilege can be used to revoke any
object privilege where the object owner is the grantor.

Grants of Privileges on Columns
You can grant INSERT, UPDATE, or REFERENCES privileges on individual columns in a
table.

Note:

Before granting a column-specific INSERT privilege, determine if the table
contains any columns on which NOT NULL constraints are defined. Granting
selective insert capability without including the NOT NULL columns prevents
the user from inserting any rows into the table. To avoid this situation, ensure
that each NOT NULL column can either be inserted into or has a non-NULL
default value. Otherwise, the grantee will not be able to insert rows into the
table and will receive an error.

The following statement grants the INSERT privilege on the acct_no column of the
accounts table to user psmith:

GRANT INSERT (acct_no) ON accounts TO psmith;

In the following example, object privilege for the ename and job columns of the emp
table are granted to the users jfee and tsmith:

GRANT INSERT(ename, job) ON emp TO jfee, tsmith;

Row-Level Access Control
You can provide access control at the row level, that is, within objects, but not with the
GRANT statement.

To perform this kind of access control, you must use either Oracle Virtual Private
Database (VPD) or Oracle Label Security (OLS).

Chapter 4
Grants of User Privileges and Roles

4-82

See Also:

• Using Oracle Virtual Private Database to Control Data Access

• Policies for Column-Level Oracle Virtual Private Database

• Oracle Label Security Administrator’s Guide

Revokes of Privileges and Roles from a User
When you revoke system or object privileges, be aware of the cascading effects of
revoking a privilege.

• Revokes of System Privileges and Roles
The REVOKE SQL statement revokes system privileges and roles.

• Revokes of Object Privileges
You can revoke multiple object privileges, object privileges on behalf of an object
owner, column-selective object privileges, and the REFERENCES object privilege.

• Cascading Effects of Revoking Privileges
There are no cascading effects for revoked object privileges related to DDL
operations, but there are cascading effects for object privilege revocations.

Revokes of System Privileges and Roles
The REVOKE SQL statement revokes system privileges and roles.

Any user with the ADMIN option for a system privilege or role can revoke the privilege or
role from any other database user or role. The revoker does not have to be the user
that originally granted the privilege or role. Users with GRANT ANY ROLE can revoke any
role.

Example 4-13 revokes the CREATE TABLE system privilege and the accts_rec role from
user psmith:

Example 4-13 Revoking a System Privilege and a Role from a User

REVOKE CREATE TABLE, accts_rec FROM psmith;

Be aware that the ADMIN option for a system privilege or role cannot be selectively
revoked. Instead, revoke the privilege or role, and then grant the privilege or role again
but without the ADMIN option.

Revokes of Object Privileges
You can revoke multiple object privileges, object privileges on behalf of an object
owner, column-selective object privileges, and the REFERENCES object privilege.

• About Revokes of Object Privileges
To revoke an object privilege, you must meet the appropriate requirements.

• Revokes of Multiple Object Privileges
The REVOKE statement can revoke multiple privileges on one object.

Chapter 4
Revokes of Privileges and Roles from a User

4-83

• Revokes of Object Privileges on Behalf of the Object Owner
The GRANT ANY OBJECT PRIVILEGE system privilege can be used to revoke any
object privilege where the object owner is the grantor.

• Revokes of Column-Selective Object Privileges
GRANT and REVOKE operations for column-specific operations have different
privileges and restrictions.

• Revokes of the REFERENCES Object Privilege
When you revoke the REFERENCES object privilege, it affects foreign key
constraints.

About Revokes of Object Privileges
To revoke an object privilege, you must meet the appropriate requirements.

The requirements are either of the following conditions:

• You previously granted the object privilege to the user or role.

• You possess the GRANT ANY OBJECT PRIVILEGE system privilege that enables you
to grant and revoke privileges on behalf of the object owner.

You can only revoke the privileges that you, the person who granted the privilege,
directly authorized. You cannot revoke grants that were made by other users to whom
you granted the GRANT OPTION. However, there is a cascading effect. If the object
privileges of the user who granted the privilege are revoked, then the object privilege
grants that were propagated using the GRANT OPTION are revoked as well.

Revokes of Multiple Object Privileges
The REVOKE statement can revoke multiple privileges on one object.

Assuming you are the original grantor of the privilege, the following statement revokes
the SELECT and INSERT privileges on the emp table from users jfee and psmith:

REVOKE SELECT, INSERT ON emp FROM jfee, psmith;

The following statement revokes all object privileges for the dept table that you
originally granted to the human_resource role:

REVOKE ALL ON dept FROM human_resources;

Note:

The GRANT OPTION for an object privilege cannot be selectively revoked.
Instead, revoke the object privilege and then grant it again but without the
GRANT OPTION. Users cannot revoke object privileges from themselves.

Revokes of Object Privileges on Behalf of the Object Owner
The GRANT ANY OBJECT PRIVILEGE system privilege can be used to revoke any object
privilege where the object owner is the grantor.

Chapter 4
Revokes of Privileges and Roles from a User

4-84

This occurs when the object privilege is granted by the object owner, or on behalf of
the owner by any user holding the GRANT ANY OBJECT PRIVILEGE system privilege.

In a situation where the object privilege was granted by both the owner of the object
and the user executing the REVOKE statement (who has both the specific object
privilege and the GRANT ANY OBJECT PRIVILEGE system privilege), Oracle Database
only revokes the object privilege granted by the user issuing the REVOKE statement.
This can be illustrated by continuing the example started in Grants of Object Privileges
on Behalf of the Object Owner.

At this point, user blake granted the SELECT privilege on HR.EMPLOYEES to clark. Even
though blake possesses the GRANT ANY OBJECT PRIVILEGE system privilege, he also
holds the specific object privilege, thus this grant is attributed to him. Assume that user
HR also grants the SELECT privilege on HR.EMPLOYEES to user clark. A query of the
DBA_TAB_PRIVS view shows that the following grants are in effect for the HR.EMPLOYEES
table:

GRANTEE GRANTOR PRIVILEGE GRANTABLE
-------- ------- ----------- ----------
BLAKE HR SELECT YES
CLARK BLAKE SELECT NO
CLARK HR SELECT NO

User blake now issues the following REVOKE statement:

REVOKE SELECT ON HR.EMPLOYEES FROM clark;

Only the object privilege for user clark granted by user blake is removed. The grant
by the object owner, HR, remains.

GRANTEE GRANTOR PRIVILEGE GRANTABLE
-------- ------- ----------- ----------
BLAKE HR SELECT YES
CLARK HR SELECT NO

If blake issues the REVOKE statement again, then this time the effect is to remove the
object privilege granted by adams (on behalf of HR), using the GRANT ANY OBEJCT
PRIVILEGE system privilege.

Related Topics

• Grants of Object Privileges on Behalf of the Object Owner
The GRANT ANY OBJECT PRIVILEGE system privilege enables users to grant and
revoke any object privilege on behalf of the object owner.

Revokes of Column-Selective Object Privileges
GRANT and REVOKE operations for column-specific operations have different privileges
and restrictions.

Although users can grant column-specific INSERT, UPDATE, and REFERENCES privileges
for tables and views, they cannot selectively revoke column-specific privileges with a
similar REVOKE statement. Instead, the grantor must first revoke the object privilege for
all columns of a table or view, and then selectively repeat the grant of the column-
specific privileges that the grantor intends to keep in effect.

For example, assume that role human_resources was granted the UPDATE privilege on
the deptno and dname columns of the table dept. To revoke the UPDATE privilege on
just the deptno column, issue the following two statements:

Chapter 4
Revokes of Privileges and Roles from a User

4-85

REVOKE UPDATE ON dept FROM human_resources;
GRANT UPDATE (dname) ON dept TO human_resources;

The REVOKE statement revokes the UPDATE privilege on all columns of the dept table
from the role human_resources. The GRANT statement then repeats, restores, or
reissues the grant of the UPDATE privilege on the dname column to the role
human_resources.

Revokes of the REFERENCES Object Privilege
When you revoke the REFERENCES object privilege, it affects foreign key constraints.

If the grantee of the REFERENCES object privilege has used the privilege to create a
foreign key constraint (that currently exists), then the grantor can revoke the privilege
only by specifying the CASCADE CONSTRAINTS option in the REVOKE statement.

For example:

REVOKE REFERENCES ON dept FROM jward CASCADE CONSTRAINTS;

Any foreign key constraints currently defined that use the revoked REFERENCES
privilege are dropped when the CASCADE CONSTRAINTS clause is specified.

Cascading Effects of Revoking Privileges
There are no cascading effects for revoked object privileges related to DDL
operations, but there are cascading effects for object privilege revocations.

• Cascading Effects When Revoking System Privileges
There are no cascading effects when you revoke a system privilege that is related
to DDL operations.

• Cascading Effects When Revoking Object Privileges
Revoking an object privilege can have cascading effects.

Cascading Effects When Revoking System Privileges
There are no cascading effects when you revoke a system privilege that is related to
DDL operations.

This applies regardless of whether the privilege was granted with or without the ADMIN
option.

For example, assume the following:

1. The security administrator grants the CREATE TABLE system privilege to user jfee
with the ADMIN option.

2. User jfee creates a table.

3. User jfee grants the CREATE TABLE system privilege to user tsmith.

4. User tsmith creates a table.

5. The security administrator revokes the CREATE TABLE system privilege from user
jfee.

6. The table created by user jfee continues to exist. User tsmith still has the table
and the CREATE TABLE system privilege.

Chapter 4
Revokes of Privileges and Roles from a User

4-86

You can observe cascading effects when you revoke a system privilege related to a
DML operation. If the SELECT ANY TABLE privilege is revoked from a user, then all
procedures contained in the user's schema relying on this privilege can no longer be
executed successfully until the privilege is reauthorized.

Cascading Effects When Revoking Object Privileges
Revoking an object privilege can have cascading effects.

Note the following:

• Object definitions that depend on a DML object privilege can be affected if
the DML object privilege is revoked. For example, assume that the body of the
test procedure includes a SQL statement that queries data from the emp table. If
the SELECT privilege on the emp table is revoked from the owner of the test
procedure, then the procedure can no longer be executed successfully.

• When a REFERENCES privilege for a table is revoked from a user, any
foreign key integrity constraints that are defined by the user and require the
dropped REFERENCES privilege are automatically dropped. For example,
assume that user jward is granted the REFERENCES privilege for the deptno column
of the dept table. This user now creates a foreign key on the deptno column in the
emp table that references the deptno column of the dept table. If the REFERENCES
privilege on the deptno column of the dept table is revoked, then the foreign key
constraint on the deptno column of the emp table is dropped in the same operation.

• The object privilege grants propagated using the GRANT OPTION are
revoked if the object privilege of a grantor is revoked. For example, assume
that user1 is granted the SELECT object privilege on the emp table with the GRANT
OPTION, and grants the SELECT privilege on emp to user2. Subsequently, the SELECT
privilege is revoked from user1. This REVOKE statement is also cascaded to user2.
Any objects that depend on the revoked SELECT privilege of user1 and user2 can
also be affected, as described earlier.

Object definitions that require the ALTER and INDEX DDL object privileges are not
affected if the ALTER or INDEX object privilege is revoked. For example, if the INDEX
privilege is revoked from a user that created an index on a table that belongs to
another user, then the index continues to exist after the privilege is revoked.

Grants and Revokes of Privileges to and from the PUBLIC
Role

You can grant and revoke privileges and roles from the role PUBLIC.

Because PUBLIC is accessible to every database user, all privileges and roles granted
to PUBLIC are accessible to every database user. By default, PUBLIC does not have
privileges granted to it.

Security administrators and database users should grant a privilege or role to PUBLIC
only if every database user requires the privilege or role. This recommendation
reinforces the general rule that, at any given time, each database user should have
only the privileges required to accomplish the current group tasks successfully.

Revoking a privilege from the PUBLIC role can cause significant cascading effects. If
any privilege related to a DML operation is revoked from PUBLIC (for example, SELECT

Chapter 4
Grants and Revokes of Privileges to and from the PUBLIC Role

4-87

ANY TABLE or UPDATE ON emp), then all procedures in the database, including functions
and packages, must be reauthorized before they can be used again. Therefore, be
careful when you grant and revoke DML-related privileges to or from PUBLIC.

See Also:

• Oracle Database Administrator’s Guide for more information about
managing object dependencies

• Guidelines for Securing Data

Grants of Roles Using the Operating System or Network
Using the operating system or network to manage roles can help centralize the role
management in a large enterprise.

• About Granting Roles Using the Operating System or Network
The operating system on which Oracle Database runs can be used to grant roles
to users at connect time.

• Operating System Role Identification
The OS_ROLES initialization parameter can be used to control how the operating
system identifies roles.

• Operating System Role Management
When you use operating system-managed roles, remember that database roles
are being granted to an operating system user.

• Role Grants and Revokes When OS_ROLES Is Set to TRUE
Setting the OS_ROLES initialization parameter to TRUE enables the operating system
to manage role grants and revokes to users.

• Role Enablements and Disablements When OS_ROLES Is Set to TRUE
Setting the OS_ROLES initialization parameter to TRUE enables the SET ROLE
statement to dynamically enable roles granted by the operating system.

• Network Connections with Operating System Role Management
By default, users cannot connect to the database through a shared server if the
operating system manages roles.

About Granting Roles Using the Operating System or Network
The operating system on which Oracle Database runs can be used to grant roles to
users at connect time.

This feature is an alternative to a security administrator explicitly having to granting
and revoking database roles to and from users using GRANT and REVOKE statements.

Roles can be administered using the operating system and passed to Oracle
Database when a user creates a session. As part of this mechanism, the default roles
of a user and the roles granted to a user with the ADMIN option can be identified. If the
operating system is used to authorize users for roles, then all roles must be created in
the database and privileges assigned to the role with GRANT statements.

Chapter 4
Grants of Roles Using the Operating System or Network

4-88

Roles can also be granted through a network service.

The advantage of using the operating system to identify the database roles of a user is
that privilege management for an Oracle database can be externalized. The security
facilities offered by the operating system control user privileges. This option may offer
advantages of centralizing security for several system activities, such as the following
situation:

• MVS Oracle administrators want RACF groups to identify database user roles.

• UNIX Oracle administrators want UNIX groups to identify database user roles.

• VMS Oracle administrators want to use rights identifiers to identify database user
roles.

The main disadvantage of using the operating system to identify the database roles of
a user is that privilege management can only be performed at the role level. Individual
privileges cannot be granted using the operating system, but they can still be granted
inside the database using GRANT statements.

A second disadvantage of using this feature is that, by default, users cannot connect
to the database through the shared server or any other network connection if the
operating system is managing roles. However, you can change this default as
described in Network Connections with Operating System Role Management.

In a multitenant environment, you can use operating system authentication for a
database administrator only for the CDB root. You cannot use it for PDBs, the
application root, or application PDBs.

Note:

The features described in this section are available only on some operating
systems. See your operating system-specific Oracle Database
documentation to determine if you can use these features.

Operating System Role Identification
The OS_ROLES initialization parameter can be used to control how the operating system
identifies roles.

To have the database use the operating system to identify the database roles of each
user when a session is created, you can set the initialization parameter OS_ROLES to
TRUE.

If the instance is current running, you must restart the instance. When a user tries to
create a session with the database, Oracle Database initializes the user security
domain using the database roles identified by the operating system.

To identify database roles for a user, the operating system account for each Oracle
Database user must have operating system identifiers (these may be called groups,
rights identifiers, or other similar names) that indicate which database roles are to be
available for the user. Role specification can also indicate which roles are the default
roles of a user and which roles are available with the ADMIN option. No matter which
operating system is used, the role specification at the operating system level follows
the format:

Chapter 4
Grants of Roles Using the Operating System or Network

4-89

ora_ID_ROLE[[_d][_a][_da]]

In this specification:

• ID has a definition that varies on different operating systems. For example, on
VMS, ID is the instance identifier of the database; on VMS, it is the computer type;
and on UNIX, it is the system ID.

ID is case-sensitive to match your ORACLE_SID. ROLE is not case-sensitive.

• ROLE is the name of the database role.

• d is an optional character that indicates this role is to be a default role of the
database user.

• a is an optional character that indicates this role is to be granted to the user with
the ADMIN option. This allows the user to grant the role to other roles only. Roles
cannot be granted to users if the operating system is used to manage roles.

If either the d or a character is specified, then precede that character by an
underscore (_).

For example, suppose an operating system account has the following roles identified
in its profile:

ora_PAYROLL_ROLE1
ora_PAYROLL_ROLE2_a
ora_PAYROLL_ROLE3_d
ora_PAYROLL_ROLE4_da

When the corresponding user connects to the payroll instance of Oracle Database,
role3 and role4 are defaults, while role2 and role4 are available with the ADMIN
option.

Operating System Role Management
When you use operating system-managed roles, remember that database roles are
being granted to an operating system user.

Any database user to which the operating system user is able to connect will have the
authorized database roles enabled. For this reason, you should consider defining all
Oracle Database users as IDENTIFIED EXTERNALLY if you are using OS_ROLES = TRUE,
so that the database accounts are tied to the operating system account that was
granted privileges.

Role Grants and Revokes When OS_ROLES Is Set to TRUE
Setting the OS_ROLES initialization parameter to TRUE enables the operating system to
manage role grants and revokes to users.

Any previous granting of roles to users using GRANT statements do not apply. However,
they are still listed in the data dictionary. Only the role grants to users made at the
operating system level apply. Users can still grant privileges to roles and users.

Chapter 4
Grants of Roles Using the Operating System or Network

4-90

Note:

If the operating system grants a role to a user with the ADMIN option, then the
user can grant the role only to other roles.

Role Enablements and Disablements When OS_ROLES Is Set to
TRUE

Setting the OS_ROLES initialization parameter to TRUE enables the SET ROLE statement
to dynamically enable roles granted by the operating system.

This still applies, even if the role was defined to require a password or operating
system authorization. However, any role not identified in the operating system account
of a user cannot be specified in a SET ROLE statement, even if a role was granted
using a GRANT statement when OS_ROLES = FALSE. (If you specify such a role, then
Oracle Database ignores it.)

When OS_ROLES is set to TRUE, then the user can enable up to 148 roles. Remember
that this number includes other roles that may have been granted to the role.

Network Connections with Operating System Role Management
By default, users cannot connect to the database through a shared server if the
operating system manages roles.

This restriction is the default because a remote user could impersonate another
operating system user over an unsecure connection.

If you are not concerned with this security risk and want to use operating system role
management with the shared server, or any other network connection, then set the
initialization parameter REMOTE_OS_ROLES to TRUE. The change takes effect the next
time you start the instance and mount the database. The default setting of this
parameter is FALSE.

How Grants and Revokes Work with SET ROLE and Default
Role Settings

Privilege grants and the SET ROLE statement affect when and how grants and revokes
take place.

• When Grants and Revokes Take Effect
Depending on the privilege that is granted or revoked, a grant or revoke takes
effect at different times.

• How the SET ROLE Statement Affects Grants and Revokes
During a user session, a user or an application can use the SET ROLE statement
multiple times to change the roles enabled for the session.

• Specifying the Default Role for a User
When a user logs on, Oracle Database enables all privileges granted explicitly to
the user and all privileges in the user’s default roles.

Chapter 4
How Grants and Revokes Work with SET ROLE and Default Role Settings

4-91

• The Maximum Number of Roles That a User Can Have Enabled
You can grant a user as many roles as you want, but no more than 148 roles can
be enabled for a logged-in user at any given time.

When Grants and Revokes Take Effect
Depending on the privilege that is granted or revoked, a grant or revoke takes effect at
different times.

The grants and revokes take effect as follows:

• All grants and revokes of system and object privileges to anything (users, roles,
and PUBLIC) take immediate effect.

• All grants and revokes of roles to anything (users, other roles, PUBLIC) take effect
only when a current user session issues a SET ROLE statement to reenable the role
after the grant and revoke, or when a new user session is created after the grant
or revoke.

You can see which roles are currently enabled by examining the SESSION_ROLES data
dictionary view.

How the SET ROLE Statement Affects Grants and Revokes
During a user session, a user or an application can use the SET ROLE statement
multiple times to change the roles enabled for the session.

The user must already be granted the roles that are named in the SET ROLE statement.

The following example enables the role clerk, which you have already been granted,
and specifies the password.

SET ROLE clerk IDENTIFIED BY password;

Follow the guidelines in Minimum Requirements for Passwords to replace password
with a password that is secure.

The following example shows how to use SET ROLE to disable all roles.

SET ROLE NONE;

Specifying the Default Role for a User
When a user logs on, Oracle Database enables all privileges granted explicitly to the
user and all privileges in the user’s default roles.

1. Ensure that the user who you want to set the default role for has been directly
granted the role with a GRANT statement, or that the role was created by the user
with the CREATE ROLE privilege.

2. Use the ALTER USER statement with the DEFAULT ROLE clause to specify the default
role for the user.

For example, to set the default roles payclerk and pettycash for user jane:

ALTER USER jane DEFAULT ROLE payclerk, pettycash;

For information about the restrictions of the DEFAULT ROLE clause of the ALTER USER
statement, see Oracle Database SQL Language Reference.

Chapter 4
How Grants and Revokes Work with SET ROLE and Default Role Settings

4-92

You cannot set default roles for a user in the CREATE USER statement. When you first
create a user, the default user role setting is ALL, which causes all roles subsequently
granted to the user to be default roles. Use the ALTER USER statement to limit the
default user roles.

Note:

When you create a role (other than a global role or an application role), it is
granted implicitly to you, and your set of default roles is updated to include
the new role. Be aware that only 148 roles can be enabled for a user
session. When aggregate roles, such as the DBA role, are granted to a user,
the roles granted to the role are included in the number of roles the user has.
For example, if a role has 20 roles granted to it and you grant that role to the
user, then the user now has 21 additional roles. Therefore, when you grant
new roles to a user, use the DEFAULT ROLE clause of the ALTER USER
statement to ensure that not too many roles are specified as that user's
default roles.

The Maximum Number of Roles That a User Can Have Enabled
You can grant a user as many roles as you want, but no more than 148 roles can be
enabled for a logged-in user at any given time.

Therefore, not all privileges will be available to this user during the user session. As a
best practice, restrict the number of roles granted to a user to the minimum roles the
user needs.

Related Topics

• Guidelines for Securing Roles
Oracle provides guidelines for role management.

User Privilege and Role Data Dictionary Views
You can use special queries to find information about various types of privilege and
role grants.

• Data Dictionary Views to Find Information about Privilege and Role Grants
Oracle Database provides data dictionary views that describe privilege and role
grants.

• Query to List All System Privilege Grants
The DBA_SYS_PRIVS data dictionary view returns all system privilege grants made
to roles and users.

• Query to List All Role Grants
The DBA_ROLE_PRIVS query returns all the roles granted to users and other roles.

• Query to List Object Privileges Granted to a User
The DBA_TAB_PRIVS and DBA_COL_PRIVS data dictionary views list object privileges
that have bee granted to users.

Chapter 4
User Privilege and Role Data Dictionary Views

4-93

• Query to List the Current Privilege Domain of Your Session
The SESSION_ROLES and SESSION_PRIVS data dictionary views list the current
privilege domain of a database session.

• Query to List Roles of the Database
The DBA_ROLES data dictionary view lists all roles of a database and the
authentication used for each role.

• Query to List Information About the Privilege Domains of Roles
The ROLE_ROLE_PRIVS, ROLE_SYS_PRIVS, and ROLE_TAB_PRIVS data dictionary
views list information about the privilege domains of roles.

Data Dictionary Views to Find Information about Privilege and Role
Grants

Oracle Database provides data dictionary views that describe privilege and role grants.

Table 4-6 lists views that you can query to access information about grants of
privileges and roles.

Table 4-6 Data Dictionary Views That Display Privilege and Role Information

View Description

ALL_COL_PRIVS Describes all column object grants for which the current user
or PUBLIC is the object owner, grantor, or grantee

ALL_COL_PRIVS_MADE Lists column object grants for which the current user is object
owner or grantor

ALL_COL_PRIVS_RECD Describes column object grants for which the current user or
PUBLIC is the grantee

ALL_TAB_PRIVS Lists the grants on objects where the user or PUBLIC is the
grantee

ALL_TAB_PRIVS_MADE Lists the all object grants made by the current user or made
on the objects owned by the current user

ALL_TAB_PRIVS_RECD Lists object grants for which the user or PUBLIC is the
grantee

DBA_COL_PRIVS Describes all column object grants in the database

DBA_CONTAINER_DATA In a multitenant environment, displays default (user-level)
and object-specific CONTAINER_DATA attributes. Objects that
are created with the CONTAINER_DATA clause include
CONTAINER_DATA attributes.

DBA_EPG_DAD_AUTHORIZATION Describes the database access descriptors (DAD) that are
authorized to use a different user's privileges

DBA_LOCKDOWN_PROFILES Describes information that pertains to PDB lockdown profiles

DBA_OBJECTS Lists objects that have object links or metadata links. To find
these objects, query the OBJECT_NAME and SHARING
columns.

DBA_TAB_PRIVS Lists all grants on all objects in the database

DBA_ROLES Lists all roles that exist in the database, including secure
application roles. Note that it does not list the PUBLIC role

DBA_ROLE_PRIVS Lists roles directly granted to users and roles

Chapter 4
User Privilege and Role Data Dictionary Views

4-94

Table 4-6 (Cont.) Data Dictionary Views That Display Privilege and Role
Information

View Description

DBA_SYS_PRIVS Lists system privileges granted to users and roles

ROLE_ROLE_PRIVS Lists roles granted to other roles. Information is provided only
about roles to which the user has access

ROLE_SYS_PRIVS Lists system privileges granted to roles. Information is
provided only about roles to which the user has access

ROLE_TAB_PRIVS Lists object privileges granted to roles. Information is
provided only about roles to which the user has access

SESSION_PRIVS Lists the privileges that are currently enabled for the user

SESSION_ROLES Lists all roles that are enabled for the current user. Note that
it does not list the PUBLIC role

USER_COL_PRIVS Describes column object grants for which the current user is
the object owner, grantor, or grantee

USER_COL_PRIVS_MADE Describes column object grants for which the current user is
the object owner

USER_COL_PRIVS_RECD Describes column object grants for which the current user is
the grantee

USER_EPG_DAD_AUTHORIZATIO
N

Describes the database access descriptors (DAD) that are
authorized to use a different user's privileges

USER_ROLE_PRIVS Lists roles directly granted to the current user

USER_TAB_PRIVS Lists grants on all objects where the current user is the
grantee

USER_SYS_PRIVS Lists system privileges granted to the current user

USER_TAB_PRIVS_MADE Lists grants on all objects owned by the current user

USER_TAB_PRIVS_RECD Lists object grants for which the current user is the grantee

V$PWFILE_USERS Lists all users in the current PDB who have been granted
administrative privileges

The following table lists views that you can query to access information about grants of
privileges and roles.

This section provides some examples of using these views. For these examples,
assume the following statements were issued:

CREATE ROLE security_admin IDENTIFIED BY password;

GRANT CREATE PROFILE, ALTER PROFILE, DROP PROFILE,
 CREATE ROLE, DROP ANY ROLE, GRANT ANY ROLE, AUDIT ANY,
 AUDIT SYSTEM, CREATE USER, BECOME USER, ALTER USER, DROP USER
 TO security_admin WITH ADMIN OPTION;

GRANT READ, DELETE ON SYS.AUD$ TO security_admin;

GRANT security_admin, CREATE SESSION TO swilliams;

GRANT security_admin TO system_administrator;

Chapter 4
User Privilege and Role Data Dictionary Views

4-95

GRANT CREATE SESSION TO jward;

GRANT READ, DELETE ON emp TO jward;

GRANT INSERT (ename, job) ON emp TO swilliams, jward;

See Also:

Oracle Database Reference for a detailed description of these data
dictionary views

Query to List All System Privilege Grants
The DBA_SYS_PRIVS data dictionary view returns all system privilege grants made to
roles and users.

For example:

SELECT GRANTEE, PRIVILEGE, ADM FROM DBA_SYS_PRIVS;

GRANTEE PRIVILEGE ADM
-------------- --------------------------------- ---
SECURITY_ADMIN ALTER PROFILE YES
SECURITY_ADMIN ALTER USER YES
SECURITY_ADMIN AUDIT ANY YES
SECURITY_ADMIN AUDIT SYSTEM YES
SECURITY_ADMIN BECOME USER YES
SECURITY_ADMIN CREATE PROFILE YES
SECURITY_ADMIN CREATE ROLE YES
SECURITY_ADMIN CREATE USER YES
SECURITY_ADMIN DROP ANY ROLE YES
SECURITY_ADMIN DROP PROFILE YES
SECURITY_ADMIN DROP USER YES
SECURITY_ADMIN GRANT ANY ROLE YES
SWILLIAMS CREATE SESSION NO
JWARD CREATE SESSION NO

See Also:

Oracle Database Reference for detailed information about the
DBA_SYS_PRIVS view

Query to List All Role Grants
The DBA_ROLE_PRIVS query returns all the roles granted to users and other roles.

For example:

SELECT * FROM DBA_ROLE_PRIVS;

GRANTEE GRANTED_ROLE ADM

Chapter 4
User Privilege and Role Data Dictionary Views

4-96

------------------ ------------------------------------ ---
SWILLIAMS SECURITY_ADMIN NO

See Also:

Oracle Database Reference for detailed information about the
DBA_ROLE_PRIVS view

Query to List Object Privileges Granted to a User
The DBA_TAB_PRIVS and DBA_COL_PRIVS data dictionary views list object privileges that
have bee granted to users.

The DBA_TAB_PRIVS data dictionary view returns all object privileges (not including
column-specific privileges) granted to the specified user.

For example:

SELECT TABLE_NAME, PRIVILEGE, GRANTABLE FROM DBA_TAB_PRIVS
 WHERE GRANTEE = 'jward';

TABLE_NAME PRIVILEGE GRANTABLE
----------- ------------ ----------
EMP SELECT NO
EMP DELETE NO

To list all the column-specific privileges that have been granted, you can use the
following query:

SELECT GRANTEE, TABLE_NAME, COLUMN_NAME, PRIVILEGE
 FROM DBA_COL_PRIVS;

GRANTEE TABLE_NAME COLUMN_NAME PRIVILEGE
----------- ------------ ------------- --------------
SWILLIAMS EMP ENAME INSERT
SWILLIAMS EMP JOB INSERT
JWARD EMP NAME INSERT
JWARD EMP JOB INSERT

See Also:

Oracle Database Reference for detailed information about the
DBA_TAB_PRIVS view

Query to List the Current Privilege Domain of Your Session
The SESSION_ROLES and SESSION_PRIVS data dictionary views list the current privilege
domain of a database session.

The SESSION_ROLES view lists all roles currently enabled for the issuer.

For example:

Chapter 4
User Privilege and Role Data Dictionary Views

4-97

SELECT * FROM SESSION_ROLES;

If user swilliams has the security_admin role enabled and issues the previous query,
then Oracle Database returns the following information:

ROLE

SECURITY_ADMIN

The following query lists all system privileges currently available in the security domain
of the issuer, both from explicit privilege grants and from enabled roles:

SELECT * FROM SESSION_PRIVS;

If user swilliams has the security_admin role enabled and issues the previous query,
then Oracle Database returns the following results:

PRIVILEGE
--
AUDIT SYSTEM
CREATE SESSION
CREATE USER
BECOME USER
ALTER USER
DROP USER
CREATE ROLE
DROP ANY ROLE
GRANT ANY ROLE
AUDIT ANY
CREATE PROFILE
ALTER PROFILE
DROP PROFILE

If the security_admin role is disabled for user swilliams, then the first query would
return no rows, while the second query would only return a row for the CREATE
SESSION privilege grant.

See Also:

Oracle Database Reference for detailed information about the
SESSION_ROLES view

Query to List Roles of the Database
The DBA_ROLES data dictionary view lists all roles of a database and the authentication
used for each role.

For example:

SELECT * FROM DBA_ROLES;

ROLE PASSWORD
---------------- --------
CONNECT NO
RESOURCE NO
DBA NO
SECURITY_ADMIN YES

Chapter 4
User Privilege and Role Data Dictionary Views

4-98

See Also:

Oracle Database Reference for detailed information about the DBA_ROLES
view

Query to List Information About the Privilege Domains of Roles
The ROLE_ROLE_PRIVS, ROLE_SYS_PRIVS, and ROLE_TAB_PRIVS data dictionary views list
information about the privilege domains of roles.

For example:

SELECT GRANTED_ROLE, ADMIN_OPTION
 FROM ROLE_ROLE_PRIVS
 WHERE ROLE = 'SYSTEM_ADMIN';

GRANTED_ROLE ADM
---------------- ----
SECURITY_ADMIN NO

The following query lists all the system privileges granted to the security_admin role:

SELECT * FROM ROLE_SYS_PRIVS WHERE ROLE = 'SECURITY_ADMIN';

ROLE PRIVILEGE ADM
----------------------- ----------------------------- ---
SECURITY_ADMIN ALTER PROFILE YES
SECURITY_ADMIN ALTER USER YES
SECURITY_ADMIN AUDIT ANY YES
SECURITY_ADMIN AUDIT SYSTEM YES
SECURITY_ADMIN BECOME USER YES
SECURITY_ADMIN CREATE PROFILE YES
SECURITY_ADMIN CREATE ROLE YES
SECURITY_ADMIN CREATE USER YES
SECURITY_ADMIN DROP ANY ROLE YES
SECURITY_ADMIN DROP PROFILE YES
SECURITY_ADMIN DROP USER YES
SECURITY_ADMIN GRANT ANY ROLE YES

The following query lists all the object privileges granted to the security_admin role:

SELECT TABLE_NAME, PRIVILEGE FROM ROLE_TAB_PRIVS
 WHERE ROLE = 'SECURITY_ADMIN';

TABLE_NAME PRIVILEGE
--------------------------- ----------------
AUD$ DELETE
AUD$ SELECT

Chapter 4
User Privilege and Role Data Dictionary Views

4-99

See Also:

Oracle Database ReferenceOracle Database Reference for detailed
information about the ROLE_ROLE_PRIVS, ROLE_SYS_PRIVS, and
ROLE_TAB_PRIVS views

Chapter 4
User Privilege and Role Data Dictionary Views

4-100

5
Performing Privilege Analysis
to Find Privilege Use

Privilege analysis dynamically analyzes the privileges and roles that users use and do
not use.

• What Is Privilege Analysis?
Privilege analysis increases the security of your applications and database
operations by helping you to implement least privilege best practices for database
roles and privileges.

• Creating and Managing Privilege Analysis Policies
You can create and manage privilege analysis policies in either SQL*Plus or in
Enterprise Manager Cloud Control.

• Creating Roles and Managing Privileges Using Cloud Control
You can create new roles using privileges found in a privilege analysis report and
then grant this role to users.

• Tutorial: Using Capture Runs to Analyze ANY Privilege Use
This tutorial demonstrates how to create capture runs to analyze the use of the
READ ANY TABLE system privilege.

• Tutorial: Analyzing Privilege Use by a User Who Has the DBA Role
This tutorial demonstrates how to analyze the privilege use of a user who has the
DBA role and performs database tuning operations.

• Privilege Analysis Policy and Report Data Dictionary Views
Oracle Database provides data dictionary views that show information about
analyzed privileges.

What Is Privilege Analysis?
Privilege analysis increases the security of your applications and database operations
by helping you to implement least privilege best practices for database roles and
privileges.

• About Privilege Analysis
Running inside the Oracle Database kernel, privilege analysis helps reduce the
attack surface of user, tooling, and application accounts by identifying used and
unused privileges to implement the least-privilege model.

• Benefits and Use Cases of Privilege Analysis
Analyzing privilege use is beneficial in finding unnecessarily granted privileges and
implementing least privilege best practices.

• Who Can Perform Privilege Analysis?
To use privilege analysis, you must be granted the CAPTURE_ADMIN role.

• Types of Privilege Analysis
You can create different types of privilege analysis policies to achieve specific
goals.

5-1

• How Does a Multitenant Environment Affect Privilege Analysis?
You can create and use privilege analysis policies in a multitenant environment.

• How Privilege Analysis Works with Pre-Compiled Database Objects
Privilege analysis can be used to capture the privileges that have been exercised
on pre-compiled database objects.

About Privilege Analysis
Running inside the Oracle Database kernel, privilege analysis helps reduce the attack
surface of user, tooling, and application accounts by identifying used and unused
privileges to implement the least-privilege model.

Privilege analysis dynamically captures privileges used by database users and
applications. The use of privilege analysis can help to quickly and efficiently enforce
least privilege guidelines. In the least-privilege model, users are only given the
privileges and access they need to do their jobs. Frequently, even though users
perform different tasks, users are all granted the same set of powerful privileges.
Without privilege analysis, figuring out the privileges that each user must have can be
hard work and in many cases, users could end up with some common set of privileges
even though they have different tasks. Even in organizations that manage privileges,
users tend to accumulate privileges over time and rarely lose any privileges.
Separation of duty breaks a single process into separate tasks for different users.
Least privileges enforces the separation so users can only do their required tasks. The
enforcement of separation of duty is beneficial for internal control, but it also reduces
the risk from malicious users who steal privileged credentials.

Privilege analysis captures privileges used by database users and applications at
runtime and writes its findings to data dictionary views that you can query. If your
applications include definer’s rights and invoker’s rights procedures, then privilege
analysis captures the privileges that are required to compile a procedure and execute
it, even if the procedure was compiled before the privilege capture was created and
enabled.

Benefits and Use Cases of Privilege Analysis
Analyzing privilege use is beneficial in finding unnecessarily granted privileges and
implementing least privilege best practices.

• Least Privileges Best Practice
The privileges of the account that accesses a database should be limited to the
privileges that are strictly required by the application or the user.

• Development of Secure Applications
During the application development phase, some administrators may grant many
powerful system privileges and roles to application developers.

Least Privileges Best Practice
The privileges of the account that accesses a database should be limited to the
privileges that are strictly required by the application or the user.

But when an application is developed, especially by a third party, more privileges than
necessary may be granted to the application connection pool accounts for
convenience. In addition, some developers grant system and application object
privileges to the PUBLIC role.

Chapter 5
What Is Privilege Analysis?

5-2

For example, to select from application data and run application procedures, the
system privileges SELECT ANY TABLE and EXECUTE ANY PROCEDURE are granted to an
application account appsys. The account appsys now can access non-application data
even if he or she does not intend to. In this situation, you can analyze the privilege
usage by user appsys, and then based on the results, revoke and grant privileges as
necessary.

Development of Secure Applications
During the application development phase, some administrators may grant many
powerful system privileges and roles to application developers.

The administrators may do this because at that stage they may not know what
privileges the application developer needs.

Once the application is developed and working, the privileges that the application
developer needs — and does not need — become more apparent. At that time, the
security administrator can begin to revoke unnecessary privileges. However, the
application developer may resist this idea on the basis that the application is currently
working without problems. The administrator can use privilege analysis to examine
each privilege that the application uses, to ensure that when he or she does revoke
any privileges, the application will continue to work.

For example, app_owner is an application database user through whom the application
connects to a database. User app_owner must query tables in the OE, SH, and PM
schemas. Instead of granting the SELECT object privilege on each of the tables in these
schemas, a security administrator grants the SELECT ANY TABLE privilege to
app_owner. After a while, a new schema, HR, is created and sensitive data are inserted
into HR.EMPLOYEES table. Because user app_owner has the SELECT ANY TABLE
privilege, he can query this table to access its sensitive data, which is a security issue.
Instead of granting system privileges (particularly the ANY privileges), it is far better to
grant object privileges for specific tables.

Who Can Perform Privilege Analysis?
To use privilege analysis, you must be granted the CAPTURE_ADMIN role.

You use the DBMS_PRIVILEGE_CAPTURE PL/SQL package to manage privilege capture.
You use the data dictionary views provided by privilege analysis to analyze your
privilege use.

Types of Privilege Analysis
You can create different types of privilege analysis policies to achieve specific goals.

• Role-based privilege use capture. You must provide a list of roles. If the roles in
the list are enabled in the database session, then the used privileges for the
session will be captured. You can capture privilege use for the following types of
roles: Oracle default roles, user-created roles, Code Based Access Control
(CBAC) roles, and secure application roles.

• Context-based privilege use capture. You must specify a Boolean expression
only with the SYS_CONTEXT function. The used privileges will be captured if the
condition evaluates to TRUE. This method can be used to capture privileges and
roles used by a database user by specifying the user in SYS_CONTEXT.

Chapter 5
What Is Privilege Analysis?

5-3

• Role- and context-based privilege use capture. You must provide both a list of
roles that are enabled and a SYS_CONTEXT Boolean expression for the condition.
When any of these roles is enabled in a session and the given context condition is
satisfied, then privilege analysis starts capturing the privilege use.

• Database-wide privilege capture. If you do not specify any type in your privilege
analysis policy, then the used privileges in the database will be captured, except
those for the user SYS. (This is also referred to as unconditional analysis, because
it is turned on without any conditions.)

Note the following restrictions:

• You can enable only one privilege analysis policy at a time. The only exception is
that you can enable a database-wide privilege analysis policy at the same time as
a non-database-wide privilege analysis policy, such as a role or context attribute-
driven analysis policy.

• You cannot analyze the privileges of the SYS user.

• Privilege analysis shows the grant paths to the privilege but it does not suggest
which grant path to keep.

• If the role, user, or object has been dropped, then the values that reflect the
privilege captures for these in the privilege analysis data dictionary views are
dropped as well.

How Does a Multitenant Environment Affect Privilege Analysis?
You can create and use privilege analysis policies in a multitenant environment.

If you are using a multitenant environment, then you can create privilege analysis
policies in either the CDB root or in individual PDBs. The privilege analysis policy
applies only to the container in which it is created, either to the privileges used within
the CDB root or the application root, or to the privileges used within a PDB. It cannot
be applied globally throughout the multitenant environment. You can grant the
CAPTURE_ADMIN role locally to a local user or a common user. You can grant the
CAPTURE_ADMIN role commonly to common users.

How Privilege Analysis Works with Pre-Compiled Database Objects
Privilege analysis can be used to capture the privileges that have been exercised on
pre-compiled database objects.

Examples of these objects are PL/SQL packages, procedures, functions, views,
triggers, and Java classes and data.

Because these privileges may not be exercised during run time when a stored
procedure is called, these privileges are collected when you generate the results for
any database-wide capture, along with run-time captured privileges. A privilege is
treated as an unused privilege when it is not used in either pre-compiled database
objects or run-time capture, and it is saved under the run-time capture name. If a
privilege is used for pre-compiled database objects, then it is saved under the capture
name ORA$DEPENDENCY. If a privilege is captured during run time, then it is saved under
the run-time capture name. If you want to know what the used privileges are for both
pre-compiled database objects and run-time usage, then you must query both the
ORA$DEPENDENCY and run-time captures. For unused privileges, you only need to query
with the run-time capture name.

Chapter 5
What Is Privilege Analysis?

5-4

To find a full list of the pre-compiled objects on which privilege analysis can be used,
query the TYPE column of the ALL_DEPENDENCIES data dictionary view.

Creating and Managing Privilege Analysis Policies
You can create and manage privilege analysis policies in either SQL*Plus or in
Enterprise Manager Cloud Control.

• About Creating and Managing Privilege Analysis Policies
You can use Oracle Enterprise Manager Cloud Control or the
DBMS_PRIVILEGE_CAPTURE PL/SQL package to analyze privileges.

• General Steps for Managing Privilege Analysis
You must follow a general set of steps to analyze privileges.

• Creating a Privilege Analysis Policy
You can use the DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE procedure to create a
privilege analysis policy.

• Enabling a Privilege Analysis Policy
After you create a privilege analysis policy, you must enable it to capture privilege
use.

• Examples of Creating and Enabling Privilege Analysis Policies
You can create a variety of privilege analysis policies.

• Disabling a Privilege Analysis Policy
You must disable the privilege analysis policy before you can generate a privilege
analysis report.

• Generating a Privilege Analysis Report
You can generate a privilege analysis policy report using either Enterprise
Manager Cloud Control or from SQL*Plus, using the DBMS_PRIVILEGE_CAPTURE
PL/SQL package.

• Dropping a Privilege Analysis Policy
Before you can drop a privilege analysis policy, you must first disable it.

About Creating and Managing Privilege Analysis Policies
You can use Oracle Enterprise Manager Cloud Control or the
DBMS_PRIVILEGE_CAPTURE PL/SQL package to analyze privileges.

Before you can do so, you must be granted the CAPTURE_ADMIN role. The
DBMS_PRIVILEGE_CAPTURE package enables you to create, enable, disable, and drop
privilege analysis policies. It also generates reports that show the privilege usage,
which you can view in DBA_* views.

Related Topics

• Oracle Database PL/SQL Packages and Types Reference

General Steps for Managing Privilege Analysis
You must follow a general set of steps to analyze privileges.

1. Define the privilege analysis policy.

2. Enable the privilege analysis policy.

Chapter 5
Creating and Managing Privilege Analysis Policies

5-5

This step begins recording the privilege use that the policy defined. Optionally,
specify a name for this capture run. Each time you enable a privilege analysis
policy, you can create a different capture run for it. In this way, you can create
multiple named capture runs for comparison analysis later on.

3. Optionally, enable the policy to capture dependency privileges if you want to
capture the privileges that are used by definer’s rights and invoker’s rights
program units.

4. After a sufficient period of time to gather data, disable the privilege analysis
policy's recording of privilege use.

This step stops capturing the privilege use for the policy.

5. Generate privilege analysis results.

This step writes the results to the privilege analysis policy and report data
dictionary views.

6. Optionally, disable and then drop the privilege analysis policy and capture run.

Dropping a privilege analysis policy deletes the data captured by the policy.

Related Topics

• Privilege Analysis Policy and Report Data Dictionary Views
Oracle Database provides data dictionary views that show information about
analyzed privileges.

Creating a Privilege Analysis Policy
You can use the DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE procedure to create a
privilege analysis policy.

After you create the privilege analysis policy, you can find it listed in the
DBA_PRIV_CAPTURES data dictionary view. When a policy is created, it resides in the
Oracle data dictionary and the SYS schema. However, both SYS and the user who
created the policy can drop it. After you create the policy, you must manually enable it
so that it can begin to analyze privilege use.

1. Log in to the database instance as a user who has the CAPTURE_ADMIN role.

2. Use the following syntax for the DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE
procedure:

DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE(
 name VARCHAR2,
 description VARCHAR2 DEFAULT NULL,
 type NUMBER DEFAULT DBMS_PRIVILEGE_CAPTURE.G_DATABASE,
 roles ROLE_NAME_LIST DEFAULT ROLE_NAME_LIST(),
 condition VARCHAR2 DEFAULT NULL);

In this specification:

• name: Specifies the name of the privilege analysis policy to be created. Ensure
that this name is unique and no more than 128 characters. You can include
spaces in the name, but you must enclose the name in single quotation marks
whenever you refer to it. To find the names of existing policies, query the NAME
column of the DBA_PRIV_CAPTURES view.

• description: Describes the purpose of the privilege analysis policy, up to
1024 characters in mixed-case letters. Optional.

Chapter 5
Creating and Managing Privilege Analysis Policies

5-6

• type: Specifies the type of capture condition. If you omit the type parameter,
then the default is DBMS_PRIVILEGE_CAPTURE.G_DATABASE. Optional.

Enter one of the following types:

– DBMS_PRIVILEGE_CAPTURE.G_DATABASE: Captures all privileges used in the
entire database, except privileges from user SYS.

– DBMS_PRIVILEGE_CAPTURE.G_ROLE: Captures privileges for the sessions
that have the roles enabled. If you enter DBMS_PRIVILEGE_CAPTURE.G_ROLE
for the type parameter, then you must also specify the roles parameter.
For multiple roles, separate each role name with a comma.

– DBMS_PRIVILEGE_CAPTURE.G_CONTEXT: Captures privileges for the sessions
that have the condition specified by the condition parameter evaluating to
TRUE. If you enter DBMS_PRIVILEGE_CAPTURE.G_CONTEXT for the type
parameter, then you must also specify the condition parameter.

– DBMS_PRIVILEGE_CAPTURE.G_ROLE_AND_CONTEXT: Captures privileges for
the sessions that have the role enabled and the context condition
evaluating to TRUE. If you enter
DBMS_PRIVILEGE_CAPTURE.G_ROLE_AND_CONTEXT for the type parameter,
then you must also specify both the roles and condition parameters.

• roles: Specifies the roles whose used privileges will be analyzed. That is, if a
privilege from one of the given roles is used, then the privilege will be
analyzed. You must specify this argument if you specify
DBMS_PRIVILEGE_CAPTURE.G_ROLE or
DBMS_PRIVILEGE_CAPTURE.G_ROLE_AND_CONTEXT for the type argument. Each
role you enter must exist in the database. (You can find existing roles by
querying the DBA_ROLES data dictionary view.) For multiple roles, use varray
type role_name_list to enter the role names. You can specify up to 10 roles.

For example, to specify two roles:

roles => role_name_list('role1', 'role2'),

• condition: Specifies a Boolean expression up to 4000 characters. You must
specify this argument if you specify DBMS_PRIVILEGE_CAPTURE.G_CONTEXT or
DBMS_PRIVILEGE_CAPTURE.G_ROLE_AND_CONTEXT for the type argument. Only
SYS_CONTEXT expressions with relational operators(==, >, >=, <, <=, <>,
BETWEEN, and IN) are permitted in this Boolean expression.

The condition expression syntax is as follows:

predicate::= SYS_CONTEXT(namespace, attribute) relop constant_value |
 SYS_CONTEXT(namespace, attribute)
 BETWEEN
 constant_value
 AND constant_value | SYS_CONTEXT(namespace, attribute)
 IN {constant_value (,constant_value)* }

relop::= = | < | <= | > | >= | <>

context_expression::= predicate | (context_expression)
 AND (context_expression) | (context_expression)
 OR (context_expression)

For example, to use a condition to specify the IP address 192.0.2.1:

condition => 'SYS_CONTEXT(''USERENV'', ''IP_ADDRESS'')=''192.0.2.1''';

Chapter 5
Creating and Managing Privilege Analysis Policies

5-7

After you create the privilege analysis policy, you must enable the policy to begin
capturing privilege and role use.

* You can add as many constant values as you need (for example, IN
{constant_value1}, or IN {constant_value1, constant_value2,
constant_value3}).

Related Topics

• Enabling a Privilege Analysis Policy
After you create a privilege analysis policy, you must enable it to capture privilege
use.

Enabling a Privilege Analysis Policy
After you create a privilege analysis policy, you must enable it to capture privilege use.

The DBMS_PRIVILEGE_CAPTURE.ENABLE_CAPTURE procedure enables a privilege policy
and creates a capture run name for it. The run name defines the period of time that the
capture took place.

1. Log in to the database instance as a user who has the CAPTURE_ADMIN role.

2. Query the NAME and ENABLED columns of the DBA_PRIV_CAPTURES data dictionary
view to find the existing privilege analysis policies and whether they are currently
enabled.

3. Run the DBMS_PRIVILEGE_CAPTURE.ENABLE_CAPTURE procedure to enable the policy
and optionally create a name for a capture run.

For example, to enable the privilege analysis policy logon_users_analysis:

BEGIN
 DBMS_PRIVILEGE_CAPTURE.ENABLE_CAPTURE (
 name => 'logon_users_analysis_pol',
 run_name => 'logon_users_04092016');
END;
/

Examples of Creating and Enabling Privilege Analysis Policies
You can create a variety of privilege analysis policies.

• Example: Privilege Analysis of Database-Wide Privileges
The DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE can be used to analyze database-
wide privileges.

• Example: Privilege Analysis of Privilege Usage of Two Roles
The DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE procedure can be used to analyze
the privilege usage of multiple roles.

• Example: Privilege Analysis of Privileges During SQL*Plus Use
The DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE procedure can be used to capture
privileges for analysis.

• Example: Privilege Analysis of PSMITH Privileges During SQL*Plus Access
The DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE can be used to analyze user
access when the user is running SQL*Plus.

Chapter 5
Creating and Managing Privilege Analysis Policies

5-8

Example: Privilege Analysis of Database-Wide Privileges
The DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE can be used to analyze database-
wide privileges.

Example 5-1 shows how to use the DBMS_PRIVILEGE_CAPTURE package to create and
enable a privilege analysis policy to record all privilege use in the database.

Example 5-1 Privilege Analysis of Database-Wide Privileges

BEGIN
 DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE(
 name => 'db_wide_capture_pol',
 description => 'Captures database-wide privileges',
 type => DBMS_PRIVILEGE_CAPTURE.G_DATABASE);
END;
/
EXEC DBMS_PRIVILEGE_CAPTURE.ENABLE_CAPTURE ('db_wide_capture_pol');

Example: Privilege Analysis of Privilege Usage of Two Roles
The DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE procedure can be used to analyze the
privilege usage of multiple roles.

Example 5-2 shows how to analyze the privilege usage of two roles.

Example 5-2 Privilege Analysis of Privilege Usage of Two Roles

BEGIN
 DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE(
 name => 'dba_roles_capture_pol',
 description => 'Captures DBA and LBAC_DBA role use',
 type => DBMS_PRIVILEGE_CAPTURE.G_ROLE,
 roles => role_name_list('dba', 'lbac_dba'));
END;
/
EXEC DBMS_PRIVILEGE_CAPTURE.ENABLE_CAPTURE ('dba_roles_capture_pol');

Example: Privilege Analysis of Privileges During SQL*Plus Use
The DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE procedure can be used to capture
privileges for analysis.

Example 5-3 shows how to analyze privileges used to run SQL*Plus.

Example 5-3 Privilege Analysis of Privileges During SQL*Plus Use

BEGIN
 DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE(
 name => 'sqlplus_capture_pol',
 description => 'Captures privilege use during SQL*Plus use',
 type => DBMS_PRIVILEGE_CAPTURE.G_CONTEXT,
 condition => 'SYS_CONTEXT(''USERENV'', ''MODULE'')=''sqlplus''');
END;
/
EXEC DBMS_PRIVILEGE_CAPTURE.ENABLE_CAPTURE ('sqlplus_capture_pol');

Chapter 5
Creating and Managing Privilege Analysis Policies

5-9

Example: Privilege Analysis of PSMITH Privileges During SQL*Plus Access
The DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE can be used to analyze user access
when the user is running SQL*Plus.

Example 5-4 shows how to analyze the privileges used by session user PSMITH when
running SQL*Plus.

Example 5-4 Privilege Analysis of PSMITH Privileges During SQL*Plus Access

BEGIN
 DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE(
 name => 'psmith_sqlplus_analysis_pol',
 description => 'Analyzes PSMITH role priv use for SQL*Plus module',
 type => DBMS_PRIVILEGE_CAPTURE.G_CONTEXT,
 condition => 'SYS_CONTEXT(''USERENV'', ''MODULE'')=''sqlplus''
 AND SYS_CONTEXT(''USERENV'', ''SESSION_USER'')=''PSMITH''');
END;
/
EXEC DBMS_PRIVILEGE_CAPTURE.ENABLE_CAPTURE ('psmith_sqlplus_analysis_pol');

Disabling a Privilege Analysis Policy
You must disable the privilege analysis policy before you can generate a privilege
analysis report.

After you disable the policy, then the privileges are no longer recorded. Disabling a
privilege analysis policy takes effect immediately for user sessions logged on both
before and after the privilege analysis policy is disabled. You can use the
DBMS_PRIVILEGE_CAPTURE.DISABLE_CAPTURE procedure to disable a privilege analysis
policy.

1. Log in to the database instance as a user who has the CAPTURE_ADMIN role.

2. Query the NAME and ENABLED columns of the DBA_PRIV_CAPTURES data dictionary
view to find the existing privilege analysis policies and whether they are currently
disabled.

3. Run the DBMS_PRIVILEGE_CAPTURE.DISBLE_CAPTURE procedure to enable the
policy.

For example, to disable the privilege analysis policy logon_users_analysis:

EXEC DBMS_PRIVILEGE_CAPTURE.DISABLE_CAPTURE ('logon_users_analysis_pol');

Generating a Privilege Analysis Report
You can generate a privilege analysis policy report using either Enterprise Manager
Cloud Control or from SQL*Plus, using the DBMS_PRIVILEGE_CAPTURE PL/SQL
package.

• About Generating a Privilege Analysis Report
After the privilege analysis policy has been disabled, you can generate a report
based on the capture run that you created for the privilege analysis policy.

• General Process for Managing Multiple Named Capture Runs
When you enable a privilege analysis policy, you can create a named capture run
for the policy’s findings.

Chapter 5
Creating and Managing Privilege Analysis Policies

5-10

• Generating a Privilege Analysis Report Using DBMS_PRIVILEGE_CAPTURE
The DBMS_PRIVILEGE_CAPTURE.GENERATE_RESULT procedure generates a report
showing the results of a privilege capture.

• Generating a Privilege Analysis Report Using Cloud Control
You can generate a privilege analysis report using Cloud Control.

• Accessing Privilege Analysis Reports Using Cloud Control
A privilege analysis report provides information about both used and unused
privileges.

About Generating a Privilege Analysis Report
After the privilege analysis policy has been disabled, you can generate a report based
on the capture run that you created for the privilege analysis policy.

To view the report results in SQL*Plus, query the privilege analysis-specific data
dictionary views. In Enterprise Manager Cloud Control, you can view the reports from
the Privilege Analysis page Actions menu, and from there, revoke and regrant roles
and privileges as necessary. If a privilege is used during the privilege analysis process
and then revoked before you generate the report, then the privilege is still reported as
a used privilege, but without the privilege grant path.

Related Topics

• Privilege Analysis Policy and Report Data Dictionary Views
Oracle Database provides data dictionary views that show information about
analyzed privileges.

General Process for Managing Multiple Named Capture Runs
When you enable a privilege analysis policy, you can create a named capture run for
the policy’s findings.

The capture run defines a period of time from when the capture is enabled (begun)
and when it is disabled (stopped). This way, you can create multiple runs and then
compare them when you generate the privilege capture results. Tutorial: Using
Capture Runs to Analyze ANY Privilege Use provides an example of how you can
create and generate multiple capture runs.

The general process for managing multiple named capture runs is as follows:

1. Create the policy.

2. Enable the policy for the first run.

3. After a period time to collect user behavior data, disable this policy and its run.

4. Generate the results and then query the privilege analysis data dictionary views for
information about this capture run.

If you omit the run_name parameter from the
DBMS_PRIVILEGE_CAPTURE.GENERATE_RESULT procedure, then this procedure looks
at all records as a whole and then analyzes them.

5. Re-enable the policy for the second run. You cannot create a new capture run if
the policy has not been disabled first.

6. After you have collected the user data, disable the policy and the second run.

7. Generate the results.

Chapter 5
Creating and Managing Privilege Analysis Policies

5-11

8. Query the privilege analysis data dictionary views. The results from both capture
runs are available in the views. If you only want to show the results of one of the
capture runs, then you can regenerate the results and requery the privilege
analysis views.

Once enabled, the privilege analysis policy will begin to record the privilege usage
when the condition is satisfied. At any given time, only one privilege analysis policy in
the database can be enabled. The only exception is that a privilege analysis policy of
type DBMS_PRIVILEGE_CAPTURE.G_DATABASE can be enabled at the same time with a
privilege analysis of a different type.

When you drop a privilege analysis policy, its associated capture runs are dropped as
well and are not reflected in the privilege analysis data dictionary views.

Restarting a database does not change the status of a privilege analysis. For example,
if a privilege analysis policy is enabled before a database shutdown, then the policy is
still enabled after the database shutdown and restart.

Generating a Privilege Analysis Report Using DBMS_PRIVILEGE_CAPTURE
The DBMS_PRIVILEGE_CAPTURE.GENERATE_RESULT procedure generates a report
showing the results of a privilege capture.

1. Log in to the database instance as a user who has the CAPTURE_ADMIN role.

2. Query the NAME and ENABLED columns of the DBA_PRIV_CAPTURES data dictionary
view to find the existing privilege analysis policies and whether they are currently
disabled.

The privilege analysis policy must be disabled before you can generate a privilege
analysis report on it.

3. Run the DBMS_PRIVILEGE_CAPTURE.GENERATE_RESULT procedure using the
following syntax:

DBMS_PRIVILEGE_CAPTURE.GENERATE_RESULT(
 name VARCHAR2,
 run_name VARCHAR2 DEFAULT NULL,
 dependency BOOLEAN DEFAULT NULL);

In this specification:

• name: Specifies the name of the privilege analysis policy. The
DBA_PRIV_CAPTURES data dictionary view lists the names of existing
policies.

• run_name: Specifies the name for the run name for the privilege capture that
must be computed. If you omit this setting, then all runs for the given privilege
capture are computed.

• dependency: Enter Y (yes) or N (no) to specify whether the PL/SQL
computation privilege usage should be included in the report.

For example, to generate a report for the privilege analysis policy
logon_users_analysis:

EXEC DBMS_PRIVILEGE_CAPTURE.GENERATE_RESULT ('logon_users_analysis');

4. Query the used privileges from DBA_USED_* data dictionary views with privilege
grant paths.

Chapter 5
Creating and Managing Privilege Analysis Policies

5-12

Generating a Privilege Analysis Report Using Cloud Control
You can generate a privilege analysis report using Cloud Control.

1. Log in to Cloud Control as a user who has been granted the CAPTURE_ADMIN role
and the SELECT ANY DICTIONARY privilege. Oracle Database 2 Day DBA explains
how to log in.

2. From the Security menu, select Privilege Analysis.

3. Under Policies, select the policy whose report you want to generate.

4. Select Generate Report.

5. In the Privilege Analysis: Generate Report dialog box, specify a time to generate
the report.

To generate the report now, select Immediate. To generate the report later, select
Later, and then specify the hour, minute, second, and the time zone for the report
to generate.

6. Click OK.

In the Privilege Analysis page, a Confirmation message notifies you that a report
has been submitted. You can refresh the page until the job is complete. To view
the report, select the policy name and then click View Reports.

Accessing Privilege Analysis Reports Using Cloud Control
A privilege analysis report provides information about both used and unused
privileges.

1. Generate the privilege analysis report.

See Generating a Privilege Analysis Report Using Cloud Control for more
information.

2. In the Privilege Analysis page, select the policy on which you generated a report.

3. Select View Reports.

The Privilege Analysis Reports page appears.

4. To view the report, do the following:

• By default, the selected report will appear, but to search for a report for
another policy, use the Search region to find a different report, or to select a
different grantee for the currently selected policy.

Chapter 5
Creating and Managing Privilege Analysis Policies

5-13

• To view unused privileges, select the Unused tab; to view the used privileges,
select Used. To view a summary of both, select Summary.

From here, you can select roles to revoke or regrant to users as necessary. To do
so, under Grantee, select the role and then click Revoke or Regrant.

Dropping a Privilege Analysis Policy
Before you can drop a privilege analysis policy, you must first disable it.

Dropping a privilege analysis policy also drops all the used and unused privilege
records associated with this privilege analysis. If you created capture runs for the
policy, then they are dropped when you drop the policy.

1. Log in to the database instance as a user who has the CAPTURE_ADMIN role.

2. Query the NAME and ENABLE columns of the DBA_PRIV_CAPTURES data dictionary
view to find the policy and to check if it is enabled or disabled.

3. If the policy is enabled, then disable it.

For example:

EXEC DBMS_PRIVILEGE_CAPTURE.DISABLE_CAPTURE ('logon_users_analysis_pol');

4. Run the DBMS_PRIVILEGE_CAPTURE.DROP_CAPTURE procedure to drop the policy.

For example:

EXEC DBMS_PRIVILEGE_CAPTURE.DROP_CAPTURE ('logon_users_analysis_pol');

If you had enabled the policy with a capture run, then the capture run is dropped
as well. To individually drop a capture run, you can run the
DBMS_PRIVILEGE_CAPTURE.DELETE_RUN procedure, but the policy must exist before
you can run this statement.

Related Topics

• Disabling a Privilege Analysis Policy
You must disable the privilege analysis policy before you can generate a privilege
analysis report.

Creating Roles and Managing Privileges Using Cloud
Control

You can create new roles using privileges found in a privilege analysis report and then
grant this role to users.

• Creating a Role from a Privilege Analysis Report in Cloud Control
You can use the report summary to find the least number of privileges an
application needs, and encapsulate these privileges into a role.

• Revoking and Regranting Roles and Privileges Using Cloud Control
You can use Enterprise Manager Cloud Control to revoke and regrant roles and
privileges to users.

• Generating a Revoke or Regrant Script Using Cloud Control
You can generate a script that revokes or regrants privileges from and to users,
based on the results of privilege analysis reports.

Chapter 5
Creating Roles and Managing Privileges Using Cloud Control

5-14

Creating a Role from a Privilege Analysis Report in Cloud Control
You can use the report summary to find the least number of privileges an application
needs, and encapsulate these privileges into a role.

1. Log in to Cloud Control as a user who has been granted the CAPTURE_ADMIN role
and the SELECT ANY DICTIONARY privilege. Oracle Database 2 Day DBA explains
how to log in.

2. On the Privilege Analysis page, select the policy name, and then from Actions
menu, click Create Role.

3. On the Create Role page, provide the following details, and then click OK:

• Select the policy from which you would like to create a new role.

• Enter a unique name for the new role that you want to create.

• Select the Used or Unused check box, depending on what your role must
encapsulate. The role can have used or unused system and object privileges
and roles.

• Select the corresponding radio buttons for Directly Granted System
Privileges, Directly Granted Object Privileges, and Directly Granted
Roles.

For example, if you select the Used check box, and select:

– All system privileges, then all the used system privileges captured are
included in the new role that you are creating.

– None for role, then no role that is captured in the policy will be used in the
new role.

– Customize object privileges, then a list of available used objects
privileges captured are displayed, you need to select the privileges from
the list to assign to the role.

Revoking and Regranting Roles and Privileges Using Cloud Control
You can use Enterprise Manager Cloud Control to revoke and regrant roles and
privileges to users.

1. If Oracle Database Vault is enabled, then ensure that you are authorized as an
owner of the Oracle System Privilege and Role Management realm.

In SQL*Plus, a user who has been granted the DV_OWNER role can check the
authorization by querying the DBA_DV_REALM_AUTH data dictionary view. To grant
the user authorization, use the DBMS_MACADM.ADD_AUTH_TO_REALM procedure.

2. Generate the privilege analysis report.

3. In the Privilege Analysis page, select the policy on which you generated a report.

4. Select View Reports.

5. In the Privilege Analysis: Reports page, select the Summary tab.

6. Under Search, ensure that the Policy and Grantee menu options are set.

7. Under the Grantee area, expand the grantee options.

Chapter 5
Creating Roles and Managing Privileges Using Cloud Control

5-15

For example, for a role privilege analysis report for a role called HR_ADMIN role, you
would expand the HR_ADMIN role to show the privileges that are associated with it.

8. Select each privilege to revoke and then click Revoke, or select Regrant to
regrant the privilege to the role.

Related Topics

• Generating a Privilege Analysis Report Using Cloud Control
You can generate a privilege analysis report using Cloud Control.

Generating a Revoke or Regrant Script Using Cloud Control
You can generate a script that revokes or regrants privileges from and to users, based
on the results of privilege analysis reports.

• About Generating Revoke and Regrant Scripts
You can perform a bulk revoke of unused system and object privileges and roles
by using scripts that you can download after you have generated the privilege
analysis.

• Generating a Revoke Script
You can use Enterprise Manager Cloud Control to generate a script that revokes
privileges from users.

• Generating a Regrant Script
You can use Enterprise Manager Cloud Control to generate a script that regrants
privileges that have been revoked from users.

About Generating Revoke and Regrant Scripts
You can perform a bulk revoke of unused system and object privileges and roles by
using scripts that you can download after you have generated the privilege analysis.

Later on, if you want to regrant these privileges back to the user, you can generate a
regrant script. In order to generate the regrant script, you must have a corresponding
revoke script.

Execute the revoke scripts in a development or test environment. Be aware that you
cannot revoke privileges and roles from Oracle-supplied accounts and roles.

Generating a Revoke Script
You can use Enterprise Manager Cloud Control to generate a script that revokes
privileges from users.

1. If Oracle Database Vault is enabled, then ensure that you are authorized as an
owner of the Oracle System Privilege and Role Management realm.

In SQL*Plus, a user who has been granted the DV_OWNER role can check the
authorization by querying the DBA_DV_REALM_AUTH data dictionary view. To grant
the user authorization, use the DBMS_MACADM.ADD_AUTH_TO_REALM procedure.

2. In Enterprise Manager, access the target Database home page as a user who has
been granted the CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege.

See Oracle Database 2 Day DBA for more information.

3. From the Security menu, select Privilege Analysis.

Chapter 5
Creating Roles and Managing Privileges Using Cloud Control

5-16

4. Ensure that the privilege analysis reports that you want have been generated.

5. In the Privilege Analysis page, from the Actions menu, select Revoke Scripts.

6. On the Revoke Scripts page, click Generate.

The generate revoke script details wizard is displayed.

7. In the Script Details page, do the following: select a policy name from the Policy
Name menu against which the revoke script needs to be prepared.

8. In the Script Name field, enter a unique name and for Description, a description
for the script.

For example, if you want to revoke all the unused privileges, select the All option
for all the unused privileges and roles, and click Next.

Based on your selection, and the available privileges, all the unused system
privileges, object privileges, and roles that are going to be revoked are displayed
on the respective pages.

9. For Grantee (user/role), select All or Customize.

10. Select All, None, or Customize for the Unused System Privileges, Unused
Object Privileges, and Unused Roles settings.

11. Click Next.

The next pages that appear depend on your selections of All, None, or
Customize. If you selected all, the page displays a listing of the privileges. If you
selected None, the page is bypassed. If you selected Customize, then you can
individually select the privileges to revoke. The last page that appears is the
Review page.

12. Click Save.

The Revoke Scripts page appears.

13. In the Revoke Scripts page, select the newly created SQL script, and then click
Download Revoke Script to download this script, which contains REVOKE SQL
statements for each privilege or role.

To view the script, click the View Revoke Script button.

14. To return to the Privilege Analysis page, click Return.

Related Topics

• Generating a Privilege Analysis Report Using Cloud Control
You can generate a privilege analysis report using Cloud Control.

Generating a Regrant Script
You can use Enterprise Manager Cloud Control to generate a script that regrants
privileges that have been revoked from users.

1. If Oracle Database Vault is enabled, then ensure that you are authorized as an
owner of the Oracle System Privilege and Role Management realm.

In SQL*Plus, a user who has been granted the DV_OWNER role can check the
authorization by querying the DBA_DV_REALM_AUTH data dictionary view. To grant
the user authorization, use the DBMS_MACADM.ADD_AUTH_TO_REALM procedure.

2. In Enterprise Manager, access the target Database home page as a user who has
been granted the CAPTURE_ADMIN role and the SELECT ANY DICTIONARY privilege.

Chapter 5
Creating Roles and Managing Privileges Using Cloud Control

5-17

See Oracle Database 2 Day DBA for more information.

3. From the Security menu, select Privilege Analysis.

4. Ensure that the reports you want have been generated.

See Generating a Privilege Analysis Report Using Cloud Control for more
information.

5. In the Privilege Analysis page, select the policy on which the revoke script was
based.

6. From the Actions menu, select Revoke Scripts.

7. In the Revoke Scripts page, select the policy name that you had created earlier,
and then click Download Regrant Script to download this script.

You can view the scripts that are associated with the policy by selecting the View
Revoke Script and View Regrant Script buttons.

Related Topics

• Generating a Privilege Analysis Report Using Cloud Control
You can generate a privilege analysis report using Cloud Control.

Tutorial: Using Capture Runs to Analyze ANY Privilege Use
This tutorial demonstrates how to create capture runs to analyze the use of the READ
ANY TABLE system privilege.

• Step 1: Create User Accounts
You must create two users, one user to create the policy and a second user
whose privilege use will be analyzed.

• Step 2: Create and Enable a Privilege Analysis Policy
The user pa_admin must create and enable the privilege analysis policy.

• Step 3: Use the READ ANY TABLE System Privilege
User app_user uses the READ ANY TABLE system privilege.

• Step 4: Disable the Privilege Analysis Policy
You must disable the policy before you can generate a report that captures the
actions of user app_user.

• Step 5: Generate and View a Privilege Analysis Report
With the privilege analysis policy disabled, user pa_admin then can generate and
view a privilege analysis report.

• Step 6: Create a Second Capture Run
Next, you are ready to create a second capture run for the
ANY_priv_analysis_pol privilege analysis policy.

• Step 7: Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer
need them.

Step 1: Create User Accounts
You must create two users, one user to create the policy and a second user whose
privilege use will be analyzed.

Chapter 5
Tutorial: Using Capture Runs to Analyze ANY Privilege Use

5-18

1. Log into the database instance as a user who has the CREATE USER system
privilege.

For example:

sqlplus sec_admin
Enter password: password

In a multitenant environment, you must connect to the appropriate pluggable
database (PDB).

For example:

sqlplus sec_admin@hrpdb
Enter password: password

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the
current PDB, run the show con_name command.

2. Create the following users:

CREATE USER pa_admin IDENTIFIED BY password;
CREATE USER app_user IDENTIFIED BY password;

3. Connect as a user who has the privileges to grant roles and system privileges to
other users, and who has been granted the owner authorization for the Oracle
System Privilege and Role Management realm. (User SYS has these privileges by
default.)

For example:

CONNECT dba_psmith -- Or, CONNECT dba_psmith@hrpdb
Enter password: password

In SQL*Plus, a user who has been granted the DV_OWNER role can check the
authorization by querying the DBA_DV_REALM_AUTH data dictionary view. To grant
the user authorization, use the DBMS_MACADM.ADD_AUTH_TO_REALM procedure.

4. Grant the following role and privilege to the users.

GRANT CREATE SESSION, CAPTURE_ADMIN TO pa_admin;
GRANT CREATE SESSION, READ ANY TABLE TO app_user;

User pa_admin will create the privilege analysis policy that will analyze the READ
ANY TABLE query that user app_user will perform.

Step 2: Create and Enable a Privilege Analysis Policy
The user pa_admin must create and enable the privilege analysis policy.

1. Connect as user pa_admin.

CONNECT pa_admin -- Or, CONNECT pa_admin@hrpdb
Enter password: password

2. Create the following privilege analysis policy:

BEGIN
 DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE(
 name => 'ANY_priv_analysis_pol',
 description => 'Analyzes system privilege use',
 type => DBMS_PRIVILEGE_CAPTURE.G_CONTEXT,
 condition => 'SYS_CONTEXT(''USERENV'', ''SESSION_USER'')=''APP_USER''');

Chapter 5
Tutorial: Using Capture Runs to Analyze ANY Privilege Use

5-19

END;
/

In this example:

• type specifies the type of capture condition that is defined by the condition
parameter, described next. In this policy, the type is a context-based condition.

• condition specifies condition using a Boolean expression that must evaluate
to TRUE for the policy to take effect. In this case, the condition checks if the
session user is app_user.

3. Enable the policy and create a capture run for it.

BEGIN
 DBMS_PRIVILEGE_CAPTURE.ENABLE_CAPTURE (
 name => 'ANY_priv_analysis_pol',
 run_name => 'ANY_priv_pol_run_1');
END;
/

At this point, the policy is ready to start recording the actions of user app_user.

Step 3: Use the READ ANY TABLE System Privilege
User app_user uses the READ ANY TABLE system privilege.

1. Connect as user app_user.

CONNECT app_user -- Or, CONNECT app_user@hrpdb
Enter password: password

2. Query the HR.EMPLOYEES table.

SELECT FIRST_NAME, LAST_NAME, SALARY FROM HR.EMPLOYEES WHERE SALARY > 12000
ORDER BY SALARY DESC;

FIRST_NAME LAST_NAME SALARY
-------------------- ------------------------- ----------
Steven King 24000
Neena Kochhar 17000
Lex De Haan 17000
John Russell 14000
Karen Partners 13500
Michael Hartstein 13000
Shelley Higgins 12008
Nancy Greenberg 12008

Step 4: Disable the Privilege Analysis Policy
You must disable the policy before you can generate a report that captures the actions
of user app_user.

1. Connect as user pa_admin.

CONNECT pa_admin -- Or, CONNECT pa_admin@hrpdb
Enter password: password

2. Disable the ANY_priv_analysis_pol privilege policy.

EXEC DBMS_PRIVILEGE_CAPTURE.DISABLE_CAPTURE ('ANY_priv_analysis_pol');

Chapter 5
Tutorial: Using Capture Runs to Analyze ANY Privilege Use

5-20

Step 5: Generate and View a Privilege Analysis Report
With the privilege analysis policy disabled, user pa_admin then can generate and view
a privilege analysis report.

1. As user pa_admin, generate the privilege analysis results.

BEGIN
 DBMS_PRIVILEGE_CAPTURE.GENERATE_RESULT (
 name => 'ANY_priv_analysis_pol',
 run_name => 'ANY_priv_pol_run_1');
END;
/

The generated results are stored in the privilege analysis data dictionary views.

2. Enter the following commands to format the data dictionary view output:

col username format a10
col sys_priv format a16
col object_owner format a13
col object_name format a23
col run_name format a27

3. Find the system privileges that app_user used and the objects on which he used
them during the privilege analysis period.

SELECT SYS_PRIV, OBJECT_OWNER, OBJECT_NAME, RUN_NAME FROM DBA_USED_PRIVS WHERE
USERNAME = 'APP_USER';

Output similar to the following appears. The first row shows that app_user used
the READ ANY TABLE privilege on the HR.EMPLOYEES table.

SYS_PRIV OBJECT_OWNER OBJECT_NAME RUN_NAME
---------------- ------------- ----------------------- ------------------
 SYSTEM PRODUCT_PRIVS ANY_PRIV_POL_RUN_1
 SYS DUAL ANY_PRIV_POL_RUN_1
 SYS DUAL ANY_PRIV_POL_RUN_1
CREATE SESSION ANY_PRIV_POL_RUN_1
 SYS DBMS_APPLICATION_INFO ANY_PRIV_POL_RUN_1
READ ANY TABLE HR EMPLOYEES ANY_PRIV_POL_RUN_1

At this stage, the privilege analysis results remain available in the privilege analysis
data dictionary views, even if you create additional capture runs in the future.

Step 6: Create a Second Capture Run
Next, you are ready to create a second capture run for the ANY_priv_analysis_pol
privilege analysis policy.

1. As user pa_admin, enable the ANY_priv_analysis_pol privilege analysis policy to
use capture run ANY_priv_pol_run_1.

BEGIN
 DBMS_PRIVILEGE_CAPTURE.ENABLE_CAPTURE (
 name => 'ANY_priv_analysis_pol',
 run_name => 'ANY_priv_pol_run_2');
END;
/

Chapter 5
Tutorial: Using Capture Runs to Analyze ANY Privilege Use

5-21

2. Connect as user app_user.

CONNECT app_user -- Or, CONNECT app_user@hrpdb
Enter password: password

3. Query the HR.JOBS table.

SELECT MAX_SALARY FROM HR.JOBS WHERE MAX_SALARY > 20000;

4. Connect as user pa_admin.

CONNECT pa_admin -- Or, CONNECT pa_admin@hrpdb
Enter password: password

5. Disable the ANY_priv_analysis_pol privilege policy.

EXEC DBMS_PRIVILEGE_CAPTURE.DISABLE_CAPTURE ('ANY_priv_analysis_pol');

6. Generate a second privilege analysis report.

BEGIN
 DBMS_PRIVILEGE_CAPTURE.GENERATE_RESULT (
 name => 'ANY_priv_analysis_pol',
 run_name => 'ANY_priv_pol_run_2');
END;
/

7. Find the system privileges that app_user used and the objects on which he used
them during the privilege analysis period.

SELECT SYS_PRIV, OBJECT_OWNER, OBJECT_NAME, RUN_NAME FROM DBA_USED_PRIVS WHERE
USERNAME = 'APP_USER' ORDER BY RUN_NAME;

Output similar to the following appears, which now shows the results of both of the
capture runs that user pa_admin created.

SYS_PRIV OBJECT_OWNER OBJECT_NAME RUN_NAME
---------------- ------------- ----------------------- ----------------------
READ ANY TABLE HR EMPLOYEES ANY_PRIV_POL_RUN_1
 SYS DUAL ANY_PRIV_POL_RUN_1
CREATE SESSION ANY_PRIV_POL_RUN_1
 SYS DUAL ANY_PRIV_POL_RUN_1
 SYSTEM PRODUCT_PRIVS ANY_PRIV_POL_RUN_1
 SYS DBMS_APPLICATION_INFO ANY_PRIV_POL_RUN_1
 SYS DUAL ANY_PRIV_POL_RUN_2
 SYS DBMS_APPLICATION_INFO ANY_PRIV_POL_RUN_2
 SYSTEM PRODUCT_PRIVS ANY_PRIV_POL_RUN_2
 SYS DUAL ANY_PRIV_POL_RUN_2
READ ANY TABLE HR JOBS ANY_PRIV_POL_RUN_2

Step 7: Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer need
them.

1. As user pa_admin, drop the ANY_priv_analysis_pol privilege analysis policy and
its associated capture runs.

EXEC DBMS_PRIVILEGE_CAPTURE.DROP_CAPTURE ('ANY_priv_analysis_pol');

Any capture runs that are associated with this policy are dropped automatically
when you run the DBMS_PRIVILEGE_CAPTURE.DROP_CAPTURE procedure.

Chapter 5
Tutorial: Using Capture Runs to Analyze ANY Privilege Use

5-22

Even though in the next steps you will drop the pa_admin user, including any
objects created in this user's schema, you must manually drop the
ANY_priv_analysis_pol privilege analysis policy because this object resides in
the SYS schema.

2. Connect as the user who created the user accounts.

For example:

CONNECT sec_admin -- Or, CONNECT sec_admin@hrpdb
Enter password: password

3. Drop the users pa_admin and app_user.

DROP USER pa_admin;
DROP USER app_user;

Tutorial: Analyzing Privilege Use by a User Who Has the
DBA Role

This tutorial demonstrates how to analyze the privilege use of a user who has the DBA
role and performs database tuning operations.

• Step 1: Create User Accounts
You must create two users, one to create the privilege analysis policy and a
second user whose privilege use will be analyzed.

• Step 2: Create and Enable a Privilege Analysis Policy
User pa_admin must create the and enable the privilege analysis policy.

• Step 3: Perform the Database Tuning Operations
User tjones uses the DBA role to perform database tuning operations.

• Step 4: Disable the Privilege Analysis Policy
You must disable the policy before you can generate a report that captures the
actions of user tjones.

• Step 5: Generate and View Privilege Analysis Reports
With the privilege analysis policy disabled, user pa_admin can generate and view
privilege analysis reports.

• Step 6: Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer
need them.

Step 1: Create User Accounts
You must create two users, one to create the privilege analysis policy and a second
user whose privilege use will be analyzed.

1. Log into the database instance as a user who has the CREATE USER system
privilege.

For example:

sqlplus sec_admin
Enter password: password

Chapter 5
Tutorial: Analyzing Privilege Use by a User Who Has the DBA Role

5-23

In a multitenant environment, you must log into the appropriate pluggable
database (PDB).

For example:

sqlplus sec_admin@hrpdb
Enter password: password

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the
current PDB, run the show con_name command.

2. Create the following users:

CREATE USER pa_admin IDENTIFIED BY password;
CREATE USER tjones IDENTIFIED BY password;

3. Connect as a user who has the privileges to grant roles and system privileges to
other users, and who has been granted the owner authorization for the Oracle
System Privilege and Role Management realm. (User SYS has these privileges by
default.)

For example:

CONNECT dba_psmith -- Or, CONNECT dba_psmith@hrpdb
Enter password: password

In SQL*Plus, a user who has been granted the DV_OWNER role can check the
authorization by querying the DBA_DV_REALM_AUTH data dictionary view. To grant
the user authorization, use the DBMS_MACADM.ADD_AUTH_TO_REALM procedure.

4. Grant the following roles and privileges to the users.

GRANT CREATE SESSION, CAPTURE_ADMIN TO pa_admin;
GRANT CREATE SESSION, DBA TO tjones;

User pa_admin will create the privilege analysis policy that will analyze the
database tuning operations that user tjones will perform.

Step 2: Create and Enable a Privilege Analysis Policy
User pa_admin must create the and enable the privilege analysis policy.

1. Connect as user pa_admin.

CONNECT pa_admin -- Or, CONNECT pa_admin@hrpdb
Enter password: password

2. Create the following privilege analysis policy:

BEGIN
 DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE(
 name => 'dba_tuning_priv_analysis_pol',
 description => 'Analyzes DBA tuning privilege use',
 type => DBMS_PRIVILEGE_CAPTURE.G_CONTEXT,
 condition => 'SYS_CONTEXT(''USERENV'', ''SESSION_USER'')=''TJONES''');
END;
/

In this example:

• type specifies the type of capture condition that is defined by the condition
parameter, described next. In this policy, the type is a context-based condition.

Chapter 5
Tutorial: Analyzing Privilege Use by a User Who Has the DBA Role

5-24

• condition specifies condition using a Boolean expression that must evaluate
to TRUE for the policy to take effect. In this case, the condition checks if the
session user is tjones.

3. Enable the policy.

EXEC DBMS_PRIVILEGE_CAPTURE.ENABLE_CAPTURE ('dba_tuning_priv_analysis_pol');

At this point, the policy is ready to start recording the actions of user tjones.

Step 3: Perform the Database Tuning Operations
User tjones uses the DBA role to perform database tuning operations.

1. Connect as user tjones.

CONNECT tjones -- Or, CONNECT tjones@hrpdb
Enter password: password

2. Run the following script to create the PLAN_TABLE table.

@$ORACLE_HOME/rdbms/admin/utlxplan.sql

The location of this script may vary depending on your operating system. This
script creates the PLAN_TABLE table in the tjones schema.

3. Run the following EXPLAIN PLAN SQL statement on the HR.EMPLOYEES table:

EXPLAIN PLAN
 SET STATEMENT_ID = 'Raise in Tokyo'
 INTO PLAN_TABLE
 FOR UPDATE HR.EMPLOYEES
 SET SALARY = SALARY * 1.10
 WHERE DEPARTMENT_ID =
 (SELECT DEPARTMENT_ID FROM HR.DEPARTMENTS WHERE LOCATION_ID = 110);

Next, user tjones will analyze the HR.EMPLOYEES table.

4. Run either of the following scripts to create the CHAINED_ROWS table

@$ORACLE_HOME/rdbms/admin/utlchain.sql

Or

@$ORACLE_HOME/rdbms/admin/utlchn1.sql

5. Run the ANALYZE TABLE statement on the HR.EMPLOYEES table.

ANALYZE TABLE HR.EMPLOYEES LIST CHAINED ROWS INTO CHAINED_ROWS;

Step 4: Disable the Privilege Analysis Policy
You must disable the policy before you can generate a report that captures the actions
of user tjones.

1. Connect as user pa_admin.

CONNECT pa_admin -- Or, CONNECT pa_admin@hrpdb
Enter password: password

2. Disable the dba_tuning_priv_analysis_pol privilege policy.

EXEC DBMS_PRIVILEGE_CAPTURE.DISABLE_CAPTURE ('dba_tuning_priv_analysis_pol');

Chapter 5
Tutorial: Analyzing Privilege Use by a User Who Has the DBA Role

5-25

Step 5: Generate and View Privilege Analysis Reports
With the privilege analysis policy disabled, user pa_admin can generate and view
privilege analysis reports.

1. As user pa_admin, generate the privilege analysis results.

EXEC DBMS_PRIVILEGE_CAPTURE.GENERATE_RESULT ('dba_tuning_priv_analysis_pol');

The generated results are stored in the privilege analysis data dictionary views.

2. Enter the following commands to format the data dictionary view output:

col username format a8
col sys_priv format a18
col used_role format a20
col path format a150
col obj_priv format a10
col object_owner format a10
col object_name format a10
col object_type format a10

3. Find the system privileges and roles that user tjones used during the privilege
analysis period.

SELECT USERNAME, SYS_PRIV, USED_ROLE, PATH
 FROM DBA_USED_SYSPRIVS_PATH
 WHERE USERNAME = 'TJONES'
 ORDER BY 1, 2, 3;

Output similar to the following appears:

USERNAME SYS_PRIV USED_ROLE
-------- ------------------ --------------------
PATH

TJONES ANALYZE ANY IMP_FULL_DATABASE
GRANT_PATH('TJONES', 'DBA')

TJONES ANALYZE ANY IMP_FULL_DATABASE
GRANT_PATH('TJONES', 'DBA', 'IMP_FULL_DATABASE')

TJONES ANALYZE ANY IMP_FULL_DATABASE
GRANT_PATH('TJONES', 'DBA', 'DATAPUMP_IMP_FULL_DATABASE', 'IMP_FULL_DATABASE')
...

4. Find the object privileges and roles that user tjones used during the privilege
analysis period.

col username format a9
col used_role format a10
col object_name format a22
col object_type format a12

SELECT USERNAME, OBJ_PRIV, USED_ROLE,
 OBJECT_OWNER, OBJECT_NAME, OBJECT_TYPE
 FROM DBA_USED_OBJPRIVS
 WHERE USERNAME = 'TJONES'
 ORDER BY 1, 2, 3, 4, 5, 6;

Chapter 5
Tutorial: Analyzing Privilege Use by a User Who Has the DBA Role

5-26

Output similar to the following appears:

USERNAME OBJ_PRIV USED_ROLE OBJECT_OWN OBJECT_NAME OBJECT_TYPE
--------- ---------- ---------- ---------- ---------------------- ------------
TJONES EXECUTE PUBLIC SYS DBMS_APPLICATION_INFO PACKAGE
TJONES SELECT PUBLIC SYS DUAL TABLE
TJONES SELECT PUBLIC SYS DUAL TABLE
TJONES SELECT PUBLIC SYSTEM PRODUCT_PRIVS VIEW
...

5. Find the unused system privileges for user tjones.

col username format a9
col sys_priv format a35

SELECT USERNAME, SYS_PRIV
 FROM DBA_UNUSED_SYSPRIVS
 WHERE USERNAME = 'TJONES'
 ORDER BY 1, 2;

USERNAME SYS_PRIV
-------- ------------------------------
TJONES ADMINISTER ANY SQL TUNING SET
TJONES ADMINISTER DATABASE TRIGGER
TJONES ADMINISTER RESOURCE MANAGER
TJONES ADMINISTER SQL TUNING SET
TJONES ALTER ANY ASSEMBLY
TJONES ON COMMIT REFRESH
...

Step 6: Remove the Components for This Tutorial
You can remove the components that you created for this tutorial if you no longer need
them.

1. As user pa_admin, drop the dba_tuning_priv_analysis_pol privilege analysis
policy.

EXEC DBMS_PRIVILEGE_CAPTURE.DROP_CAPTURE ('dba_tuning_priv_analysis_pol');

Even though in the next steps you will drop the pa_admin user, including any
objects created in this user's schema, you must manually drop the
dba_tuning_priv_analysis_pol privilege analysis policy because this object
resides in the SYS schema.

2. Connect as the user who created the user accounts.

For example:

CONNECT sec_admin -- Or, CONNECT sec_admin@hrpdb
Enter password: password

3. Drop the users pa_admin and tjones.

DROP USER pa_admin;
DROP USER tjones CASCADE;

Chapter 5
Tutorial: Analyzing Privilege Use by a User Who Has the DBA Role

5-27

Privilege Analysis Policy and Report Data Dictionary Views
Oracle Database provides data dictionary views that show information about analyzed
privileges.

Table 5-1 lists these data dictionary views.

Table 5-1 Data Dictionary Views That Display Privilege Analysis Information

View Description

DBA_PRIV_CAPTURES Lists information about existing privilege analysis
policies

DBA_USED_PRIVS Lists the privileges and capture runs that have
been used for reported privilege analysis policies

DBA_UNUSED_GRANTS Lists the privilege grants that have not been used

DBA_UNUSED_PRIVS Lists the privileges and capture runs that have not
been used for reported privilege analysis policies

DBA_USED_OBJPRIVS Lists the object privileges and capture runs that
have been used for reported privilege analysis
policies. It does not include the object grant paths.

DBA_UNUSED_OBJPRIVS Lists the object privileges and capture runs that
have not been used for reported privilege analysis
policies. It does not include the object privilege
grant paths.

DBA_USED_OBJPRIVS_PATH Lists the object privileges and capture runs that
have been used for reported privilege analysis
policies. It includes the object privilege grant
paths.

DBA_UNUSED_OBJPRIVS_PATH Lists the object privileges and capture runs that
have not been used for reported privilege analysis
policies. It includes the object privilege grant
paths.

DBA_USED_SYSPRIVS Lists the system privileges and capture runs that
have been used for reported privilege analysis
policies. It does not include the system privilege
grant paths.

DBA_UNUSED_SYSPRIVS Lists the system privileges and capture runs that
have not been used for reported privilege analysis
policies. It does not include the system privilege
grant paths.

DBA_USED_SYSPRIVS_PATH Lists the system privileges and capture runs that
have been used for reported privilege analysis
policies. It includes the system privilege grant
paths.

DBA_UNUSED_SYSPRIVS_PATH Lists the system privileges and capture runs that
have not been used for reported privilege analysis
policies. It includes system privilege grant paths

DBA_USED_PUBPRIVS Lists all the privileges and capture runs for the
PUBLIC role that have been used for reported
privilege analysis policies

Chapter 5
Privilege Analysis Policy and Report Data Dictionary Views

5-28

Table 5-1 (Cont.) Data Dictionary Views That Display Privilege Analysis
Information

View Description

DBA_USED_USERPRIVS Lists the user privileges and capture runs that
have been used for reported privilege analysis
policies. It does not include the user privilege
grant paths.

DBA_UNUSED_USERPRIVS Lists the user privileges and capture runs that
have not been used for reported privilege analysis
policies. It does not include the user privilege
grant paths.

DBA_USED_USERPRIVS_PATH Lists the user privileges and capture runs that
have been used for reported privilege analysis
policies. It includes the user privilege grant paths.

DBA_UNUSED_USERPRIVS_PATH Lists the privileges and capture runs that have not
been used for reported privilege analysis policies.
It includes the user privilege grant paths.

Related Topics

• Oracle Database Reference

Chapter 5
Privilege Analysis Policy and Report Data Dictionary Views

5-29

6
Configuring Centrally Managed Users with
Microsoft Active Directory

Oracle Database can authenticate and authorize Microsoft Active Directory users with
the database directly without intermediate directories or Oracle Enterprise User
Security.

• Introduction to Centrally Managed Users with Microsoft Active Directory
Centrally managed users (CMU) provides a simpler integration with Microsoft
Active Directory to allow centralized authentication and authorization of users.

• Configuring the Oracle Database-Microsoft Active Directory Integration
Before you can use Microsoft Active Directory to authenticate and authorize users,
you must configure the connection from the Oracle database to Active Directory.

• Configuring Authentication for Centrally Managed Users
You can configure password authentication, Kerberos authentication, or public key
infrastructure (PKI) authentication.

• Configuring Authorization for Centrally Managed Users
With centrally managed users, you can manage the authorization for Active
Directory users to access Oracle databases.

• Integration of Oracle Database with Microsoft Active Directory Account Policies
As part of the Oracle Database-Microsoft Active Directory integration, Oracle
Database enforces the Active Directory account policies when Active Directory
users log into the Oracle database.

Introduction to Centrally Managed Users with Microsoft
Active Directory

Centrally managed users (CMU) provides a simpler integration with Microsoft Active
Directory to allow centralized authentication and authorization of users.

• About the Oracle Database-Microsoft Active Directory Integration
Centrally managed users provides a simpler integration with Microsoft Active
Directory to allow centralized authentication and authorization of users.

• How Centrally Managed Users with Microsoft Active Directory Works
The integration works by mapping Microsoft Active Directory users and groups
directly to Oracle database users and roles.

• Centrally Managed User-Microsoft Active Directory Architecture
The CMU with Active Directory architecture enables Oracle Database users and
roles to be managed in Active Directory.

• Supported Authentication Methods
The Oracle Database-Microsoft Active Directory integration supports three
common authentication methods.

6-1

• Users Supported by Centrally Managed Users with Microsoft Active Directory
CMU with Active Directory supports exclusively mapped users, users mapped to
shared schemas, and administrative users.

• How the Oracle Multitenant Option Affects Centrally Managed Users
Multitenant database users in pluggable databases (PDBs) can connect to a
central Microsoft Active Directory or, if required, users in an individual PDB can
connect to a different Microsoft Active Directory.

About the Oracle Database-Microsoft Active Directory Integration
Centrally managed users provides a simpler integration with Microsoft Active Directory
to allow centralized authentication and authorization of users.

The minimum version requirement for Active Directory server operating system is
Microsoft Windows Server 2008 R2.

This integration enables organizations to use Active Directory to centrally manage
users and roles in multiple Oracle databases with a single directory along with other
Information Technology services. Active Directory users can authenticate to the Oracle
database by using credentials that are stored in Active Directory. Active Directory
users can also be associated with database users (schemas) and roles by using
Active Directory groups. Microsoft Active Directory users can be mapped to exclusive
or shared Oracle Database users (schemas), and be associated with database roles
through their group membership in the directory. Active Directory account policies
such as password expiration time and lockout after a specified number of failed login
attempts are honored by the Oracle Database when users login.

Before Oracle Database 18c release 1 (18.1), database user authentication and
authorization could be integrated with Active Directory by configuring Oracle
Enterprise User Security and installing and configuring Oracle Internet Directory (or
Oracle Universal Directory). This architecture is still available and will continue to be
used by users who must use the Oracle enterprise domain and current user database
link between trusted databases, complex enterprise roles, and having a single place
for auditing database access privileges and roles.

The majority of organizations do not have these complex requirements. Instead, they
can use centrally managed users (CMUs) with Active Directory. This integration is
designed for organizations who prefer to use Active Directory as their centralized
identity management solution. Oracle Net Naming Services continues to work as it did
before with directory services.

Organizations can use Kerberos, PKI, or password authentication with CMU with
Active Directory. Use of CMU with Active Directory is backward compatible with
currently supported Oracle Database clients. This means that LDAP bind operations
are not used for password authentication and you will need to add an Oracle filter to
Active Directory along with an extension to the Active Directory schema to store
password verifiers. Organizations using Kerberos or PKI will not need to add the filter
or extend Active Directory schema.

The Oracle Database-Active Directory integration is particularly beneficial for the
following types of users:

• Users who are currently using strong authentication such as Kerberos or Public
Key Infrastructure (PKI). These users already use a centralized identity
management system

Chapter 6
Introduction to Centrally Managed Users with Microsoft Active Directory

6-2

• Users who currently use Oracle Enterprise User Security, Oracle Internet
Directory, Oracle Unified Directory, Oracle Virtual Directory, and need to integrate
with Active Directory.

How Centrally Managed Users with Microsoft Active Directory Works
The integration works by mapping Microsoft Active Directory users and groups directly
to Oracle database users and roles.

In order for the Oracle Database CMU with Active Directory integration to work, the
Oracle database must be able to login to a service account specifically created for the
database in Active Directory. The database uses this service account to query Active
Directory for user and group information when a user logs into the database. This
Active Directory service account must have all the privileges required to query the user
and group information as well as being able to write updates related to the password
policies in Active Directory (for example, failed login attempts, clear failed login
attempts). Users can authenticate using passwords, Kerberos, or PKI and either be
assigned to an exclusive schema or a shared schema. Mapping of an Active Directory
user to a shared schema is determined by the association of the user to an Active
Directory group that is mapped to the shared schema. Active Directory groups can
also be mapped to database global roles. An Active Directory security administrator
can assign a user to groups that are mapped to shared database global users
(schemas) and/or database global roles, and hence update privileges and roles that
are assigned to the Active Directory user in a database.

Centrally Managed User-Microsoft Active Directory Architecture
The CMU with Active Directory architecture enables Oracle Database users and roles
to be managed in Active Directory.

The following figure illustrates the Oracle Database CMU feature. In this figure, users,
either through applications as non-administrative users or administrative users,
connect to the Oracle database with either password, Kerberos, or public key
infrastructure (PKI) authentication. The database connection to Active Directory
enables these users and roles to be mapped with Active Directory users and groups. If
you plan to use password authentication, then you must install an Oracle filter in Active
Directory. You can use an Oracle provided utility to install the Oracle filter that will
generate Oracle password verifiers for individual users as needed. The utility can also
be used to extend the Active Directory schema to hold the Oracle password verifiers.
With Oracle Database centrally managed users, an Active Directory administrator can
control the authentication, user management, account policies, and group
assignments of Active Directory users and groups who have been mapped to Oracle
Database users and roles.

Chapter 6
Introduction to Centrally Managed Users with Microsoft Active Directory

6-3

Administrative
User

Application

Oracle
Database

Password/
Kerberos/PKI

Shared
Database User

Microsoft
Active

Directory

Oracle Filter to Create
Oracle Password Verifiers

Active Directory
Groups

• Authentication Data
• User Management
• Account Policy Management
• Group Assignments

Database
Roles

Supported Authentication Methods
The Oracle Database-Microsoft Active Directory integration supports three common
authentication methods.

These authentication methods are as follows:

• Password authentication

• Kerberos authentication

• Public key infrastructure (PKI) authentication (certificate-based authentication)

Related Topics

• Configuring Authentication for Centrally Managed Users
You can configure password authentication, Kerberos authentication, or public key
infrastructure (PKI) authentication.

Users Supported by Centrally Managed Users with Microsoft Active
Directory

CMU with Active Directory supports exclusively mapped users, users mapped to
shared schemas, and administrative users.

These users are as follows:

• Directory users that access an Oracle database using a shared schema.

This type of directory user can connect to a shared schema in the database by
being part of a directory group that is mapped to the shared schema (database
user). Using shared schemas allows centralized Active Directory management of
database users and is the recommended best practices over using exclusive
schemas (described next). Even if there is only one user associated with a
schema (for example, an administrator responsible for database backup), it is
easier to manage adding another backup administrator or removing the existing
administrator by making changes only in Active Directory instead of making
changes in all associated databases as well.

Chapter 6
Introduction to Centrally Managed Users with Microsoft Active Directory

6-4

Users will be given additional privileges appropriate to their task using global roles
that are mapped to groups in Active Directory. With this design, a user can change
his or her tasks within an organization and have new database privileges through
a new group in Active Directory.

Active Directory users could accidentally (or on purpose) be a member of multiple
groups in Active Directory that are mapped to different shared schemas on the
same database. The user could also have an exclusive mapping to a database
schema. In cases where the user has multiple possible schema mappings when
they login, the following precedence rules apply:

– If an exclusive mapping exists for a user, then that mapping takes precedence
over any other shared mappings.

– If multiple shared schema mappings exist for a user, then the shared user
mapping with lowest schema ID (USER_ID) takes precedence.

Oracle recommends only having one possible mapping per user so unexpected
schema mappings do not occur.

• Exclusively mapped global users who are regular Oracle Database users in two-
and three-tier applications, or users who have direct privilege grants in the
database.

Oracle recommends that you grant privileges to these users through global roles.
This type of privilege grant facilitates authorization management by centrally
managing privileges and roles for a user instead of having to log in into each
database to update privileges and roles for the user.

• Administrative global users, who have the following administrative privileges:
SYSDBA, SYSOPER, SYSBACKUP, SYSDG, SYSKM, and SYSRAC.

You cannot grant these administrative privileges through global roles. To
authorize an Active Directory user with these administrative privileges, you must
map the directory user to a database user (exclusively or with a shared schema)
that has the system administrative privilege already granted to the database user
account.

Related Topics

• Configuring Authorization for Centrally Managed Users
With centrally managed users, you can manage the authorization for Active
Directory users to access Oracle databases.

How the Oracle Multitenant Option Affects Centrally Managed Users
Multitenant database users in pluggable databases (PDBs) can connect to a central
Microsoft Active Directory or, if required, users in an individual PDB can connect to a
different Microsoft Active Directory.

All PDBs and the root container in a multitenant database can have a shared
configuration, so that the entire CDB can authenticate and authorize users against a
single Active Directory server, mulitple Active Directory servers in one Windows
domain, or multiple Active Directory servers in trusted Windows domains, based on
the shared configuration. Alternatively, individual PDBs can authenticate and authorize
users against different Active Directory servers in the same Windows domain or
different (trusted or un-trusted) Windows domains, based on their individual
configurations.

Chapter 6
Introduction to Centrally Managed Users with Microsoft Active Directory

6-5

Configuring the Oracle Database-Microsoft Active Directory
Integration

Before you can use Microsoft Active Directory to authenticate and authorize users, you
must configure the connection from the Oracle database to Active Directory.

• About Configuring the Oracle Database-Microsoft Active Directory Connection
Before you configure this connection, you must have Microsoft Active Directory
installed and configured.

• Connecting to Microsoft Active Directory
You can configure a Microsoft Active Directory connection during the Oracle
database creation or with an existing Oracle database.

About Configuring the Oracle Database-Microsoft Active Directory
Connection

Before you configure this connection, you must have Microsoft Active Directory
installed and configured.

You must create an Oracle service directory user in Active Directory, configure the
Oracle Database connection to Active Directory, and then depending on the
authentication type, configure the database and Active Directory for password,
Kerberos, or public key infrastructure (PKI) authentication. Before you map Database
users and global roles to Active Directory users and groups, you must ensure that the
Active Directory users and groups have been created. You will map the database
users and global roles to Active Directory users and groups by using the CREATE USER,
CREATE ROLE, ALTER USER, ALTER ROLE SQL statements with the GLOBALLY clause. An
Active Directory system administrator must also set up new Active Directory groups
with Active Directory users to meet your requirements.

The Active Directory system administrator is responsible for setting Active Directory
connections with or without SASL bind. The Oracle Database will automatically try the
Active Directory connection first with SASL bind and if it fails, it will try it without SASL
bind but still secured with TLS. This means that regardless of how the Microsoft Active
Directory administrator may have the SASL settings configured on Active Directory,
the Oracle database will connect even if the SASL bind is unsuccessful.

Connecting to Microsoft Active Directory
You can configure a Microsoft Active Directory connection during the Oracle database
creation or with an existing Oracle database.

• Step 1: Create an Oracle Service Directory User Account on Microsoft Active
Directory
The Oracle service directory user account is for the interaction between Oracle
Database and the LDAP directory service.

• Step 2: For Password Authentication, Install the Password Filter and Extend the
Microsoft Active Directory Schema
You can use the Oracle opwdintg.exe executable on the Active Directory server to
install the password filter and extend the Active Directory schema.

Chapter 6
Configuring the Oracle Database-Microsoft Active Directory Integration

6-6

• Step 3: If Necessary, Install the Oracle Database Software
If you have not done so yet, then use Oracle Universal Installer (OUI) to install the
Oracle software.

• Step 4: Create the dsi.ora or ldap.ora File
The dsi.ora file specifies connections for centrally managed users for Active
Directory.

• Step 5: Request an Active Directory Certificate for a Secure Connection
After you have configured the dsi.ora or ldap.ora file, you are ready to prepare
Microsoft Active Directory and Oracle Database certificates for a secure
connection.

• Step 6: Create the Wallet for a Secure Connection
After you have copied the Active Directory certificate, you are ready to add it to the
Oracle wallet.

• Step 7: Configure the Microsoft Active Directory Connection
Next, you are ready to connect the database to Active Directory using the settings
you have so far.

• Step 8: Verify the Oracle Wallet
The orapki utility can verify that the wallet for this database was created
successfully.

• Step 9: Test the Integration
To test the integration, you must set the ORACLE_HOME, ORACLE_BASE, and
ORACLE_SID environment variables and then verify the LDAP parameter settings.

Step 1: Create an Oracle Service Directory User Account on Microsoft Active
Directory

The Oracle service directory user account is for the interaction between Oracle
Database and the LDAP directory service.

In addition to being used for the Oracle Database-to-LDAP directory service
interaction, the Oracle service directory user account can be used for Kerberos.

This account is an Active Directory account that Oracle Database uses to log in to
Active Directory and query for users and group information from Active Directory,
update login success or failure, and if Kerberos is configured, update Kerberos
authentication. The minimum permissions required for this account are Read
properties (of Active Directory users who will log in to a database), and if database
password authentication is to be used by Active Directory users, the Write
lockoutTime (property of the Active Directory users) permission.

1. Log in to Microsoft Active Directory as a user who has privileges to create
accounts and grant them privileges.

2. Create the Oracle service directory user account as an Active Directory user.

Ideally, create the managed service account in the root directory. Depending on
the domains that your users will use, you can also create this account in child
domains. The service account in a child domain can authenticate users in other
trusted domains. Follow these guidelines:

• If all the Active Directory users will be in one domain, then create this account
in that domain. Doing so will help performance.

• Create this account in the Windows Active Directory root domain if:

Chapter 6
Configuring the Oracle Database-Microsoft Active Directory Integration

6-7

– The Active directory users will be in different domains.

– Active Directory has multiple Windows domains, so that CMU can support
these multiple domains.

3. Grant the Oracle service directory user account the Read properties (of Active
Directory users who will log in a database) and Write lockoutTime (property of
Active Directory users who will use password authentication) permissions in the
Active Directory.

Step 2: For Password Authentication, Install the Password Filter and Extend
the Microsoft Active Directory Schema

You can use the Oracle opwdintg.exe executable on the Active Directory server to
install the password filter and extend the Active Directory schema.

You do not need to perform this step if your authentication method is Kerberos or SSL.
The opwdintg.exe executable installs the Oracle password filter, extends the Active
Directory schema, and creates Active Directory groups to allow Oracle Database
password authentication with Active Directory. This procedure adds an
orclCommonAttribute attribute to the Active Directory schema for user accounts.

Note:

You must install the Oracle password filter on every Windows domain
controller in a domain, to ensure that Oracle password verifiers will be
generated for Active Directory users in this domain if they need to use
password authentication to log in Oracle database.
Note also that orclCommonAttribute stores Oracle password verifier for the
Active Directory user. This attribute is also used for password authentication
by other Oracle products or features such as Enterprise User Security. For
security consideration, you should deny everyone except the Oracle service
directory user from accessing the orclCommonAttribute attribute.

1. After you install Oracle database server software, then go to
the $ORACLE_HOME/bin directory.

2. Find the opwdintg.exe (Oracle Password Integration) utility.

3. Using a secure method of copying (such as sftp), copy opwdintg.exe to a
temporary directory (for example, C:\temp) on each Windows domain controller.

4. Connect to the Windows computer as the Active Directory administrator.

Currently, the opwdintg.exe utility requires English for the Windows OS.

5. Ensure that the Windows OS language setting is English.

6. Run the opwdintg.exe utility on each Windows domain controller.

Use one of the following methods to run the opwdintg.exe utility:

• Open the Windows Explorer and then double click the opwdintg.exe utility.

• Open a Windows command prompt and then follow these steps:

Chapter 6
Configuring the Oracle Database-Microsoft Active Directory Integration

6-8

a. Navigate to the directory where the opwdintg.exe utility is located. For
example:

cd c:\temp

b. Execute the utility from the command line by typing the following
command:

.\opwdintg.exe

7. Answer the following prompts:

• Do you want to extend AD schema? [Yes/No]: Enter Yes.
Extending the Active Directory schema requires the Windows OS language
setting to be English.

• Schema extension for this domain will be permanent. Continue? [Yes/
No]:Enter Yes.
Note the following:

– You can only extend the Active Directory schema one time. If you try to
extend the schema again, error messages appear, but you can ignore
these errors.

– This step creates the following three verifier groups. If these groups
already exist, then errors will appear, but you can ignore these errors.

* ORA_VFR_MD5 is required when the Oracle Database WebDAV client is
used.

* ORA_VFR_11G enables the use of the Oracle Database 11G password
verifier.

* ORA_VFR_12C enables the use of the Oracle Database 12C password
verifier.

– Unless you have backed up the Active Directory schema, once extended,
the Active Directory schema extension cannot be reverted.

The next two prompts depend on whether the password filter has been
installed already.

• Found password filter installed already. Do you want to deinstall? [Yes/
No]: This prompt appears if the password filter has already been installed. In
most cases, enter No to not deinstall the filter.
If you enter Yes to deinstall the password filter, then you must re-run
opwdintg.exe to re-install the password filter after you complete these
prompts. Otherwise, after you restart the computer, the password verifiers will
be no longer be generated when Active Directory users change their
passwords.

• Do you want to install Oracle password filter? [Yes/No]: This prompt
appears if the password filter has not been installed yet. Enter Yes.

• The change requires machine reboot. Do you want to reboot now? [Yes/
No]: Enter Yes.

Chapter 6
Configuring the Oracle Database-Microsoft Active Directory Integration

6-9

Step 3: If Necessary, Install the Oracle Database Software
If you have not done so yet, then use Oracle Universal Installer (OUI) to install the
Oracle software.

You only need to install the Oracle Database software, not the full database. After you
install the Oracle database software, you can configure centrally managed users with
Active Directory during database creation by using Database Configuration Assistant
(DBCA). You can also configure centrally managed users with Active Directory using
DBCA or manually after database creation.

• Follow the instructions in the Oracle Database Installation Guide for your platform
to install the Oracle software.

After you install the Oracle database software, then you can configure centrally
managed users with Active Directory during database creation using DBCA. You can
also configure centrally managed users with Active Directory using DBCA or manually
after the database creation.

Step 4: Create the dsi.ora or ldap.ora File
The dsi.ora file specifies connections for centrally managed users for Active
Directory.

The ldap.ora file can also specify the connection to the Active Directory server. But
because ldap.ora may already be used (or may be used in the future) for other
services like net naming services, Oracle recommends the use of dsi.ora for centrally
managed users.

• About Using a dsi.ora File
You use a dsi.ora file to specify Active Directory servers for centrally managed
users.

• Creating the dsi.ora File
The dsi.ora configuration file sets the information to find the Active Directory
servers for centrally managed users.

• About Using an ldap.ora File
You can use an ldap.ora file to specify Active Directory servers for centrally
managed users.

• Creating the ldap.ora File
These steps assume that ldap.ora is not being used for net naming services and
can be used to set up the connection with Active Directory for centrally managed
users.

About Using a dsi.ora File
You use a dsi.ora file to specify Active Directory servers for centrally managed users.

You must manually create the dsi.ora file to identify the Active Directory servers. The
dsi.ora file provides Active Directory connection information for all pluggable
databases if it is located in the same places where the ldap.ora file can be placed. A
dsi.ora file in a PDB-specific wallet location takes precedence over the main dsi.ora
file for that PDB only.

Chapter 6
Configuring the Oracle Database-Microsoft Active Directory Integration

6-10

Note:

If you are using ldap.ora for naming services, then do not make any
changes to ldap.ora for the CMU with Active Directory configuration. Only
use dsi.ora to configure CMU-Active Directory.

When you create the dsi.ora file, Oracle Database searches for it in the following
order:

1. If the WALLET_LOCATION setting is included in the sqlnet.ora file, then for a non-
multitenant database or the root container of a multitenant database, Oracle
searches for it in the location that is specified in sqlnet.ora. For a PDB of a
multitenant database, Oracle searches for it in the per-PDB wallet location that is
in the WALLET_LOCATION_specified_in_sqlnet.ora/pdb_guid directory.

2. If the WALLET_LOCATION setting is not included in the sqlnet.ora file, then Oracle
Database searches for it in the default wallet location.

3. If Oracle Database cannot find dsi.ora in the wallet location, then Oracle
Database searches for it in the following order. These are the same locations that
Oracle Database searches for the ldap.ora file.

a. $LDAP_ADMIN environment variable setting

b. $ORACLE_HOME/ldap/admin directory

c. $TNS_ADMIN environment variable setting

d. $ORACLE_HOME/network/admin directory

Oracle recommends that you use directories for writable files under $ORACLE_BASE, not
under $ORACLE_HOME. Starting with Oracle Database 18c, you can optionally set
the $ORACLE_HOME directory to be read-only. Hence, you should place the dsi.ora file
in a directory that is outside of $ORACLE_HOME to accommodate the dsi.ora
configuration for future releases.

Oracle also recommends that you use only dsi.ora to identify the Active Directory
servers for centrally managed users. If both dsi.ora and ldap.ora are configured in
the same database for centrally managed users for Active Directory and are both
located in the same directory, then dsi.ora takes precedence over the ldap.ora file. If
they are in different directories, then Oracle uses the first one that it finds in the
location precedence list above to find the Active Directory server. If the directory
server type in the first found dsi.ora or ldap.ora is not Active Directory, then centrally
managed users will not be enabled.

You can specify dsi.ora files for individual PDBs in a multitenant database. A PDB-
specific dsi.ora will override the common settings in the shared dsi.ora or ldap.ora
for that one PDB. Different PDBs can connect to different Active Directory servers for
CMU. The dsi.ora file for an individual PDB is located in the same directory as the
wallet for that PDB.

When the WALLET_LOCATION parameter in the sqlnet.ora file is set, then the dsi.ora
file for an individual PDB will be in the per-PDB wallet in the
WALLET_LOCATION_specified_in_sqlnet.ora/pdb_guid/ directory.

When the WALLET_LOCATION parameter in the sqlnet.ora file is not set, then the
default wallet location for an individual container in a multitenant database is

Chapter 6
Configuring the Oracle Database-Microsoft Active Directory Integration

6-11

the $ORACLE_BASE/admin/db_unique_name/pdb_guid/wallet/ directory. For each
PDB to use the default wallet location, you must not set WALLET_LOCATION in
sqlnet.ora.

To find the db_unique_name, connect to the CDB root and execute the following query:

SELECT DB_UNIQUE_NAME FROM V$DATABASE;

To find the pdb_guid, from the CDB root, execute the following query:

SELECT PDB_NAME,GUID FROM DBA_PDBS;

Setting or not setting the WALLET_LOCATION parameter in sqlnet.ora has the following
effects:

• If WALLET_LOCATION is not set in sqlnet.ora, then you can also place dsi.ora in
the default wallet directory for the CDB root container, located in
the $ORACLE_BASE/admin/db_unique_name/wallet directory. However, this will
only connect the CDB root container to the Active Directory, not the entire CDB
database.

• If WALLET_LOCATION is set in sqlnet.ora, then you can place the dsi.ora in that
wallet location, and this will also only connect the CDB root container to the Active
Directory, not the entire CDB database.

Creating the dsi.ora File
The dsi.ora configuration file sets the information to find the Active Directory servers
for centrally managed users.

To use the dsi.ora configuration file:

1. Log in to the host where the Oracle database is located.

2. Go to the directory where you want to create the dsi.ora file.

3. Add the following parameters to the dsi.ora file:

• DSI_DIRECTORY_SERVERS, which sets the Active Directory server host and port
number, and alternate directory servers. The directory server name must be a
fully qualified name. You can also have multiple Active Directory servers here
if you want to use multiple Windows domains. For example:

DSI_DIRECTORY_SERVERS = (AD-server.production.examplecorp.com:
389:636, sparky.production.examplecorp.com:389:636)

• DSI_DEFAULT_ADMIN_CONTEXT, which sets the search base where the Active
Directory users and groups are located. This parameter is optional. By
default, Oracle locates Active Directory users and groups in Active Directory's
default naming context. Oracle recommends that you do not set this
parameter. Set this parameter only if you want to limit the search scope for
Active Directory users and groups. For example:

DSI_DEFAULT_ADMIN_CONTEXT =
"OU=sales,DC=production,DC=examplecorp,DC=com"

Chapter 6
Configuring the Oracle Database-Microsoft Active Directory Integration

6-12

• DSI_DIRECTORY_SERVER_TYPE, which determines the Active Directory server
access. You must set it to AD for Active Directory. Enter this value in upper
case.

DSI_DIRECTORY_SERVER_TYPE = AD

About Using an ldap.ora File
You can use an ldap.ora file to specify Active Directory servers for centrally managed
users.

If you are already using an ldap.ora file for another purpose such as net naming
services, then you must use the dsi.ora file to configure centrally managed users to
connect with Active Directory for user authentication and authorization. Even if Active
Directory is already being used for net naming services, then you must create and use
a dsi.ora file to identify the Active Directory servers for centrally managed users.
Even if the database currently is not using ldap.ora for another service, Oracle
recommends using dsi.ora in case ldap.ora will be used at a future time for net
naming services.

The benefit of using ldap.ora is that you can use the DBCA graphical interface or the
DBCA silent mode to complete configuring the connection to the Active Directory
servers. When using dsi.ora, the steps to complete configuring the connection to
Active Directory must be done separately.

If ldap.ora is being used for naming services, then do not make any changes to
ldap.ora. Only use dsi.ora to configure CMU-Active Directory.

Typically, the ldap.ora file is stored in the $ORACLE_HOME/network/admin directory.
Usually, the ldap.ora file cannot be in the same directory as the WALLET_LOCATION that
is specified in the sqlnet.ora file, unless the WALLET_LOCATION is set
to $ORACLE_HOME/network/admin.

After you create the ldap.ora file, Oracle Database searches for it in the following
order:

1. $LDAP_ADMIN environment variable setting

2. $ORACLE_HOME/ldap/admin directory

3. $TNS_ADMIN environment variable setting

4. $ORACLE_HOME/network/admin directory

Creating the ldap.ora File
These steps assume that ldap.ora is not being used for net naming services and can
be used to set up the connection with Active Directory for centrally managed users.

1. Log in to the host where the Oracle database is located.

2. Go to the directory where you want to create the ldap.ora file.

3. If the ldap.ora file does not exist, then create it by using a text editor.

If the ldap.ora file does exist, create a backup of this file, and then
open ldap.ora.

4. Add the following parameters to the ldap.ora file:

Chapter 6
Configuring the Oracle Database-Microsoft Active Directory Integration

6-13

• DIRECTORY_SERVERS, which sets the Active Directory server host and port
number, and alternate directory servers. You can also have multiple Active
Directory servers here if you want to use multiple Windows domains. The
directory server name must be a fully qualified name. For example:

DIRECTORY_SERVERS = (AD-server.production.examplecorp.com:389:636,
sparky.production.examplecorp.com:389:636)

• DEFAULT_ADMIN_CONTEXT, which sets the search base where the Active
Directory users and groups are located. This parameter is optional. By
default, Oracle locates Active Directory users and groups in the Active
Directory's default naming context. Oracle recommends that you do not set
this parameter. Set this parameter only if you want to limit the search scope for
Active Directory users and groups. For example:

DEFAULT_ADMIN_CONTEXT =
"OU=sales,DC=production,DC=examplecorp,DC=com"

• DIRECTORY_SERVER_TYPE, which determines the LDAP server access. You
must set it to AD for Active Directory. Enter this value in upper case.

DIRECTORY_SERVER_TYPE = AD

Step 5: Request an Active Directory Certificate for a Secure Connection
After you have configured the dsi.ora or ldap.ora file, you are ready to prepare
Microsoft Active Directory and Oracle Database certificates for a secure connection.

• Request the Active Directory certificate from an Active Directory administrator.

Related Topics

• Management of Certificate Revocation Lists (CRLs) with orapki Utility
You must manage certificate revocation lists (CRLs) with the orapki utility.

Step 6: Create the Wallet for a Secure Connection
After you have copied the Active Directory certificate, you are ready to add it to the
Oracle wallet.

1. Copy the certificate text file (for example, AD_CA_Root_cert.txt) from the Active
Directory server to a temporary directory (for example, /tmp) on the local host.

If wallet location is not specified in the sqlnet.ora file, then the database will
search the following locations in this order for the wallet. The directory location
may need to be created.

For a non-multitenant database, or for the CDB root container of a multitenant
database:

a. $ORACLE_BASE/admin/db_unique_name/wallet/

b. $ORACLE_HOME/admin/db_unique_name/wallet/

For a PDB in a multitenant database:

a. $ORACLE_BASE/admin/db_unique_name/pdb_guid/wallet/

Chapter 6
Configuring the Oracle Database-Microsoft Active Directory Integration

6-14

b. $ORACLE_HOME/admin/db_unique_name/pdb_guid/wallet/

Oracle recommends that for each individual container in a multitenant database,
you place the wallet files in the default wallet location under $ORACLE_BASE, that is,
in the $ORACLE_BASE/admin/db_unique_name/pdb_guid/wallet/ directory.

To find the db_unique_name, connect to the CDB root and execute the following
query:

SELECT DB_UNIQUE_NAME FROM V$DATABASE;

To find the pdb_guid, from the CDB root, execute the following query:

SELECT PDB_NAME,GUID FROM DBA_PDBS;

If you are using sqlnet.ora to specify the wallet location, then the wallet location
specified is for a non-multitenant database, or the root container of a multitenant
database. For each PDB of the multitenant database, its wallet is located at
WALLET_LOCATION_specified_in_sqlnet.ora/pdb_guid. You can also place an
individual PDB dsi.ora in WALLET_LOCATION_specified_in_sqlnet.ora/
pdb_guid.

2. Create a new wallet.

The following command creates an auto-login wallet in the specified path.

orapki wallet create -wallet path_of_wallet -auto_loginn
Enter password: password

3. Create an entry in wallet with the user name of the Oracle service directory user
account for performing searches in Active Directory (created in the first step).

For example:

mkstore -wrl path_of_wallet -createEntry ORACLE.SECURITY.USERNAME oracle

4. Create an entry in wallet with the DN of the Oracle service directory user account.

For example:

mkstore -wrl path_of_wallet -createEntry ORACLE.SECURITY.DN
cn=oracle,cn=users,dc=production,dc=examplecorp,dc=com

In this example, the DN indicates that the DNS domain is
production.examplecorp.com. The Windows domain name is just production.

5. Create an entry in wallet with the user password credential of the Oracle service
directory user account.

For example:

mkstore -wrl path_of_wallet -createEntry ORACLE.SECURITY.PASSWORD password

6. Add the certificate to the wallet. Use the Active Directory certificate that you
received from the Active Directory administrator.

For example:

orapki wallet add -wallet path_of_wallet -cert /tmp/AD_CA_Root_cert.txt -
trusted_cert

If WALLET_LOCATION is specified in sqlnet.ora, then you must always add Active
Directory certificates to this wallet specified in sqlnet.ora, for a non-multitenant
database, the root container of a mutitenant database, or individual PDBs of the

Chapter 6
Configuring the Oracle Database-Microsoft Active Directory Integration

6-15

multitenant database. If different PDBs use the same Active Directory root CA
certificate, then you only need to add it in this wallet one time.

7. Verify the credentials.

For example:

orapki wallet display -wallet path_of_wallet

The output should be similar to the following:

Requested Certificates:
User Certificates:
Oracle Secret Store entries:
ORACLE.SECURITY.DN
ORACLE.SECURITY.PASSWORD
ORACLE.SECURITY.USERNAME
Trusted Certificates:
Subject: CN=ADSVR,DC=production,DC=examplecorp,DC=com

For WALLET_LOCATION_specified_in_sqlnet.ora/pdb_guid, the output should be
similar to the following:

Requested Certificates:
User Certificates:
Oracle Secret Store entries:
ORACLE.SECURITY.DN
ORACLE.SECURITY.PASSWORD
ORACLE.SECURITY.USERNAME
Trusted Certificates:

Step 7: Configure the Microsoft Active Directory Connection
Next, you are ready to connect the database to Active Directory using the settings you
have so far.

• About Configuring the Microsoft Active Directory Connection
To configure the Microsoft Active Directory connection, you can set the
parameters in the database or use DBCA.

• Configuring the Access Manually Using Database System Parameters
You can configure the Active Directory services connection manually by using
LDAP-specific Oracle Database system parameters.

• Configuring the Access Using the Database Configuration Assistant GUI
Oracle Database Configuration Assistant (DBCA) completes the LDAP connection
configuration and automatically creates the wallet and stores the Active Directory
certificate for use. DBCA only works when ldap.ora is configured for CMU-Active
Directory.

• Configuring the Access Using Database Configuration Assistant Silent Mode
Assuming ldap.ora (not dsi.ora) has been created in the correct location and
configured properly, DBCA silent mode can create a new database or alter an
existing database for the Microsoft Active Directory-Oracle Database integration.

About Configuring the Microsoft Active Directory Connection
To configure the Microsoft Active Directory connection, you can set the parameters in
the database or use DBCA.

Chapter 6
Configuring the Oracle Database-Microsoft Active Directory Integration

6-16

DBCA only recognizes the ldap.ora that is configured for centrally managed users,
and only creates the wallet in the recommended default location. To use the default
wallet locations, you must not set WALLET_LOCATION in sqlnet.ora.

Note:

Oracle recommends using dsi.ora for CMU-Active Directory.

Related Topics

• Configuring the Access Manually Using Database System Parameters
You can configure the Active Directory services connection manually by using
LDAP-specific Oracle Database system parameters.

Configuring the Access Manually Using Database System Parameters
You can configure the Active Directory services connection manually by using LDAP-
specific Oracle Database system parameters.

1. Ensure that you have created the dsi.ora file or the ldap.ora file, and that you
have created the wallet.

2. Log in to the database instance as a user who has the ALTER SYSTEM system
privilege.

In a multitenant environment, you can log in to the CDB root or to a PDB. If you log
in to the CDB root, then the parameters setting affects every PDB. If you log in to a
PDB, then the parameters settings affect only that PDB.
For example, to log in to the CDB root:

sqlplus c##sec_admin
Enter password: password

3. Modify the LDAP_DIRECTORY_ACCESS parameter, which determines the type of
LDAP directory access.

Valid values are PASSWORD and NONE (to disable the connection). PASSWORD requires
an Active Directory server certificate and when you create the wallet, you must
include the credentials for the Active Directory service user account for Oracle.

For example:

ALTER SYSTEM SET LDAP_DIRECTORY_ACCESS = 'PASSWORD';

You can also set this parameter in the spfile or in the init.ora file (if the init.ora
file is used). Afterward, restart the database.

4. Set the LDAP_DIRECTORY_SYSAUTH parameter to YES, so that administrative users
from Active Directory can log in to Oracle Database with the SYSDBA, SYSOPER,
SYSBACKUP, SYSDG, SYSKM, or SYSRAC administrative privilege.

If you set this parameter to NO, then centrally managed users from Active Directory
cannot log in to Oracle database with these privileges.

ALTER SYSTEM SET LDAP_DIRECTORY_SYSAUTH = YES SCOPE=SPFILE ;

You can also set this parameter in the spfile or in the init.ora file (if the init.ora
file is used). Afterward, restart the database.

Chapter 6
Configuring the Oracle Database-Microsoft Active Directory Integration

6-17

5. Restart the database instance.

• If you are in a non-multitenant environment, or if you are in a multitenant
environment and in a PDB (or if you are in the CDB root and want to make
parameters setting changes to take effect for entire CDB), then shut down and
then restart the database:

SHUTDOWN IMMEDIATE
STARTUP

• If you are in a multitenant environment and in the CDB root, and want to make
parameter setting change to take effect for a specific PDB, then close and re-
open that PDB:

ALTER PLUGGABLE DATABASE pdb_name CLOSE IMMEDIATE;
ALTER PLUGGABLE DATABASE pdb_name OPEN;

After you restart the database, you can log in with the SYSDBA administrative privilege
and check the LDAP parameters settings as follows:

show parameter ldap

Configuring the Access Using the Database Configuration Assistant GUI
Oracle Database Configuration Assistant (DBCA) completes the LDAP connection
configuration and automatically creates the wallet and stores the Active Directory
certificate for use. DBCA only works when ldap.ora is configured for CMU-Active
Directory.

These instructions assume that you have already installed the Oracle software and
that you are using an ldap.ora file (not dsi.ora) to identify the Active Directory
servers for the centrally managed users. If you have not installed the database
software yet, then you can install the software using Oracle Universal Installer (OUI).
After that, use DBCA to create the database, and at the same time you can configure
the connection for Active Directory centrally managed users.

1. Log in to the host where the Oracle database software is installed as a user who
has administrative privileges.

2. Start DBCA.

By default, the DBCA utility is located in the $ORACLE_HOME/bin directory.

For example:

cd $ORACLE_HOME/bin
./dbca

3. Select the Network Configuration option (or when you get to the Network
Configuration option when creating the database).

The Specify Network Configuration Details window appears. If the Directory
Service Integration area is not visible, then the ldap.ora file was not configured
correctly. Check the ldap.ora configuration that you did earlier, and after you have
corrected the file, rerun DBCA.

4. In the Directory Service Integration area, do the following:

• In the Service username field, enter the name of the Oracle service directory
user account.

• In the Password field, enter the password of the Oracle service directory user
account.

Chapter 6
Configuring the Oracle Database-Microsoft Active Directory Integration

6-18

• In the Service user DN field, enter the DN for the Oracle service directory
user account. The DN can be retrieved directly from the Active Directory
server or from an Active Directory system administrator.

• For Access Type, select the type of authentication from the list (for example,
PASSWORD). (This setting sets the LDAP_DIRECTORY_ACCESS parameter.) If
necessary, select the Allow admin privileges authentication checkbox,
which allows Active Directory users to authenticate and use database
schemas with administrative privileges (for example, SYSDBA, SYSOPER,
SYSBACKUP, and so on). Otherwise, centrally managed users from Active
Directory cannot log in to the database with administrative privileges. (This
setting corresponds to the LDAP_DIRECTORY_SYSAUTH parameter.)

• Provide the path to the Active Directory certificate in the Certificate file
location field. In a multitentant environment, DBCA recognizes and sets up
Active Directory connections for the database instance connection. You must
manually configure PDB connections if you want to connect a different Active
Directory server to a PDB.

• In the Wallet password and Confirm password fields, enter and confirm the
password for the Oracle wallet that will store the certificate and credential of
the Oracle service directory user account. Afterward, DBCA automatically
validates the service directory user account, creates the wallet, stores the user
credential, and imports the certificate.

5. Click Next until you reach the Finish page.

6. Click Finish.

Related Topics

• Step 4: Create the dsi.ora or ldap.ora File
The dsi.ora file specifies connections for centrally managed users for Active
Directory.

• Configuring the Access Using Database Configuration Assistant Silent Mode
Assuming ldap.ora (not dsi.ora) has been created in the correct location and
configured properly, DBCA silent mode can create a new database or alter an
existing database for the Microsoft Active Directory-Oracle Database integration.

Configuring the Access Using Database Configuration Assistant Silent Mode
Assuming ldap.ora (not dsi.ora) has been created in the correct location and
configured properly, DBCA silent mode can create a new database or alter an existing
database for the Microsoft Active Directory-Oracle Database integration.

1. Log in to the host that will have the Oracle database to be used for the integration.

2. Make sure ldap.ora is created with the correct content in a correct location.

3. Make sure that the WALLET_LOCATION parameter is not specified in the sqlnet.ora
file.

4. Run Database Configuration Assistant (DBCA) in silent mode.

For example, to create a single instance non-multitenant database:

cd $ORACLE_HOME/bin

./dbca -silent -createDatabase -gdbName inst1.production.examplecorp.com
-templateName General_Purpose.dbc -totalMemory 1000
-registerWithDirService true

Chapter 6
Configuring the Oracle Database-Microsoft Active Directory Integration

6-19

-dirServiceUser oracle
-dirServiceUserName cn=oracle,cn=users,dc=production,dc=examplecorp,dc=com
-dirServicePassword service_user_password
-ldapDirectoryAccessType PASSWORD
-useSysAuthForLDAPAccess true
-dirServiceCertificatePath /tmp/AD_CA_Root_cert.txt
-walletPassword wallet_password
-sysPassword sys_password
-systemPassword system_password

To configure the root container of a CDB or a non-multitenant database:

cd $ORACLE_HOME/bin

./dbca -silent -configureDatabase -sourceDB db_name
-registerWithDirService true
-dirServiceUser oracle
-dirServiceUserName cn=oracle,cn=users,dc=production,dc=examplecorp,dc=com
-dirServicePassword service_user_password
-ldapDirectoryAccessType PASSWORD
-useSYSAuthForLDAPAccess true
-dirServiceCertificatePath /tmp/AD_CA_Root_cert.txt
-walletPassword wallet_password

To configure a pluggable database in a CDB:

cd $ORACLE_HOME/bin

./dbca -silent -configurePluggableDatabase -pdbName pdb_name -sourceDB db_name
-registerWithDirService true
-dirServiceUser oracle
-dirServiceUserName cn=oracle,cn=users,dc=production,dc=examplecorp,dc=com
-dirServicePassword service_user_password
-dirServiceCertificatePath /tmp/AD_CA_Root_cert.txt
-walletPassword wallet_password

Related Topics

• About Using an ldap.ora File
You can use an ldap.ora file to specify Active Directory servers for centrally
managed users.

Step 8: Verify the Oracle Wallet
The orapki utility can verify that the wallet for this database was created successfully.

1. Log in to the host where a database is used in the integration.

2. Go to the directory that contains the wallet.

If WALLET_LOCATION is not set in sqlnet.ora, then the default wallet locations are
the following:

In a non-multitenant environment, the wallet directory is in the $ORACLE_BASE/
admin/db_unique_name/wallet directory.

In a multitenant environment, it is in one of the following locations:

• For the CDB root, the wallet is in the $ORACLE_BASE/admin/db_unique_name/
wallet/ directory.

• For a PDB, the wallet is in the $ORACLE_BASE/admin/db_unique_name/
pdb_guid/wallet/ directory.

Chapter 6
Configuring the Oracle Database-Microsoft Active Directory Integration

6-20

3. At the command line, enter the following commands:

ls -l path_of_wallet (to check that the wallet directory contains wallet files)

orapki wallet display -wallet path_of_wallet (to find the Oracle Secret
Store entries)

The output should contain the following entries:

Requested Certificates:
User Certificates:
Oracle Secret Store entries:
ORACLE.SECURITY.DN
ORACLE.SECURITY.PASSWORD
ORACLE.SECURITY.USERNAME
Trusted Certificates:
Subject: CN=ADSVR,DC=production,DC=examplecorp,DC=com

Step 9: Test the Integration
To test the integration, you must set the ORACLE_HOME, ORACLE_BASE, and ORACLE_SID
environment variables and then verify the LDAP parameter settings.

1. Log in to the host where a database is used for the integration.

2. Set the ORACLE_HOME, ORACLE_BASE, and ORACLE_SID environment variables.

For example:

export ORACLE_HOME=/app/product/18.1/dbhome_1
export ORACLE_BASE=/app
export ORACLE_SID=sales_db

3. Log in to the database instance as a user who has the SYSDBA administrative
privilege.

For example:

sqlplus sec_admin as sysdba
Enter password: password

4. Check the LDAP parameter settings:

show parameter ldap

The output should be similar to the following:

NAME TYPE VALUE
--------------------------- --------- -----------------
ldap_directory_access string PASSWORD
ldap_directory_sysauth string YES

Configuring Authentication for Centrally Managed Users
You can configure password authentication, Kerberos authentication, or public key
infrastructure (PKI) authentication.

• Configuring Password Authentication for Centrally Managed Users
Configuring password authentication for centrally managed users entails the use
of a password filter with Active Directory to generate and store Oracle Database
password verifiers on Active Directory.

Chapter 6
Configuring Authentication for Centrally Managed Users

6-21

• Configuring Kerberos Authentication for Centrally Managed Users
If you plan to use Kerberos authentication, then you must configure Kerberos in
the Oracle database that will be integrated with Microsoft Active Directory.

• Configuring Authentication Using PKI Certificates for Centrally Managed Users
If you plan to use PKI certificates for the authentication of centrally managed
users, then you must configure Secure Sockets Layer in the Oracle database that
will be integrated with Microsoft Active Directory.

Configuring Password Authentication for Centrally Managed Users
Configuring password authentication for centrally managed users entails the use of a
password filter with Active Directory to generate and store Oracle Database password
verifiers on Active Directory.

• About Configuring Password Authentication for Centrally Managed Users
To configure password authentication, you must deploy a password filter, extend
the Active Directory schema by adding one user attribute, and create groups for
generating different versions of password verifiers on Active Directory.

• Configuring Password Authentication for a Centrally Managed User
You must perform password authentication configuration on Active Directory
servers, and also on Oracle databases if it is required that Active Directory users
will log in to Oracle databases with administrative privileges.

• Logging in to an Oracle Database Using Password Authentication
For password authentication, centrally managed users have choices of how to log
in to the database.

About Configuring Password Authentication for Centrally Managed Users
To configure password authentication, you must deploy a password filter, extend the
Active Directory schema by adding one user attribute, and create groups for
generating different versions of password verifiers on Active Directory.

For Active Directory users to log in Oracle database with administrative privileges, you
must also set a password file with Oracle database.

For password authentication, because Oracle Database does not pass Active
Directory users' passwords through the ldapbind command to authenticate with Active
Directory, you must install an Oracle filter and extend the Active Directory schema.
The Oracle filter that you install in Active Directory creates Oracle-specific password
verifiers when Active Directory users update their passwords. The Oracle filter does
not generate all required Oracle password verifiers when it is first installed; the Oracle
filter only generates the Oracle password verifier for a user when the user changes his
or her Active Directory password.

To maintain backward compatibility (if your site requires it), the Oracle filter can
generate password verifiers to work with Oracle Database clients for releases 11g,
12c, and 18c. The Oracle password filter uses Active Directory groups named
ORA_VFR_MD5 (for WebDAV), ORA_VFR_11G (for release 11g) and ORA_VFR_12C (for
releases 12c and 18c) to determine which Oracle Database password verifiers to
generate. These groups must be created in Active Directory for the Oracle password
verifiers to be generated for group member users. These are separate groups that
dictate which specific verifiers should be generated for the Active Directory users. For
example, if ten directory users need to log in to a newly created Oracle Database
release 18c database that only communicated with Oracle Database release 18c and

Chapter 6
Configuring Authentication for Centrally Managed Users

6-22

12c clients, then an Active Directory group ORA_VFR_12C will have ten Active Directory
users as members. The Oracle filter will only generate 12C verifiers for these ten Active
Directory users when they change passwords with Active Directory (18c verifiers are
the same as 12c verifiers). If an Active Directory user no long needs to log in to Oracle
databases, in order to clear the Oracle password verifiers generated for the Active
Directory user, remove the user from any ORA_VFR groups, and reset the password (or
require password change) for this user. You can also manually clear the
orclCommonAttribute attribute for this user. Oracle password verifiers will no longer
be generated after the user has been removed from ORA_VFR groups.

Configuring Password Authentication for a Centrally Managed User
You must perform password authentication configuration on Active Directory servers,
and also on Oracle databases if it is required that Active Directory users will log in to
Oracle databases with administrative privileges.

1. Deploy the Oracle Database password filter and extend the Active Directory
schema.

The utility tool for performing this task, opwdintg.exe, is located in $ORACLE_HOME/
bin. This utility installs the password filter in Active Directory, extends the Active
Directory schema to hold the Oracle password verifiers, and creates the Active
Directory password verifier groups. The password filter will enable the Microsoft
Active Directory user accounts to be authenticated by the Oracle database when
connected to clients using WebDAV, 11G, and 12C password verifiers.

a. To deploy the opwdintg.exe executable, copy this file to the Active Directory
server and then have the Active Directory administrator run the opwdintg.exe
utility tool.

b. Log in to Microsoft Active Directory as a user who has privileges to create and
manage user groups.

c. Check for the following password verifier user groups: ORA_VFR_MD5,
ORA_VFR_11G, and ORA_VFR_12C. If these groups do not exist, then rerun the
opwdintg.exe utility tool.

d. Add the Microsoft Active Directory users who will use Oracle Database to
these groups, following these guidelines:

• If either the client or the server only permits Oracle Database release 12c
authentication, then add the user to the ORA_VFR_12C group. (Oracle
Database release 18c uses the same verifier as Oracle Database release
12c.)

• If both the client and the server only permit authentication lower than
Oracle Database release 12c (that is, they have Oracle Database releases
11g, or 12.1.0.1 clients), then add the user to the ORA_VFR_11G group.

• If a user must authenticate through an Oracle Database WebDAV client,
then the user must be a member of the ORA_VFR_MD5 group.

This configuration enables fine-grained control over the generation of the
Oracle Database password verifiers. Only the required verifiers for the
required users are generated. For example, if Microsoft Active Directory user
pfitch is added to the ORA_VFR_12C and ORA_VFR_11G groups, then both the
12C and 11G verifiers will be generated for pfitch. This ensures that when
applicable, the most secure and strongest verifier is chosen, while in other
cases, the 11G verifier is chosen for the Oracle Database release 11g clients.

Chapter 6
Configuring Authentication for Centrally Managed Users

6-23

2. Update the database password file to version 12.2.

If it is required that Active Directory users will log in to Oracle databases with
administrative privileges, then update the database password file to version 12.2.

a. As a user with administrative privileges, log in to the host where the database
that is to be used for the Microsoft Active Directory connection resides.

b. Go to the $ORACLE_HOME/dbs directory.

c. Run the ORAPWD utility to set the format to 12.2.

For example:

orapwd FILE='/app/oracle/product/18.1/db_1/dbs/orapwdb181' FORMAT=12.2

This setting ensures that you can grant the various administrative privileges
such as SYSOPOER and SYSBACKUP to the global user.

d. Log in to the database instance as a user who has the ALTER SYSTEM privilege.

e. Make sure that the LDAP_DIRECTORY_SYSAUTH parameter is set to YES in the
spfile or the init.ora file.

f. Set the REMOTE_LOGIN_PASSWORDFILE parameter to EXCLUSIVE in the spfile or
the init.ora file.

g. Restart the database instance.

SHUTDOWN IMMEDIATE
STARTUP

Related Topics

• Step 2: For Password Authentication, Install the Password Filter and Extend the
Microsoft Active Directory Schema
You can use the Oracle opwdintg.exe executable on the Active Directory server to
install the password filter and extend the Active Directory schema.

Logging in to an Oracle Database Using Password Authentication
For password authentication, centrally managed users have choices of how to log in to
the database.

To log in to a database that is configured to connect to Active Directory, an Active
Directory user can use the following logon user name syntax if he or she is using
password authentication:

sqlplus /nolog
connect "Windows_domain\Active_Directory_user_name"@tnsname_of_database
Password: password

The following connection assumes the Windows domain name is production:

connect "production\pfitch"@inst1

If the Active Directory user is in the same Active Directory domain as the Oracle
Service Directory User Account configured in the database wallet, then an Active
Directory user can use this user name (samAccountName) directly to log on to the
database:

sqlplus samAccountName@tnsname_of_database
Enter password: password

Chapter 6
Configuring Authentication for Centrally Managed Users

6-24

For example:

connect pfitch@instl
Enter password: password

Alternatively, the user can use their Active Directory Windows user logon name with
the DNS domain name.

connect "Active_Directory_user_name@Windows_DNS_domain_name"@tnsname_of_database
Password: password

For example:

connect "pfitch@production.examplecorp.com"@inst1

Configuring Kerberos Authentication for Centrally Managed Users
If you plan to use Kerberos authentication, then you must configure Kerberos in the
Oracle database that will be integrated with Microsoft Active Directory.

CMU-Active Directory only supports the Microsoft Active Directory Kerberos server.
Other non-Active Directory Kerberos servers are not supported with CMU-Active
Directory.

Note:

You do not create database users identified externally as an Active Directory
user's Kerberos UPN. Instead, you use global users that are mapped to
Active Directory users or groups.

Related Topics

• Mapping a Directory Group to a Shared Database Global User
Most users of the database will be mapped to a shared global database user
(schema) through membership in a directory group.

• Exclusively Mapping a Directory User to a Database Global User
You can map a Microsoft Active Directory user exclusively to an Oracle Database
global user.

• Enabling Kerberos Authentication
To enable Kerberos authentication for Oracle Database, you must first install it,
and then follow a set of configuration steps.

Configuring Authentication Using PKI Certificates for Centrally
Managed Users

If you plan to use PKI certificates for the authentication of centrally managed users,
then you must configure Secure Sockets Layer in the Oracle database that will be
integrated with Microsoft Active Directory.

Chapter 6
Configuring Authentication for Centrally Managed Users

6-25

Note:

You use an Active Directory user certificate when you configure Secure
Sockets Layer Authentication. However, you do not create database users
identified externally as the DN of the Active Directory user certificate.
Instead, you use global users that are mapped to Active Directory users or
groups.

Related Topics

• Mapping a Directory Group to a Shared Database Global User
Most users of the database will be mapped to a shared global database user
(schema) through membership in a directory group.

• Exclusively Mapping a Directory User to a Database Global User
You can map a Microsoft Active Directory user exclusively to an Oracle Database
global user.

• Configuring Secure Sockets Layer Authentication
You can configure Oracle Database to use Secure Sockets Layer authentication.

• Public Key Infrastructure in an Oracle Environment
A public key infrastructure (PKI) is a substrate of network components that provide
a security underpinning, based on trust assertions, for an entire organization.

Configuring Authorization for Centrally Managed Users
With centrally managed users, you can manage the authorization for Active Directory
users to access Oracle databases.

Users can be added, modified, or dropped from an organization by using Active
Directory without your having to add, modify, or drop the user from every database in
your organization.

• About Configuring Authorization for Centrally Managed Users
You can manage user authorization for a database within Active Directory.

• Mapping a Directory Group to a Shared Database Global User
Most users of the database will be mapped to a shared global database user
(schema) through membership in a directory group.

• Mapping a Directory Group to a Global Role
Database global roles mapped to directory groups give member users additional
privileges and roles above what they have been granted through their login
schemas.

• Exclusively Mapping a Directory User to a Database Global User
You can map a Microsoft Active Directory user exclusively to an Oracle Database
global user.

• Altering or Migrating a User Mapping Definition
You can update an Active Directory user to a Database global user mapping by
using the ALTER USER statement.

• Configuring Administrative Users
Administrative users can work as they have in the past, but with CMUs, they can
be controlled with centralized authentication and authorization if they are using
shared schemas.

Chapter 6
Configuring Authorization for Centrally Managed Users

6-26

• Verifying the Centrally Managed User Logon Information
After you configure and authorize a centrally managed user, you can verify the
user logon information by executing a set of SQL queries on the Oracle database
side.

About Configuring Authorization for Centrally Managed Users
You can manage user authorization for a database within Active Directory.

Most Oracle Database users will be mapped to a shared database schema (user).
This minimizes the work that must be done in each Oracle database when directory
users are hired, change jobs within the company, or leave the company. A directory
user will be assigned to an Active Directory group that is mapped to an Oracle
database global user (schema). When the user logs into the database, the database
will query Active Directory to find the groups the user is a member of. If your
deployment is using shared schemas, then one of the groups will map to a shared
database schema and the user will be assigned to that database schema. The user
will have the roles and privileges that granted to the database schema. Because
multiple users will be assigned to the same shared database schema, only the minimal
set of roles and privileges should be granted to the shared schema. In some cases, no
privileges and roles should be granted to the shared schema. Users will be assigned
the appropriate set of roles and schemas through database global roles. Global roles
are mapped to Active Directory groups. This way, different users can have different
roles and privileges even if they are mapped to the same database shared schema. A
newly hired user will be assigned to an Active Directory group mapped to a shared
schema and then to one or more additional groups mapped to global roles to gain the
additional roles and privileges required to complete their tasks. The combination of
shared schemas and global roles allows for centralized authorization management
with minimal changes to the database operationally. The database must be initially
provisioned with the set of shared schemas and global roles mapped to the
appropriate Active Directory groups, but then user authorization management can
happen within Active Directory.

An Active Directory user can also be exclusively mapped to a database global user.
This requires a new user in the database that is mapped directly to the Active
Directory user. New users and departing users will require updates to each database
they are members of.

Active Directory users requiring administrative privileges such as SYSOPER and
SYSBACKUP cannot be granted these through global roles. Administrative privileges can
only be granted to a schema and not a role. But even in these cases with
administrative privileges, shared schemas can be used to provide ease of user
authorization management. Using a shared schema with the SYSOPER privilege will
allow new users to be easily added to the Active Directory group mapped to the
schema with SYSOPER without having to create a new user schema in the database.
Even if only one user is assigned to the shared schema, it can still be managed
centrally.

When using global roles to grant privileges and roles to the user, remember that the
maximum number of enabled roles in a session is 150.

The following types of global user mappings are supported for authorization:

• Map shared global users, in which directory users are assigned to a shared
database schema (user) through the mapping of a directory group to the shared
schema. The directory users that are members of the group can connect to the

Chapter 6
Configuring Authorization for Centrally Managed Users

6-27

database through this shared schema. Use of shared schemas allows for
centralized management of user authorization in Active Directory.

• Exclusive global user mappings, in which a dedicated database user is exclusively
mapped to a directory user. Not as common as the shared database schema, this
user is created for direct database access by using either SQL*Plus or the schema
user for two-tier or three-tier applications. Oracle recommends that you grant
database privileges to these users through global roles, which facilitates
authorization management. However, these users can also have direct privilege
grants in the Oracle database, although this is not recommended. This is because
two-tier and three-tier applications can use the global user as the database
schema, so the global user has the full database privileges on the schema objects
as the owner.

It is common for a directory user to be a member of multiple groups. However, only
one of these groups should be mapped to a shared schema.

Mapping a Directory Group to a Shared Database Global User
Most users of the database will be mapped to a shared global database user (schema)
through membership in a directory group.

The Active Directory group must be created before the database global user can be
mapped to it. You can add Active Directory users to the group at any time before the
user needs to log in to the database. On the database side, you must have the CREATE
USER and ALTER USER privileges to perform these mappings. This configuration can be
used for users who have the password authentication, Kerberos authentication, and
public key infrastructure (PKI) authentication methods.

You can assign users who share the same database schema for an application into an
Active Directory group. A shared Oracle Database global user (that is, a shared
schema) is mapped to an Active Directory group. This way, any Active Directory user
of this group can log in to the database through that shared global user account.
Although the database global user account is shared by group members, the Active
Directory user's authenticated identity (Windows domain and his or her
samAccountName), and enterprise identity (DN) are tracked and audited inside the
database.

1. Log in to the database instance as a user who has been granted the CREATE USER
or ALTER USER system privilege.

2. Execute the CREATE USER or ALTER USER statement with the IDENTIFIED GLOBALLY
AS clause specifying the DN of an Active Directory group.

For example, to map a directory group named widget_sales_group in the sales
organization unit of the production.examplecorp.com domain to a shared
database global user named WIDGET_SALES:

CREATE USER widget_sales IDENTIFIED GLOBALLY AS
'CN=widget_sales_group,OU=sales,DC=production,DC=examplecorp,DC=com';

All members of the widget_sales_group will be assigned to the widget_sales
shared schema when they log in to the database.

Mapping a Directory Group to a Global Role
Database global roles mapped to directory groups give member users additional
privileges and roles above what they have been granted through their login schemas.

Chapter 6
Configuring Authorization for Centrally Managed Users

6-28

1. Log in to the database instance as a user who has been granted the CREATE ROLE
or ALTER ROLE system privilege.

2. Execute the CREATE ROLE or ALTER ROLE statement with the IDENTIFIED GLOBALLY
AS clause specifying the DN of an Active Directory group.

For example, to map a directory user group named widget_sales_group in the
sales organization unit of the production.examplecorp.com domain to a database
global role WIDGET_SALES_ROLE:

CREATE ROLE widget_sales_role IDENTIFIED GLOBALLY AS
'CN=widget_sales_group,OU=sales,DC=production,DC=examplecorp,DC=com';

In a multitenant environment, to create a common role called
C##WIDGET_SALES_ROLE:

CREATE ROLE c##widget_sales_role IDENTIFIED GLOBALLY AS
'CN=widget_sales_group,OU=sales,DC=production,DC=examplecorp,DC=com'
CONTAINER = ALL;

All members of the widget_sales_group will be authorized with the database role
widget_sales_role when they log in to the database.

Exclusively Mapping a Directory User to a Database Global User
You can map a Microsoft Active Directory user exclusively to an Oracle Database
global user.

You perform the configuration on the Oracle Database side only, not the Active
Directory side. You must have the CREATE USER and ALTER USER privileges to perform
these mappings. This configuration can be used for users who have the password
authentication, Kerberos authentication, and public key infrastructure (PKI)
authentication methods.

1. Log in to the database instance as a user who has been granted the CREATE USER
or ALTER USER system privilege.

2. Execute the CREATE USER or ALTER USER statement with the IDENTIFIED GLOBALLY
AS clause specifying the DN of an Active Directory user.

For example, to map an existing Active Directory user named Peter Fitch (whose
samAccountName is pfitch) in the sales organization unit of the
production.examplecorp.com domain to a database global user named
PETER_FITCH:

CREATE USER peter_fitch IDENTIFIED GLOBALLY AS
'CN=Peter Fitch,OU=sales,DC=production,DC=examplecorp,DC=com';

Altering or Migrating a User Mapping Definition
You can update an Active Directory user to a Database global user mapping by using
the ALTER USER statement.

You can update users whose accounts were created using any of the CREATE USER
statement clauses: IDENTIFIED BY password, IDENTIFIED EXTERNALLY, or IDENTIFIED
GLOBALLY. This is useful when migrating users to using CMU. For example, a database
user that is externally authenticated to Kerberos will be identified by their user principal
name (UPN). To migrate the user to use CMU with Kerberos authentication, you would

Chapter 6
Configuring Authorization for Centrally Managed Users

6-29

need to run the ALTER USER statement to declare a global user and identify the user
with their Active Directory distinguished name (DN).

1. Log in to the database instance as a user who has been granted the ALTER USER
system privilege.

2. Execute the ALTER USER statement with the IDENTIFIED GLOBALLY AS clause.

For example:

ALTER USER peter_fitch IDENTIFIED GLOBALLY AS
'CN=Peter Fitch,OU=sales,DC=production,DC=examplecorp,DC=com';

Configuring Administrative Users
Administrative users can work as they have in the past, but with CMUs, they can be
controlled with centralized authentication and authorization if they are using shared
schemas.

• Configuring Database Administrative Users with Shared Access Accounts
Using shared accounts simplifies the management of database administrators for
multiple databases as they join, move, and leave the organization.

• Configuring Database Administrative Users Using Exclusive Mapping
Database administrators can also be mapped to exclusive schemas in databases.

Configuring Database Administrative Users with Shared Access Accounts
Using shared accounts simplifies the management of database administrators for
multiple databases as they join, move, and leave the organization.

You can assign new database administrators to shared accounts in multiple databases
using Active Directory groups without having to create new Oracle database accounts.

1. Ensure that the password file for the current database instance is in the 12.2
format.

orapwd file=pwd_file FORMAT=12.2
Enter password for SYS: password

2. In Active Directory, create an Active Directory group (for example, for a database
administrator backup users group called ad_dba_backup_users).

3. In Oracle Database, create a global user (shared schema) (for example,
db_dba_backup_global_user) and map this user to the Active Directory
ad_dba_backup_users group.

4. Grant the SYSBACKUP administrative privilege to the global user
db_dba_backup_global_user.

At this stage, any Active Directory user who is added to the ad_dba_backup_users
Active Directory group will be assigned to the new database shared schema with the
SYSBACKUP administrative privilege.

Configuring Database Administrative Users Using Exclusive Mapping
Database administrators can also be mapped to exclusive schemas in databases.

1. Ensure that the password file for the current database instance is in the 12.2
format.

Chapter 6
Configuring Authorization for Centrally Managed Users

6-30

orapwd file=pwd_file FORMAT=12.2
Enter password for SYS: password

2. Log in to the database instance as a user who can create users and grant
administrative privileges to other users.

3. Create a database global user.

For example:

CREATE USER peter_fitch IDENTIFIED GLOBALLY AS
'CN=Peter Fitch,OU=sales,DC=production,DC=examplecorp,DC=com';

4. Grant this user the administrative privilege.

For example, to grant a user the SYSKM administrative privilege:

GRANT SYSKM TO peter_fitch;

Due to the amount of work to maintain accounts and the mapping in both the database
and Active Directory, a more centralized approach would be to use shared schemas
for these administrative accounts as well, even if only one Active Directory user is
assigned to the shared database account in some cases.

Verifying the Centrally Managed User Logon Information
After you configure and authorize a centrally managed user, you can verify the user
logon information by executing a set of SQL queries on the Oracle database side.

1. Log in to the database as a centrally managed user from Active Directory that you
have just configured and authorized.

For example, to log in to the database instance inst1 as the enterprise user
pfitch, who is on the Windows domain production:

sqlplus /nolog
connect "production\pfitch"@inst1
Enter password: password

2. Verify the mapped global user.

The mapped global user is the database user account that has the centrally
managed user authorization. User PETER_FITCH is considered a global user with
exclusive mapping for the Active Directory user pfitch, while user WIDGET_SALES
is considered a global user with shared mapping for Active Directory group
widget_sales_group of which pfitch is a member. A global user account has its
own schema.

SHOW USER;

Output similar to the following appears, depending on if it is an exclusive mapping
or a shared mapping:

USER is "PETER_FITCH"

Or

USER is "WIDGET_SALES"

3. Find the roles that have been granted to the centrally managed user.

SELECT ROLE FROM SESSION_ROLES ORDER BY ROLE;

Output similar to the following appears:

Chapter 6
Configuring Authorization for Centrally Managed Users

6-31

ROLE
--
WIDGET_SALES_ROLE
...

4. Execute the following queries to check the SYS_CONTEXT namespace values for the
current schema being used in this database session, current user name, session
user name, authentication method, authenticated identity, enterprise identity,
identification type, and LDAP server type.

• Verify the current schema that is being used in this database session. A
database schema is an object container that identifies the objects it contains.
The current schema is the default container for objects name resolution in this
database session.

SELECT SYS_CONTEXT('USERENV', 'CURRENT_SCHEMA') FROM DUAL;

Output similar to the following appears, depending on if it is an exclusive
mapping or a shared mapping:

SYS_CONTEXT('USERENV','CURRENT_SCHEMA')
--
PETER_FITCH

Or

SYS_CONTEXT('USERENV','CURRENT_SCHEMA')
--
WIDGET_SALES

• Verify the current user. In this case, the current user is the same as the current
schema.

SELECT SYS_CONTEXT('USERENV', 'CURRENT_USER') FROM DUAL;

Output similar to the following appears, depending on if it is an exclusive
mapping or a shared mapping:

SYS_CONTEXT('USERENV','CURRENT_USER')
--
PETER_FITCH

Or

SYS_CONTEXT('USERENV','CURRENT_USER')
--
WIDGET_SALES

• Verify the session user.

SELECT SYS_CONTEXT('USERENV', 'SESSION_USER') FROM DUAL;

Output similar to the following appears, depending on if it is an exclusive
mapping or a shared mapping:

SYS_CONTEXT('USERENV','SESSION_USER')
--
PETER_FITCH

Or

Chapter 6
Configuring Authorization for Centrally Managed Users

6-32

SYS_CONTEXT('USERENV','SESSION_USER')
--
WIDGET_SALES

• Verify the authentication method.

SELECT SYS_CONTEXT('USERENV', 'AUTHENTICATION_METHOD') FROM DUAL;

Output similar to the following appears:

SYS_CONTEXT('USERENV','AUTHENTICATION_METHOD')
--
PASSWORD_GLOBAL

• Verify the authenticated identity for the enterprise user. The Active Directory
authenticated user identity is captured and audited when this user logs on to
the database.

SELECT SYS_CONTEXT('USERENV', 'AUTHENTICATED_IDENTITY') FROM DUAL;

Output similar to the following appears:

SYS_CONTEXT('USERENV','AUTHENTICATED_IDENTITY')
--
production\pfitch

• Verify the centrally managed user's enterprise identity.

SELECT SYS_CONTEXT('USERENV', 'ENTERPRISE_IDENTITY') FROM DUAL;

Output similar to the following appears:

SYS_CONTEXT('USERENV','ENTERPRISE_IDENTITY')
--
cn=Peter Fitch,ou=sales,dc=production,dc=examplecorp,dc=com

• Verify the identification type.

SELECT SYS_CONTEXT('USERENV', 'IDENTIFICATION_TYPE') FROM DUAL

Output similar to the following appears, depending on if it is an exclusive
mapping or a shared mapping:

SYS_CONTEXT('USERENV','IDENTIFICATION_TYPE')
--
GLOBAL EXCLUSIVE

Or

SYS_CONTEXT('USERENV','IDENTIFICATION_TYPE')
--
GLOBAL SHARED

• Verify the LDAP server type.

SELECT SYS_CONTEXT('USERENV', 'LDAP_SERVER_TYPE') FROM DUAL;

Output similar to the following appears. In this case, the LDAP server type is
Active Directory.

SYS_CONTEXT('USERENV','LDAP_SERVER_TYPE')

Chapter 6
Configuring Authorization for Centrally Managed Users

6-33

--
AD

Related Topics

• Logging in to an Oracle Database Using Password Authentication
For password authentication, centrally managed users have choices of how to log
in to the database.

Integration of Oracle Database with Microsoft Active
Directory Account Policies

As part of the Oracle Database-Microsoft Active Directory integration, Oracle
Database enforces the Active Directory account policies when Active Directory users
log into the Oracle database.

Active Directory account policy settings cover the password policy, account lockout
policy, and Kerberos policy. Oracle Database enforces all of the account policies for
centrally managed users from Active Directory. For example, Oracle prevents Active
Directory users with account status, such as password expired, password must
change, account locked out, or account disabled from logging in to the database. If
you are using Kerberos authentication, then Oracle prevents Active Directory users
with expired Kerberos tickets from logging in the database. If you are using password
authentication, then an Active Directory user account will be locked out for a specified
period of time on Active Directory after the user makes a specified number of failed
attempts consecutively when trying to log in to the Oracle database using incorrect
passwords. With enforcing the account lockout policy, Oracle effectively prevents
password guessing attacks against Active Directory user accounts.

Chapter 6
Integration of Oracle Database with Microsoft Active Directory Account Policies

6-34

7
Managing Security for Definer's Rights
and Invoker's Rights

Invoker’s rights and definer’s rights have several security advantages when used to
control access to privileges to run user-created procedures.

• About Definer's Rights and Invoker's Rights
Definer's rights and invoker's rights are used to control access to the privileges
necessary to run a user-created procedure, or program unit.

• How Procedure Privileges Affect Definer's Rights
The owner of a procedure, called the definer, must have the necessary object
privileges for objects that the procedure references.

• How Procedure Privileges Affect Invoker's Rights
An invoker’s rights procedure executes with all of the invoker's privileges.

• When You Should Create Invoker's Rights Procedures
Oracle recommends that you create invoker's rights procedures in certain
situations.

• Controlling Invoker's Rights Privileges for Procedure Calls and View Access
The INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES privileges regulate the
privileges used when invoker's rights procedures are run.

• Definer's Rights and Invoker's Rights in Views
The BEQEATH clause in the CREATE VIEW SQL statement can control definer's rights
and invoker's rights in user-created views.

• Using Code Based Access Control for Definer's Rights and Invoker's Rights
Code based access control, used to attach database roles to PL/SQL functions,
procedures, or packages, works well with invoker's rights and definer's
procedures.

• Controlling Definer's Rights Privileges for Database Links
You can control privilege grants for definer’s rights procedures if your applications
use database links and definer’s rights procedures.

About Definer's Rights and Invoker's Rights
Definer's rights and invoker's rights are used to control access to the privileges
necessary to run a user-created procedure, or program unit.

In a definer's rights procedure, the procedure executes with the privileges of the
owner. The privileges are bound to the schema in which they were created. An
invoker's rights procedure executes with the privileges of the current user, that is, the
user who invokes the procedure.

For example, suppose user bixby creates a procedure that is designed to modify table
cust_records and then he grants the EXECUTE privilege on this procedure to user
rlayton. If bixby had created the procedure with definer's rights, then the procedure
would look for table cust_records in bixby's schema. Had the procedure been

7-1

created with invoker's rights, then when rlayton runs it, the procedure would look for
table cust_records in rlayton's schema.

By default, all procedures are considered definer's rights. You can designate a
procedure to be an invoker's rights procedure by using the AUTHID CURRENT_USER
clause when you create or modify it, or you can use the AUTHID DEFINER clause to
make it a definer's rights procedure.

You can create privilege analysis policies to capture privilege use of definer’s rights
and invoker’s rights procedures.

Related Topics

• Performing Privilege Analysis to Find Privilege Use
Privilege analysis dynamically analyzes the privileges and roles that users use and
do not use.

• Oracle Database PL/SQL Language Reference

How Procedure Privileges Affect Definer's Rights
The owner of a procedure, called the definer, must have the necessary object
privileges for objects that the procedure references.

If the procedure owner grants to another user the right to use the procedure, then the
privileges of the procedure owner (on the objects the procedure references) apply to
the grantee's exercise of the procedure. The privileges of the procedure's definer must
be granted directly to the procedure owner, not granted through roles. These are
called definer's rights.

The user of a procedure who is not its owner is called the invoker. Additional privileges
on referenced objects are required for an invoker's rights procedure, but not for a
definer's rights procedure.

A user of a definer's rights procedure requires only the privilege to execute the
procedure and no privileges on the underlying objects that the procedure accesses.
This is because a definer's rights procedure operates under the security domain of the
user who owns the procedure, regardless of who is executing it. The owner of the
procedure must have all the necessary object privileges for referenced objects. Fewer
privileges need to be granted to users of a definer's rights procedure. This results in
stronger control of database access.

You can use definer's rights procedures to control access to private database objects
and add a level of database security. By writing a definer's rights procedure and
granting only the EXECUTE privilege to a user, this user can be forced to access the
referenced objects only through the procedure.

At run time, Oracle Database checks whether the privileges of the owner of a definer's
rights procedure allow access to that procedure's referenced objects, before the
procedure is executed. If a necessary privilege on a referenced object was revoked
from the owner of a definer's rights procedure, then no user, including the owner, can
run the procedure.

An example of when you may want to use a definer's rights procedure is as follows:
Suppose that you must create an API whose procedures have unrestricted access to
its tables, but you want to prevent ordinary users from selecting table data directly, and
from changing it with INSERT, UPDATE, and DELETE statements. To accomplish this, in a
separate, low-privileged schema, create the tables and the procedures that comprise

Chapter 7
How Procedure Privileges Affect Definer's Rights

7-2

the API. By default, each procedure is a definer's rights unit, so you do not need to
specify AUTHID DEFINER when you create it. Then grant the EXECUTE privilege to the
users who must use this API, but do not grant any privileges that allow data access.
This solution gives you complete control over your API behavior and how users have
access to its underlying objects.

Oracle recommends that you create your definer's rights procedures, and views that
access these procedures, in their own schema. Grant this schema very low privileges,
or no privileges at all. This way, when other users run these procedures or views, they
will not have access to any unnecessarily high privileges from this schema.

Note:

Trigger processing follows the same patterns as definer's rights procedures.
The user runs a SQL statement, which that user is privileged to run. As a
result of the SQL statement, a trigger is fired. The statements within the
triggered action temporarily execute under the security domain of the user
that owns the trigger. For overview information about triggers, Oracle
Database Concepts.

Related Topics

• How Roles Work in PL/SQL Blocks
Role behavior in a PL/SQL block is determined by the type of block and by
definer's rights or invoker's rights.

How Procedure Privileges Affect Invoker's Rights
An invoker’s rights procedure executes with all of the invoker's privileges.

Oracle Database enables the privileges that were granted to the invoker through any
of the invoker's enabled roles to take effect, unless a definer's rights procedure calls
the invoker's rights procedure directly or indirectly. A user of an invoker's rights
procedure must have privileges (granted to the user either directly or through a role)
on objects that the procedure accesses through external references that are resolved
in the schema of the invoker. When the invoker runs an invoker's rights procedure, this
user temporarily has all of the privileges of the invoker.

The invoker must have privileges at run time to access program references embedded
in DML statements or dynamic SQL statements, because they are effectively
recompiled at run time.

For all other external references, such as direct PL/SQL function calls, Oracle
Database checks the privileges of the owner at compile time, but does not perform a
run-time check. Therefore, the user of an invoker's rights procedure does not need
privileges on external references outside DML or dynamic SQL statements.
Alternatively, the developer of an invoker's rights procedure must only grant privileges
on the procedure itself, not on all objects directly referenced by the invoker's rights
procedure.

You can create a software bundle that consists of multiple program units, some with
definer's rights and others with invoker's rights, and restrict the program entry points
(controlled step-in). A user who has the privilege to run an entry-point procedure can
also execute internal program units indirectly, but cannot directly call the internal

Chapter 7
How Procedure Privileges Affect Invoker's Rights

7-3

programs. For very precise control over query processing, you can create a PL/SQL
package specification with explicit cursors.

Related Topics

• Controlling Invoker's Rights Privileges for Procedure Calls and View Access
The INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES privileges regulate the
privileges used when invoker's rights procedures are run.

When You Should Create Invoker's Rights Procedures
Oracle recommends that you create invoker's rights procedures in certain situations.

These situations are as follows:

• When creating a PL/SQL procedure in a high-privileged schema. When lower-
privileged users invoke the procedure, then it can do no more than those users are
allowed to do. In other words, the invoker's rights procedure runs with the
privileges of the invoking user.

• When the PL/SQL procedure contains no SQL and is available to other
users. The DBMS_OUTPUT PL/SQL package is an example of a PL/SQL subprogram
that contains no SQL and is available to all users. The reason you should use an
invoker's rights procedure in this situation is because the unit issues no SQL
statements at run time, so the run-time system does not need to check their
privileges. Specifying AUTHID CURRENT_USER makes invocations of the procedure
more efficient, because when an invoker's right procedure is pushed onto, or
comes from, the call stack, the values of CURRENT_USER and CURRENT_SCHEMA, and
the currently enabled roles do not change.

See Also:

• Configuration of Oracle Virtual Private Database Policies

• About ANY Privileges and the PUBLIC Role

• Oracle Database PL/SQL Packages and Types Reference for
information about how Oracle Database handles name resolution and
privilege checking at runtime using invoker's and definer's rights

• Oracle Database PL/SQL Packages and Types Reference for more
information about the differences between invoker's rights and definer's
rights units

• Oracle Database PL/SQL Packages and Types Reference for
information about defining explicit cursors in the CREATE PACKAGE
statement

Controlling Invoker's Rights Privileges for Procedure Calls
and View Access

The INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES privileges regulate the
privileges used when invoker's rights procedures are run.

Chapter 7
When You Should Create Invoker's Rights Procedures

7-4

• How the Privileges of a Schema Affect the Use of Invoker's Rights Procedures
An invoker’s rights procedure is useful in situations where a lower-privileged user
must execute a procedure owned by a higher-privileged user.

• How the INHERIT [ANY] PRIVILEGES Privileges Control Privilege Access
Use the INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES privileges to secure
invoker’s rights procedures.

• Grants of the INHERIT PRIVILEGES Privilege to Other Users
By default, all users are granted INHERIT PRIVILEGES ON USER newuser TO
PUBLIC.

• Example: Granting INHERIT PRIVILEGES on an Invoking User
The GRANT statement can grant the INHERIT PRIVILEGES privilege on an invoking
user to a procedure owner.

• Example: Revoking INHERIT PRIVILEGES
The REVOKE statement can revoke the INHERIT PRIVILEGES privilege from a user.

• Grants of the INHERIT ANY PRIVILEGES Privilege to Other Users
By default, user SYS has the INHERIT ANY PRIVILEGES system privilege and can
grant this privilege to other database users or roles.

• Example: Granting INHERIT ANY PRIVILEGES to a Trusted Procedure Owner
The GRANT statement can grant the INHERIT ANY PRIVILEGES privilege to trusted
procedure owners.

• Managing INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES
By default, PUBLIC has the INHERIT PRIVILEGE privilege on new and upgraded
user accounts; the SYS user has the INHERIT ANY PRIVILEGES privilege.

How the Privileges of a Schema Affect the Use of Invoker's Rights
Procedures

An invoker’s rights procedure is useful in situations where a lower-privileged user must
execute a procedure owned by a higher-privileged user.

When a user runs an invoker's rights procedure (or any PL/SQL program unit that has
been created with the AUTHID CURRENT_USER clause), the procedure temporarily
inherits all of the privileges of the invoking user while the procedure runs.

During that time, the procedure owner has, through the procedure, access to this
invoking user's privileges. Consider the following scenario:

1. User ebrown creates the check_syntax invoker's rights procedure and then grants
user jward the EXECUTE privilege on it.

2. User ebrown, who is a junior programmer, has only the minimum set of privileges
necessary for his job. The check_syntax procedure resides in ebrown's schema.

3. User jward, who is a manager, has a far more powerful set of privileges than user
ebrown.

4. When user jward runs the check_syntax invoker's rights procedure, the procedure
inherits user jward's higher privileges while it runs.

5. Because user ebrown owns the check_syntax procedure, he has access to user
jward's privileges whenever jward runs the check_syntax procedure.

Chapter 7
Controlling Invoker's Rights Privileges for Procedure Calls and View Access

7-5

The danger in this type of situation—in which the lower privileged ebrown's procedure
has access to jward's higher privileges whenever jward runs the procedure—lies in
the risk that the procedure owner can misuse the higher privileges of the invoking
user. For example, user ebrown could make use of jward's higher privileges by
rewriting the check_syntax procedure to give ebrown a raise or delete ebrown's bad
performance appraisal record. Or, ebrown originally could have created the procedure
as a definer's rights procedure, granted its EXECUTE privilege to jward, and then later
on change it to a potentially malicious invoker's rights procedure without letting jward
know. These types of risks increase when random users, such as application users,
have access to a database that uses invoker's rights procedures.

When user jward runs ebrown's invoker's rights procedure, there is an element of trust
involved. He must be assured that ebrown will not use the check_syntax procedure in
a malicious way when it accesses jward's privileges. The INHERIT PRIVILEGES and
INHERIT ANY PRIVILEGES privileges can help user jward control whether user ebrown's
procedure can have access to his (jward's) privileges. Any user can grant or revoke
the INHERIT PRIVILEGES privilege on themselves to the user whose invoker's rights
procedures they want to run. SYS users manage the INHERIT ANY PRIVILEGES
privilege.

How the INHERIT [ANY] PRIVILEGES Privileges Control Privilege
Access

Use the INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES privileges to secure
invoker’s rights procedures.

The INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES privileges regulate the
privileges used when a user runs an invoker's rights procedure or queries a BEQUEATH
CURRENT_USER view that references an invoker's rights procedure.

When a user runs an invoker's rights procedure, Oracle Database checks it to ensure
that the procedure owner has either the INHERIT PRIVILEGES privilege on the invoking
user, or if the owner has been granted the INHERIT ANY PRIVILEGES privilege. If the
privilege check fails, then Oracle Database returns an ORA-06598: insufficient
INHERIT PRIVILEGES privilege error.

The benefit of these two privileges is that they give invoking users control over who
can access their privileges when they run an invoker's rights procedure or query a
BEQUEATH CURRENT_USER view.

Grants of the INHERIT PRIVILEGES Privilege to Other Users
By default, all users are granted INHERIT PRIVILEGES ON USER newuser TO PUBLIC.

This grant takes place when the user accounts are created or when accounts that
were created earlier are upgraded to the current release.

The invoking user can revoke the INHERIT PRIVILEGE privilege from other users on
himself and then grant it only to users that he trusts.

The syntax for the INHERIT PRIVILEGES privilege grant is as follows:

GRANT INHERIT PRIVILEGES ON USER invoking_user TO procedure_owner;

In this specification:

Chapter 7
Controlling Invoker's Rights Privileges for Procedure Calls and View Access

7-6

• invoking_user is the user who runs the invoker's rights procedure. This user must
be a database user account.

• procedure_owner is the user who owns the invoker's rights procedure. This value
must be a database user account. As an alternative to granting the INHERIT
PRIVILEGES privilege to the procedure's owner, you can grant the privilege to a role
that is in turn granted to the procedure.

The following users or roles must have the INHERIT PRIVILEGES privilege granted to
them by users who will run their invoker's rights procedures:

• Users or roles who own the invoker's rights procedures

• Users or roles who own BEQUEATH CURRENT_USER views

Example: Granting INHERIT PRIVILEGES on an Invoking User
The GRANT statement can grant the INHERIT PRIVILEGES privilege on an invoking user
to a procedure owner.

Example 7-1 shows how the invoking user jward can grant user ebrown the INHERIT
PRIVILEGES privilege.

Example 7-1 Granting INHERIT PRIVILEGES on an Invoking User to a
Procedure Owner

GRANT INHERIT PRIVILEGES ON USER jward TO ebrown;

The statement enables any invoker's rights procedure that ebrown writes, or will write
in the future, to access jward's privileges when jward runs it.

Example: Revoking INHERIT PRIVILEGES
The REVOKE statement can revoke the INHERIT PRIVILEGES privilege from a user.

Example 7-2 shows how user jward can revoke the use of his privileges from ebrown.

Example 7-2 Revoking INHERIT PRIVILEGES

REVOKE INHERIT PRIVILEGES ON USER jward FROM ebrown;

Grants of the INHERIT ANY PRIVILEGES Privilege to Other Users
By default, user SYS has the INHERIT ANY PRIVILEGES system privilege and can grant
this privilege to other database users or roles.

As with all ANY privileges, only grant this privilege to trusted users or roles. Once a user
or role has been granted the INHERIT ANY PRIVILEGES privilege, then this user's
invoker's rights procedures have access to the privileges of the invoking user. You can
find the users who have been granted the INHERIT ANY PRIVILEGES privilege by
querying the DBA_SYS_PRIVS data dictionary view.

Chapter 7
Controlling Invoker's Rights Privileges for Procedure Calls and View Access

7-7

Example: Granting INHERIT ANY PRIVILEGES to a Trusted
Procedure Owner

The GRANT statement can grant the INHERIT ANY PRIVILEGES privilege to trusted
procedure owners.

Example 7-3 shows how to grant the INHERIT ANY PRIVILEGES privilege to user
ebrown.

Example 7-3 Granting INHERIT ANY PRIVILEGES to a Trusted Procedure
Owner

GRANT INHERIT ANY PRIVILEGES TO ebrown;

Be careful about revoking the INHERIT ANY PRIVILEGES privilege from powerful users.
For example, suppose user SYSTEM has created a set of invoker's rights procedures. If
you revoke INHERIT ANY PRIVILEGES from SYSTEM, then other users cannot run his
procedures, unless they have specifically granted him the INHERIT PRIVILEGE
privilege.

Managing INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES
By default, PUBLIC has the INHERIT PRIVILEGE privilege on new and upgraded user
accounts; the SYS user has the INHERIT ANY PRIVILEGES privilege.

Oracle by default configures a set of grants of INHERIT PRIVILEGES that are designed
to help protect against misuse of the privileges of various Oracle-defined users.

You can choose to revoke the default grant of INHERIT PRIVILEGES ON USER
user_name TO PUBLIC for a customer-defined user and grant more specific grants of
INHERIT PRIVILEGES as appropriate for that particular user. To find the users who
have been granted the INHERIT ANY PRIVILEGES privilege, query the DBA_SYS_PRIVS
data dictionary view.

1. Revoke the INHERIT PRIVILEGES privilege from PUBLIC.

For example:

REVOKE INHERIT PRIVILEGES ON invoking_user FROM PUBLIC;

Be aware that this time, any users who run invoker's rights procedures cannot do
so, due to run-time errors from failed INHERIT PRIVILEGES checks.

2. Selectively grant the INHERIT PRIVILEGES privilege to trusted users or roles.

3. Similarly, selectively grant the INHERIT ANY PRIVILEGES privilege only to trusted
users or roles.

You can create an audit policy to audit the granting and revoking of these two
privileges, but you cannot audit run-time errors that result from failed INHERIT
PRIVILEGES privilege checks.

Chapter 7
Controlling Invoker's Rights Privileges for Procedure Calls and View Access

7-8

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about SQL injection attacks

• Oracle Database PL/SQL Packages and Types Reference for more
information about the GRANT statement and default privileges

Definer's Rights and Invoker's Rights in Views
The BEQEATH clause in the CREATE VIEW SQL statement can control definer's rights and
invoker's rights in user-created views.

• About Controlling Definer's Rights and Invoker's Rights in Views
You can configure user-defined views to accommodate invoker's rights functions
that are referenced in the view.

• Using the BEQUEATH Clause in the CREATE VIEW Statement
The BEQUEATH controls how an invoker’s right function can be executed using the
rights of the invoking user.

• Finding the User Name or User ID of the Invoking User
PL/SQL functions can be used to find the invoking user, based on whether
invoker’s rights or definer’s rights are being used.

• Finding BEQUEATH DEFINER and BEQUEATH_CURRENT_USER Views
You can find out if a view is a BEQUEATH DEFINER or BEQUEATH CURRENT_USER view.

About Controlling Definer's Rights and Invoker's Rights in Views
You can configure user-defined views to accommodate invoker's rights functions that
are referenced in the view.

When a user invokes an identity- or privilege-sensitive SQL function or an invoker's
rights PL/SQL or Java function, then current schema, current user, and currently
enabled roles within the operation's execution can be inherited from the querying
user's environment, rather than being set to the owner of the view.

This configuration does not turn the view itself into an invoker's rights object. Name
resolution within the view is still handled using the view owner's schema, and privilege
checking for the view is done using the view owner's privileges. However, at runtime,
the function referenced by view runs under the invoking user's privileges rather than
those of the view owner's.

The benefit of this feature is that it enables functions such as SYS_CONTEXT and
USERENV, which must return information accurate for the invoking user, to return
consistent results when these functions are referenced in a view.

Chapter 7
Definer's Rights and Invoker's Rights in Views

7-9

Using the BEQUEATH Clause in the CREATE VIEW Statement
The BEQUEATH controls how an invoker’s right function can be executed using the rights
of the invoking user.

To enable an invoker's rights function to be executed using the rights of the user
issuing SQL that references the view, in the CREATE VIEW statement, you can set the
BEQUEATH clause to CURRENT_USER.

If you plan to issue a SQL query or DML statement against the view, then the view
owner must be granted the INHERIT PRIVILEGES privilege on the invoking user or the
view owner must have the INHERIT ANY PRIVILEGES privilege. If not, then when a
SELECT query or DML statement involves a BEQUEATH CURRENT_USER view, the run-time
system will raise error ORA-06598: insufficient INHERIT PRIVILEGES privilege.

• Use the use BEQUEATH CURRENT_USER clause to set the view's function to be
executed using invoker's rights.

For example:

CREATE VIEW MY_OBJECTS_VIEW BEQUEATH CURRENT_USER AS
 SELECT GET_OBJS_FUNCTION;

If you want the function within the view to be executed using the view owner's rights,
then you should either omit the BEQUEATH clause or set it to DEFINER.

For example:

CREATE VIEW my_objects_view BEQUEATH DEFINER AS
 SELECT OBJECT_NAME FROM USER_OBJECTS;

See Also:

• Controlling Invoker's Rights Privileges for Procedure Calls and View
Access for more information about how the INHERIT PRIVILEGE privilege
works

• Oracle Database SQL Language Reference for additional information
about granting the INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES
privileges

• Oracle Database Real Application Security Administrator's and
Developer's Guide for information about how to use BEQUEATH
CURRENT_USER views with Oracle Database Real Application Security
applications

Finding the User Name or User ID of the Invoking User
PL/SQL functions can be used to find the invoking user, based on whether invoker’s
rights or definer’s rights are being used.

• Use the ORA_INVOKING_USER or ORA_INVOKING_USERID function to find the invoking
user based on whether invoker's rights or definer's rights:

Chapter 7
Definer's Rights and Invoker's Rights in Views

7-10

– ORA_INVOKING_USER: Use this function to return the name of the user who is
invoking the current statement or view. This function treats the intervening
views as specified by their BEQUEATH clauses. If the invoking user is an Oracle
Database Real Application Security-defined user, then this function returns
XS$NULL.

– ORA_INVOKING_USERID: Use this function to return the identifier (ID) of the user
who is invoking the current statement or view. This function treats the
intervening views as specified by their BEQUEATH clauses. If the invoking user
is an Oracle Database Real Application Security-defined user, then this
function returns an ID that is common to all Real Application Security sessions
but is different from the ID of any database user.

For example:

CONNECT HR
Enter password: password

SELECT ORA_INVOKING_USER FROM DUAL;

ORA_INVOKING_USER

HR

See Also:

Oracle Database Real Application Security Administrator's and Developer's
Guide for information about similar functions that are used for Oracle
Database Real Application Security applications

Finding BEQUEATH DEFINER and BEQUEATH_CURRENT_USER
Views

You can find out if a view is a BEQUEATH DEFINER or BEQUEATH CURRENT_USER view.

• To find if a view is BEQUEATH DEFINER or BEQUEATH CURRENT_USER view, query the
BEQUEATH column of a *_VIEWS or *_VIEWS_AE static data dictionary view for that
view.

Chapter 7
Definer's Rights and Invoker's Rights in Views

7-11

See Also:

• Oracle Database Reference for more information about *_VIEWS static
data dictionary views

• Oracle Database Reference for more information about *_VIEWS_AE
static data dictionary views

For example:

SELECT BEQUEATH FROM USER_VIEWS WHERE VIEW_NAME = 'MY_OBJECTS';

BEQUEATH

CURRENT_USER

Using Code Based Access Control for Definer's Rights and
Invoker's Rights

Code based access control, used to attach database roles to PL/SQL functions,
procedures, or packages, works well with invoker's rights and definer's procedures.

• About Using Code Based Access Control for Applications
You can use code based access control (CBAC) to better manage definer’s rights
program units.

• Who Can Grant Code Based Access Control Roles to a Program Unit?
Code based access control roles can be granted to a program unit if a set of
conditions are met.

• How Code Based Access Control Works with Invoker's Rights Program Units
Code based access control can run a program unit in an invoking user's context
and with roles associated with this context.

• How Code Based Access Control Works with Definer's Rights Program Units
Code based access control can be used to secure definer’s rights.

• Grants of Database Roles to Users for Their CBAC Grants
The DELEGATE option in the GRANT statement can limit privilege grants to roles by
users responsible for CBAC grants.

• Grants and Revokes of Database Roles to a Program Unit
The GRANT and REVOKE statements can grant database roles to or revoke database
roles from a program unit.

• Tutorial: Controlling Access to Sensitive Data Using Code Based Access Control
This tutorial demonstrates how to control access to sensitive data in the HR
schema by using code based access control.

About Using Code Based Access Control for Applications
You can use code based access control (CBAC) to better manage definer’s rights
program units.

Chapter 7
Using Code Based Access Control for Definer's Rights and Invoker's Rights

7-12

Applications must often run program units in the caller's environment, while requiring
elevated privileges. PL/SQL programs traditionally make use of definer's rights to
temporarily elevate the privileges of the program.

However, definer's rights based program units run in the context of the definer or the
owner of the program unit, as opposed to the invoker's context. Also, using definer's
rights based programs often leads to the program unit getting more privileges than
required.

Code based access control (CBAC) provides the solution by enabling you to attach
database roles to a PL/SQL function, procedure, or package. These database roles
are enabled at run time, enabling the program unit to execute with the required
privileges in the calling user's environment.

You can create privilege analysis policies that capture the use of CBAC roles.

Related Topics

• Performing Privilege Analysis to Find Privilege Use
Privilege analysis dynamically analyzes the privileges and roles that users use and
do not use.

Who Can Grant Code Based Access Control Roles to a Program Unit?
Code based access control roles can be granted to a program unit if a set of
conditions are met.

These conditions are as follows:

• The grantor is user SYS or owns the program unit.

• If the grantor owns the program unit, then the grantor must have the GRANT ANY
ROLE system privilege, or have the ADMIN or DELEGATE option for the roles that they
want to grant to program units.

• The roles to be granted are directly granted roles to the owner.

• The roles to be granted are standard database roles.

If these three conditions are not met, then error ORA-28702: Program unit string is
not owned by the grantor is raised if the first condition is not met, and error
ORA-1924: role 'string' not granted or does not exist is raised if the second
and third conditions are not met.

Related Topics

• Grants of Database Roles to Users for Their CBAC Grants
The DELEGATE option in the GRANT statement can limit privilege grants to roles by
users responsible for CBAC grants.

• Grants and Revokes of Database Roles to a Program Unit
The GRANT and REVOKE statements can grant database roles to or revoke database
roles from a program unit.

How Code Based Access Control Works with Invoker's Rights
Program Units

Code based access control can run a program unit in an invoking user's context and
with roles associated with this context.

Chapter 7
Using Code Based Access Control for Definer's Rights and Invoker's Rights

7-13

Consider a scenario where there are two application users, 1 and 2. Application user 2
creates the invoker's right program unit, grants database role 2 to the invoker's rights
unit, and then grants execute privileges on the invoker's rights unit to application user
1.

Figure 7-1 shows the database roles 1 and 2 granted to application users 1 and 2, and
an invoker's right program unit.

Figure 7-1 Roles Granted to Application Users and Invoker's Right Program
Unit

Invoker’s
Rights

User 2 User 1

Role 2 Role 1

Role 3 Role 4

The grants are as follows:

• Application user 1 is directly granted database roles 1 and 4.

• Application user 2 is directly granted database role 2, which includes application
roles 3 and 4.

• The invoker's right program unit is granted database role 2.

When application user 1 logs in and executes the invoker's rights program unit, then
the invoker's rights unit executes with the combined database roles of user 1 and the
database roles attached to the invoker's rights unit.

Figure 7-2 shows the security context in which the invoker's rights unit is executed.
When application user 1 first logs on, application user 1 has the database PUBLIC role
(by default), and the database roles 1 and 4, which have been granted to it. Application
user 1 next executes the invoker's rights program unit created by application user 2.

The invoker's rights unit executes in application user 1's context, and has the
additional database role 2 attached to it. Database roles 3 and 4 are included, as they
are a part of database role 2. After the invoker's rights unit exits, then application user
1 only has the application roles that have been granted to it, PUBLIC, role 1, and role 4.

Chapter 7
Using Code Based Access Control for Definer's Rights and Invoker's Rights

7-14

Figure 7-2 Security Context in Which Invoker's Right Program Unit IR Is
Executed

Security Context

User 1, PUBLIC, Role 1, Role 4

Security Context

User 1, PUBLIC, Role 1, Role 4

Security Context

User 1, PUBLIC, Role 1, Role 2, Role 3, Role 4

User 1 Login

Enter User 2 with
Invoker’s Rights

Exit User 2 with
Invoker’s Rights

How Code Based Access Control Works with Definer's Rights
Program Units

Code based access control can be used to secure definer’s rights.

Code based access control works with definer's rights program units to enable the
program unit to run using the defining user's rights, with the privileges of a combined
set of database roles that are associated with this user.

Consider a scenario where application user 2 creates a definer's rights program unit,
grants role 2 to the definer's rights program unit, and then grants the EXECUTE privilege
on the definer's rights program unit to application user 1.

Figure 7-3 shows the database roles granted to application users 1 and 2, and a
definer's rights program unit.

Chapter 7
Using Code Based Access Control for Definer's Rights and Invoker's Rights

7-15

Figure 7-3 Roles Granted to Application Users and Definer's Rights Program
Unit

Definer’s
Rights

User 2 User 1

Role 2 Role 1

Role 3 Role 4

The grants are as follows:

• Application user 1 is directly granted database roles 1 and 4.

• Application user 2 is directly granted database role2, which includes database
roles 3 and 4.

• The definer's right program unit is granted database role 2.

When application user 1 logs in and executes definer's right program unit, then the
definer's rights unit executes with the combined database roles of application user 2
and the database roles attached to the definer's rights unit (roles 2, 3, and 4).

Figure 7-4 shows the security context in which the definer's right program unit is
executed. When application user 1 first logs on, application user 1 has the database
PUBLIC role (by default), and the database roles 1 and4, which have been granted to it.
Application user 1 next executes the definer's rights program unit created by
application user 2.

The definer's rights program unit executes in application user 2's context, and has the
additional database role 2 attached to it. Database roles 3 and 4 are included, as they
are a part of database role 2. After the definer's rights unit exits, application user 1 only
has the database roles that have been granted to it (PUBLIC, role 1, and role 4).

Chapter 7
Using Code Based Access Control for Definer's Rights and Invoker's Rights

7-16

Figure 7-4 Security Context in Which Definer's Right Program Unit DR Is
Executed

Security Context

User 1, PUBLIC, Role 1, Role 4

Security Context

User 1, PUBLIC, Role 1, Role 4

Security Context

User 2, PUBLIC, Role 2, Role 3, Role 4

User 1 Login

Enter User 2 with
Definer’s Rights

Exit User 2 with
Definer’s Rights

Grants of Database Roles to Users for Their CBAC Grants
The DELEGATE option in the GRANT statement can limit privilege grants to roles by users
responsible for CBAC grants.

When you grant a database role to a user who is responsible for CBAC grants, you
can include the DELEGATE option in the GRANT statement to prevent giving the grantee
additional privileges on the roles.

The DELEGATE option enables the roles to be granted to program units, but it does not
permit the granting of the role to other principals or the administration of the role itself.
You also can use the ADMIN option for the grants, which does permit the granting of the
role to other principals. Both the ADMIN and DELEGATE options are compatible; that is,
you can grant both to a user, though you must do this in separate GRANT statements for
each option. To find if a user has been granted a role with these options, query the
DELEGATE_OPTION column or the ADMIN_OPTION column of either the USER_ROLE_PRIVS
or DBA_ROLE_PRIVS for the user.

The syntax for using the DELEGATE and ADMIN option is as follows:

GRANT role_list to user_list WITH DELEGATE OPTION;

GRANT role_list to user_list WITH ADMIN OPTION;

For example:

GRANT cb_role1 to usr1 WITH DELEGATE OPTION;

GRANT cb_role1 to usr1 WITH ADMIN OPTION;

GRANT cb_role1, cb_role2 to usr1, usr2 with DELEGATE OPTION;

GRANT cb_role1, cb_role2 to usr1, usr2 with ADMIN OPTION;

Chapter 7
Using Code Based Access Control for Definer's Rights and Invoker's Rights

7-17

In a multitenant environment, you can use the DELEGATE option for common grants
such as granting common roles to common users, just as you can with the ADMIN
option.

For example:

GRANT c##cb_role1 to c##usr1 WITH DELEGATE OPTION CONTAINER = ALL;

Be aware that CBAC grants themselves can only take place locally in a PDB.

See Also:

Oracle Database SQL Language Reference for more information about the
ADMIN option

Grants and Revokes of Database Roles to a Program Unit
The GRANT and REVOKE statements can grant database roles to or revoke database
roles from a program unit.

The following syntax to grants or revokes database roles for a PL/SQL function,
procedure, or package:

GRANT role_list TO code_list
REVOKE {role_list | ALL} FROM code_list

In this specification:

role_list ::= code-based_role_name[, role_list]
code_list ::= {
 {FUNCTION [schema.]function_name}
 | {PROCEDURE [schema.]procedure_name}
 | {PACKAGE [schema.]package_name}
 }[, code_list]

For example:

GRANT cb_role1 TO FUNCTION func1, PACKAGE pack1;

GRANT cb_role2, cb_role3 TO FUNCTION HR.func2, PACKAGE SYS.pack2;

REVOKE cb_role1 FROM FUNCTION func1, PACKAGE pack1;

REVOKE ALL FROM FUNCTION HR.func2, PACKAGE SYS.pack2;

Related Topics

• Who Can Grant Code Based Access Control Roles to a Program Unit?
Code based access control roles can be granted to a program unit if a set of
conditions are met.

• Grants of Database Roles to Users for Their CBAC Grants
The DELEGATE option in the GRANT statement can limit privilege grants to roles by
users responsible for CBAC grants.

Chapter 7
Using Code Based Access Control for Definer's Rights and Invoker's Rights

7-18

Tutorial: Controlling Access to Sensitive Data Using Code Based
Access Control

This tutorial demonstrates how to control access to sensitive data in the HR schema by
using code based access control.

• About This Tutorial
In this tutorial, you will create a user who must have access to specific employee
information for his department.

• Step 1: Create the User and Grant HR the CREATE ROLE Privilege
To begin, you must create the "Finance" user account and then grant this the HR
user the CREATE ROLE privilege.

• Step 2: Create the print_employees Invoker's Rights Procedure
The print_employees invoker's rights procedure shows employee information in
the current user's department.

• Step 3: Create the hr_clerk Role and Grant Privileges for It
Next, you are ready to create the hr_clerk role, which must have the EXECUTE
privilege on the print_employees procedure.

• Step 4: Test the Code Based Access Control HR.print_employees Procedure
At this stage, you are ready to test the code based access control
HR.print_employees procedure.

• Step 5: Create the view_emp_role Role and Grant Privileges for It
Next, user HR must create the view_emp_role role and then grant privileges to it.

• Step 6: Test the HR.print_employees Procedure Again
With the appropriate privileges in place, user "Finance" can try the
HR.print_employees procedure again.

• Step 7: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

About This Tutorial
In this tutorial, you will create a user who must have access to specific employee
information for his department.

However, the table HR.EMPLOYEES contains sensitive information such as employee
salaries, which must not be accessible to the user. You will implement access control
using code based access control. The employee data will be shown to the user
through an invoker's rights procedure. Instead of granting the SELECT privilege directly
to the user, you will grant the SELECT privilege to the invoker's rights procedure through
a database role. In the procedure, you will hide the sensitive information, such as
salaries. Because the procedure is an invoker's rights procedure, you know the caller's
context inside the procedure. In this case, the caller's context is for the Finance
department. The user is named "Finance", so that only data for employees who work
in the Finance department is accessible to the user.

Chapter 7
Using Code Based Access Control for Definer's Rights and Invoker's Rights

7-19

Step 1: Create the User and Grant HR the CREATE ROLE Privilege
To begin, you must create the "Finance" user account and then grant this the HR user
the CREATE ROLE privilege.

1. Log into the database instance as an administrator who has privileges to create
user accounts and roles.

For example:

sqlplus sec_admin
Enter password: password

2. Create the "Finance" user account.

GRANT CONNECT TO "Finance" IDENTIFIED BY password;

Ensure that you enter "Finance" in the case shown, enclosed by double quotation
marks. Follow the guidelines in Minimum Requirements for Passwords to replace
password with a password that is secure.

3. Grant the CREATE ROLE privilege to user HR.

GRANT CREATE ROLE TO HR;

Step 2: Create the print_employees Invoker's Rights Procedure
The print_employees invoker's rights procedure shows employee information in the
current user's department.

You must create this procedure as an invoker's rights procedure because you must
know who the caller is when inside the procedure.

1. Connect as user HR.

CONNECT HR
Enter password: password

2. Create the print_employees procedure as follows.

create or replace procedure print_employees
authid current_user
as
begin
 dbms_output.put_line(rpad('ID', 10) ||
 rpad('First Name', 15) ||
 rpad('Last Name', 15) ||
 rpad('Email', 15) ||
 rpad('Phone Number', 20));
 for rec in (select e.employee_id, e.first_name, e.last_name,
 e.email, e.phone_number
 from hr.employees e, hr.departments d
 where e.department_id = d.department_id
 and d.department_name =
 sys_context('userenv', 'current_user'))
 loop
 dbms_output.put_line(rpad(rec.employee_ID, 10) ||
 rpad(rec.first_name, 15) ||
 rpad(rec.last_name, 15) ||

Chapter 7
Using Code Based Access Control for Definer's Rights and Invoker's Rights

7-20

 rpad(rec.email, 15) ||
 rpad(rec.phone_number, 20));
 end loop;
end;
/

In this example:

• dbms_output.put_line prints the table header.

• for rec in (select ... finds the employee information for the caller's
department, which for this tutorial is the Finance department for user
"Finance". Had you created a user named "Marketing" (which is also listed
in the DEPARTMENT_NAME column of the HR.EMPLOYEES table), then the
procedure could capture information for Marketing employees.

• loop and dbms_output.put_line populate the output with the employee data
from the Finance department.

Step 3: Create the hr_clerk Role and Grant Privileges for It
Next, you are ready to create the hr_clerk role, which must have the EXECUTE
privilege on the print_employees procedure.

After you create this role, you must grant it to "Finance".

1. Create the hr_clerk role.

CREATE ROLE hr_clerk;

2. Grant the EXECUTE privilege on the print_employees procedure to the hr_clerk
role.

GRANT EXECUTE ON print_employees TO hr_clerk;

3. Grant the hr_clerk role to "Finance".

GRANT hr_clerk TO "Finance";

Step 4: Test the Code Based Access Control HR.print_employees Procedure
At this stage, you are ready to test the code based access control
HR.print_employees procedure.

To test the code based access control HR.print_employees procedure, user
"Finance" must query the HR.EMPLOYEES table and try to run the HR.print_employees
procedure.

1. Connect to the database instance as user "Finance".

CONNECT "Finance"
Enter password: password

2. Try to directly query the HR.EMPLOYEES table.

SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY FROM HR.EMPLOYEES;

The query fails because user Finance does not have the SELECT privilege for
HR.EMPLOYEES.

Chapter 7
Using Code Based Access Control for Definer's Rights and Invoker's Rights

7-21

ERROR at line 1:
ORA-00942: table or view does not exist

3. Execute the HR.print_employees procedure.

EXEC HR.print_employees;

The query fails because user "Finance" does not have the appropriate privileges.

ERROR at line 1:
ORA-00942: table or view does not exist
ORA-06512: at "HR.PRINT_EMPLOYEES", line 13ORA-06512: at line 1

Step 5: Create the view_emp_role Role and Grant Privileges for It
Next, user HR must create the view_emp_role role and then grant privileges to it.

User HR grants the SELECT privilege HR.EMPLOYEES and HR.DEPARTMENTS to the
view_emp_role role, and then grants SELECT on HR.EMPLOYEES and HR.DEPARTMENTS to
the view_emp_role role.

1. Connect as user HR.

CONNECT HR
Enter password: password

2. Create the view_emp_role role.

CREATE ROLE view_emp_role;

3. Grant the SELECT privilege on HR.EMPLOYEES and HR.DEPARTMENTS to the
view_emp_role role.

GRANT SELECT ON HR.EMPLOYEES TO view_emp_role;
GRANT SELECT ON HR.DEPARTMENTS TO view_emp_role;

4. Grant the view_emp_role role to the HR.print_employees invoker's rights
procedure.

GRANT view_emp_role TO PROCEDURE HR.print_employees;

Step 6: Test the HR.print_employees Procedure Again
With the appropriate privileges in place, user "Finance" can try the
HR.print_employees procedure again.

1. Connect as user "Finance".

CONNECT "Finance"
Enter password: password

2. Set the server output to display.

SET SERVEROUTPUT ON;

3. Try to directly query the HR.EMPLOYEES table.

SELECT EMPLOYEE_ID, FIRST_NAME, LAST_NAME, SALARY FROM HR.EMPLOYEES;

The query fails.

ERROR at line 1:
ORA-00942: table or view does not exist

4. Execute the HR.print_employees procedure to show the employee information.

Chapter 7
Using Code Based Access Control for Definer's Rights and Invoker's Rights

7-22

EXEC HR.print_employees;

The call succeeds.

ID First Name Last Name Email Phone Number
108 Nancy Greenberg NGREENBE 515.124.4569
109 Daniel Faviet DFAVIET 515.124.4169
110 John Chen JCHEN 515.124.4269
111 Ismael Sciarra ISCIARRA 515.124.4369
112 Jose Manuel Urman JMURMAN 515.124.4469
113 Luis Popp LPOPP 515.124.4567

PL/SQL procedure successfully completed.

Step 7: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

1. Connect as a user with administrative privileges.

For example:

CONNECT sec_admin
Enter password: password

2. Drop the user "Finance".

DROP USER "Finance";

3. Drop the hr_clerk role.

DROP ROLE hr_clerk;

4. Connect as user HR.

CONNECT HR
Enter password: password

5. Drop the view_emp_role role and the HR.print_employees procedure.

DROP ROLE view_emp_role;
DROP PROCEDURE print_employees;

6. Connect as the administrative user.

CONNECT sec_admin
Enter password: password

7. Revoke the CREATE ROLE privilege from HR.

REVOKE CREATE ROLE FROM HR;

Controlling Definer's Rights Privileges for Database Links
You can control privilege grants for definer’s rights procedures if your applications use
database links and definer’s rights procedures.

• About Controlling Definer's Rights Privileges for Database Links
When a definer’s rights procedure connects to a database link, operations on the
database link should use the procedure owner’s credentials.

• Grants of the INHERIT REMOTE PRIVILEGES Privilege to Other Users
The INHERIT REMOTE PRIVILEGES privilege enables the current user to have
explicit privileges over the connected user in the database.

Chapter 7
Controlling Definer's Rights Privileges for Database Links

7-23

• Example: Granting INHERIT REMOTE PRIVILEGES on a Connected User
You can grant the INHERIT REMOTE PRIVILEGES privilege on a connected user to
the current user.

• Grants of the INHERIT ANY REMOTE PRIVILEGES Privilege to Other Users
The INHERIT ANY REMOTE PRIVILEGES privilege enables the grantee user to open
a connected_user database link as any user.

• Revokes of the INHERIT [ANY] REMOTE PRIVILEGES Privilege
The methods for revoking the INHERIT REMOTE PRIVILEGES and INHERIT ANY
REMOTE PRIVILEGES privileges differ.

• Example: Revoking the INHERIT REMOTE PRIVILEGES Privilege
The REVOKE SQL statement can revoke the INHERIT REMOTE PRIVILEGES privilege.

• Example: Revoking the INHERIT REMOTE PRIVILEGES Privilege from PUBLIC
The REVOKE SQL statement can revoke the INHERIT REMOTE PRIVILEGES from
PUBLIC, as well as from individual procedure owners.

• Tutorial: Using a Database Link in a Definer's Rights Procedure
This tutorial demonstrates how the INHERIT REMOTE PRIVILEGES privilege works in
a definer's rights procedure that uses a database link.

About Controlling Definer's Rights Privileges for Database Links
When a definer’s rights procedure connects to a database link, operations on the
database link should use the procedure owner’s credentials.

The INHERIT REMOTE PRIVILEGES and INHERIT ANY REMOTE PRIVILEGES privileges
apply when a connected user database link is used with a definer’s rights procedure.
These privileges allow the use of the credentials of the logged-in user for connected
user database link operations with definer rights procedures.

You can perform a grant of the INHERIT REMOTE PRIVILEGES and INHERIT ANY REMOTE
PRIVILEGES privileges so the users who invoke the definer’s rights procedure can use
a connected user database link within a definer’s rights block. A definer’s rights
procedure executes with the privileges of the procedure owner. However, a connected
user database link operation must have the credentials of the logged in user. Hence,
the INHERIT REMOTE PRIVILEGES and INHERIT ANY REMOTE PRIVILEGES privileges are
required to be granted to enable the database link operations within the definer’s rights
block.

Be aware that during an upgrade, the INHERIT REMOTE PRIVILEGES and INHERIT ANY
REMOTE PRIVILEGES privileges are not granted by default to any existing users.

The INHERIT REMOTE PRIVILEGES and INHERIT ANY REMOTE PRIVILEGES privileges
apply only to situations in which users are trying to connect to user database links in a
definer’s rights procedure. In addition, these privileges apply to both privately created
and publicly created database links. By default, database links are created as private
links. In addition, by default, INHERIT REMOTE PRIVILEGES is not granted to PUBLIC.

The ways that you can perform grants of these privileges are as follows:

• GRANT INHERIT REMOTE PRIVILEGES ON USER dbuser_1 TO dbuser_2: In this
scenario, dbuser_1 can explicitly grant the INHERIT REMOTE PRIVILEGE privilege to
dbuser_2 and use a definer’s rights procedure that user dbuser_2 owns.

• GRANT INHERIT REMOTE PRIVILEGES ON USER dbuser_1 TO PUBLIC. In this
scenario, dbuser_1 grants the INHERIT REMOTE PRIVILEGE privilege to public. This

Chapter 7
Controlling Definer's Rights Privileges for Database Links

7-24

grant enables dbuser_1 to use the definer’s rights procedures that any other user
owns.

• GRANT INHERIT ANY REMOTE PRIVILEGES TO dbuser_2: In this scenario, any user
can use the definer’s rights procedures that dbuser_2 owns.

If the user does not have the INHERIT REMOTE PRIVILEGE privilege and tries to execute
the definer’s rights privilege, then the ORA-25433: User does not have INHERIT
REMOTE PRIVILEGES error appears.

Grants of the INHERIT REMOTE PRIVILEGES Privilege to Other
Users

The INHERIT REMOTE PRIVILEGES privilege enables the current user to have explicit
privileges over the connected user in the database.

The syntax for granting the INHERIT REMOTE PRIVILEGES privilege is as follows:

GRANT INHERIT REMOTE PRIVILEGES ON USER connected_user TO current_user:

In this specification:

• connected_user is the user who runs the definer's rights procedure.

• current_user is the user who owns the definer's right procedure. This value must
be a database user account. As an alternative to granting the INHERIT REMOTE
PRIVILEGES privilege to the procedure's owner, you can grant the privilege to a role
that is in turn granted to the procedure.

Users or roles who own the definer's rights procedures must have the INHERIT REMOTE
PRIVILEGES privilege granted to them by users who will run their definer's rights
procedures.

Any user can grant or revoke the INHERIT REMOTE PRIVILEGES privilege on
themselves to the user whose definer's rights procedures they want to run.

Example: Granting INHERIT REMOTE PRIVILEGES on a Connected
User

You can grant the INHERIT REMOTE PRIVILEGES privilege on a connected user to the
current user.

In this example, the connected user, jward, must have remote privileges on the
current user, ebrown. This enables jward to execute the definer's right procedure that
ebrown created.

Example 7-4 shows how an administrator (or user jward) can grant the INHERIT
REMOTE PRIVILEGES on user jward to user ebrown. This privilege grant enables any
definer's rights procedure that ebrown writes, or will write in the future, to access
ebrown's privileges when the procedure is run.

Example 7-4 Granting INHERIT REMOTE PRIVILEGES on a Connected User to
the Current User

GRANT INHERIT REMOTE PRIVILEGES on user jward to ebrown;

Chapter 7
Controlling Definer's Rights Privileges for Database Links

7-25

Grants of the INHERIT ANY REMOTE PRIVILEGES Privilege to Other
Users

The INHERIT ANY REMOTE PRIVILEGES privilege enables the grantee user to open a
connected_user database link as any user.

As with all ANY privileges, INHERIT ANY REMOTE PRIVILEGES is a powerful privilege that
must only be granted to trusted users. By default, user SYS has the INHERIT ANY
REMOTE PRIVILEGES system privilege WITH GRANT OPTION. To find users who have
been granted the INHERIT ANY REMOTE PRIVILEGES privilege, query the
DBA_SYS_PRIVS data dictionary view.

For better security in a multitenant environment, Oracle recommends that you protect
the INHERIT ANY REMOTE PRIVILEGES privilege with a PDB lockdown profile. A PDB
lockdown profile prevents local pluggable database (PDB) users from opening a
connected user database link as a common user, irrespective of the kind of INHERIT
REMOTE PRIVILEGE the PDB user has. If the PDB is protected by a PDB lockdown
profile, then grants such as GRANT INHERIT REMOTE PRIVILEGES and GRANT INHERIT
ANY REMOTE privileges succeed but the effects of these grants do not apply as long as
the PDB lockdown continues.

The syntax for granting the INHERIT ANY REMOTE PRIVILEGES privilege is as follows:

GRANT INHERIT ANY REMOTE PRIVILEGES TO current_user;

In this specification, current_user is the user who owns the define’s right procedure.

Related Topics

• Restricting Operations on PDBs Using PDB Lockdown Profiles
You can use PDB lockdown profiles in a multitenant environment to restrict sets of
user operations in pluggable databases (PDBs).

Revokes of the INHERIT [ANY] REMOTE PRIVILEGES Privilege
The methods for revoking the INHERIT REMOTE PRIVILEGES and INHERIT ANY REMOTE
PRIVILEGES privileges differ.

The INHERIT REMOTE PRIVILEGES privilege can be revoked by a user from another
user. The INHERIT ANY REMOTE PRIVILEGES privilege must be revoked by a user with
administrative privileges.

The revocation syntax is as follows

REVOKE INHERIT REMOTE PRIVILEGES ON USER connected_user FROM current_user;

In this specification:

• connected_user is the user who runs the definer's rights procedure.

• current_user is the user who owns the definer’s rights procedure.

If you want to revoke the INHERIT REMOTE PRIVILEGES or INHERIT ANY REMOTE
PRIVILEGES privilege from a user, use the standard revocation syntax, as follows:

REVOKE INHERIT REMOTE PRIVILEGES FROM connected_user;
REVOKE INHERIT ANY REMOTE PRIVILEGES FROM current_user;

Chapter 7
Controlling Definer's Rights Privileges for Database Links

7-26

See Also:

Oracle Database SQL Language Reference for more information about the
REVOKE SQL statement

Example: Revoking the INHERIT REMOTE PRIVILEGES Privilege
The REVOKE SQL statement can revoke the INHERIT REMOTE PRIVILEGES privilege.

After you revoke the INHERIT REMOTE PRIVILEGES privilege, if user jward executes a
definer's rights procedure that jward owns, then any operation on a connected user
database link inside the definer’s rights procedure fails because jward has explicitly
denied ebrown the privilege to open a connected user database link using
jward’credentials.

Example 7-5 shows how to revoke the INHERIT REMOTE PRIVILEGES procedure on the
connecting user, jward, from the procedure owner, ebrown.

Example 7-5 Revoking the INHERIT REMOTE PRIVILEGES Privilege

REVOKE INHERIT REMOTE PRIVILEGES ON USER jward FROM ebrown;

Example: Revoking the INHERIT REMOTE PRIVILEGES Privilege
from PUBLIC

The REVOKE SQL statement can revoke the INHERIT REMOTE PRIVILEGES from PUBLIC,
as well as from individual procedure owners.

Example 7-6 shows how to revoke this privilege from PUBLIC.

Example 7-6 Revoking the INHERIT REMOTE PRIVILEGES Privilege from
PUBLIC

REVOKE INHERIT REMOTE PRIVILEGES FROM PUBLIC;

Tutorial: Using a Database Link in a Definer's Rights Procedure
This tutorial demonstrates how the INHERIT REMOTE PRIVILEGES privilege works in a
definer's rights procedure that uses a database link.

• About This Tutorial
In this tutorial, you test the privilege grant and revoke of the INHERIT REMOTE
PRIVILEGES privilege.

• Step 1: Create User Accounts
You must create a user who creates a definer's rights procedure that has a
database link, and a second user who executes this procedure.

• Step 2: As User dbuser2, Create a Table to Store User IDs
The user IDs in this table are the IDs that the database link uses.

• Step 3: As User dbuser1, Create a Database Link and Definer's Rights Procedure
User dbuser1 is ready to create a database link and then a definer's rights
procedure that references the database link.

Chapter 7
Controlling Definer's Rights Privileges for Database Links

7-27

• Step 4: Test the Definer's Rights Procedure
User dbuser2 must grant INHERIT REMOTE PRIVILEGES to dbuser1 before the
definer’s rights procedure can be tested.

• Step 5: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

About This Tutorial
In this tutorial, you test the privilege grant and revoke of the INHERIT REMOTE
PRIVILEGES privilege.

To accomplish this, you must create two users, one who creates a definer’s rights
procedure that refers to a database link, and a second user to execute this definer’s
rights procedure. Both users create identical look-up tables in their schemas. The
definer’s rights procedure must enable the second user to query the lookup table that
belongs to the definer’s rights users.

Step 1: Create User Accounts
You must create a user who creates a definer's rights procedure that has a database
link, and a second user who executes this procedure.

1. Connect as a user who has privileges to create users and perform privilege grants.

For example:

sqlplus sec_admin
Enter password: password

2. Create the user accounts as follows:

GRANT CONNECT, RESOURCE, UNLIMITED TABLESPACE TO dbuser1 IDENTIFIED BY password;
GRANT CONNECT, RESOURCE, UNLIMITED TABLESPACE TO dbuser2 IDENTIFIED BY password;

Follow the guidelines in Minimum Requirements for Passwords to replace
password with a password that is secure.

Step 2: As User dbuser2, Create a Table to Store User IDs
The user IDs in this table are the IDs that the database link uses.

1. Connect as user dbuser2 to instance inst1.

connect dbuser2@inst1
Enter password: password

2. Create the following table:

CREATE TABLE dbusertab(ID NUMBER(2));

3. Populate this table with the ID value 10.

INSERT INTO dbusertab VALUES(10);

Chapter 7
Controlling Definer's Rights Privileges for Database Links

7-28

Step 3: As User dbuser1, Create a Database Link and Definer's Rights
Procedure

User dbuser1 is ready to create a database link and then a definer's rights procedure
that references the database link.

1. Connect as user dbuser1 to instance inst1.

connect dbuser1@inst1
Enter password: password

2. Create a database link, which will be used in the definer's rights procedure.

CREATE DATABASE LINK dblink USING 'inst1';

3. Create a dbusertab table and then populate it with the ID 20.

CREATE TABLE DBUSERTAB(ID NUMBER(2));
INSERT INTO dbusertab VALUES(20);

4. Create a definer's rights procedure that contains a reference to the database lnk

CREATE OR REPLACE PROCEDURE test_remote_db_link
AS
v_id varchar(50);
BEGIN
 SELECT ID INTO v_id FROM dbusertab@dblink;
 DBMS_OUTPUT.PUT_LINE('v_id : ' || v_id);
END ;
/

5. Test the definer’s rights procedure.

SET SERVEROUTPUT ON
EXEC test_remote_db_link;

The output should be as follows, indicating that user dbuser1 has executed the
procedure on his own version of the table dbusertab:

v_id : 20

6. Grant the user dbuser2 the EXECUTE privilege on the test_remote_db_link
procedure.

GRANT EXECUTE ON test_remote_db_link TO dbuser2;

Step 4: Test the Definer's Rights Procedure
User dbuser2 must grant INHERIT REMOTE PRIVILEGES to dbuser1 before the definer’s
rights procedure can be tested.

1. Connect as user dbuser2 to instance inst1.

connect dbuser2@inst1
Enter password: password

2. Grant the INHERIT REMOTE PRIVILEGE privilege on user dbuser2 to dbuser1.

GRANT INHERIT REMOTE PRIVILEGES ON user dbuser2 TO dbuser1;

3. Relog back in, because the grant does not take effect until you start a new
session.

Chapter 7
Controlling Definer's Rights Privileges for Database Links

7-29

connect dbuser2@inst1
Enter password: password

4. Execute the test_remote_db_link definer’s rights procedure:

SET SERVEROUTPUT ON
EXEC dbuser1.test_remote_db_link;

The output shows the following, which indicates that user dbuser1 is able to use
the database link to connect to the schema of dbuser2 and access the values in
the dbusertab table in dbuser2’s schema.

v_id : 10

5. Revoke the INHERIT REMOTE PRIVILEGE privilege on dbuser2 from dbuser1.

REVOKE INHERIT REMOTE PRIVILEGES ON USER dbuser2 FROM dbuser1;

6. Try executing the test_remote_db_link definer’s rights procedure again.

EXEC dbuser1.test_remote_db_link;

The ORA-25433: User DBUSER1 does not have INHERIT REMOTE PRIVILEGES on
connected user DBUSER2 error should appear.

Step 5: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

1. Connect as a user who has privileges to drop user accounts and database links

For example:

connect sec_admin
Enter password: password

2. Drop the user accounts.

DROP USER dbuser1 CASCADE;
DROP USER dbuser2 CASCADE;

3. Drop the dblink database link.

DROP PUBLIC DATABASE LINK dblink;

Chapter 7
Controlling Definer's Rights Privileges for Database Links

7-30

8
Managing Fine-Grained Access in PL/
SQL Packages and Types

Oracle Database provides PL/SQL packages and types for fine-grained access to
control access to external network services and wallets.

• About Managing Fine-Grained Access in PL/SQL Packages and Types
You can configure user access to external network services and wallets through a
set of PL/SQL packages and one type.

• About Fine-Grained Access Control to External Network Services
Oracle Application Security access control lists (ACL) can implement fine-grained
access control to external network services.

• About Access Control to Oracle Wallets
When accessing remote Web server-protected Web pages, users can authenticate
themselves with passwords and client certificates stored in an Oracle wallet.

• Upgraded Applications That Depend on Packages That Use External Network
Services
Upgraded applications may have ORA-24247 network access errors.

• Configuring Access Control for External Network Services
The DBMS_NETWORK_ACL packages configures access control for external network
services.

• Configuring Access Control to an Oracle Wallet
Fine-grained access control for Oracle wallets provide user access to network
services that require passwords or certificates.

• Examples of Configuring Access Control for External Network Services
You can configure access control for a variety of situations, such as for a single
role and network connection.

• Specifying a Group of Network Host Computers
You can use wildcards to specify a group of network host computers.

• Precedence Order for a Host Computer in Multiple Access Control List
Assignments
The access control list assigned to a domain has a lower precedence than those
assigned to the subdomains.

• Precedence Order for a Host in Access Control List Assignments with Port Ranges
The precedence order for a host in an access control list is determined by the use
of port ranges.

• Checking Privilege Assignments That Affect User Access to Network Hosts
Both administrators and users can check network connection and domain
privileges.

• Configuring Network Access for Java Debug Wire Protocol Operations
Before you can debug Java PL/SQL procedures, you must be granted the jdwp
ACL privilege.

8-1

• Data Dictionary Views for Access Control Lists Configured for User Access
Oracle Database provides data data dictionary views that you can use to find
information about existing access control lists.

About Managing Fine-Grained Access in PL/SQL Packages
and Types

You can configure user access to external network services and wallets through a set
of PL/SQL packages and one type.

These packages are the UTL_TCP, UTL_SMTP, UTL_MAIL, UTL_HTTP, and
UTL_INADDR ,and the DBMS_LDAP PL/SQL packages, and the HttpUriType type.

The following scenarios are possible:

• Configuring fine-grained access control for users and roles that need to
access external network services from the database. This way, specific groups
of users can connect to one or more host computers, based on privileges that you
grant them. Typically, you use this feature to control access to applications that
run on specific host addresses.

• Configuring fine-grained access control to Oracle wallets to make HTTP
requests that require password or client-certificate authentication. This
feature enables you to grant privileges to users who are using passwords and
client certificates stored in Oracle wallets to access external protected HTTP
resources through the UTL_HTTP package. For example, you can configure
applications to use the credentials stored in the wallets instead of hard-coding the
credentials in the applications.

About Fine-Grained Access Control to External Network
Services

Oracle Application Security access control lists (ACL) can implement fine-grained
access control to external network services.

This guide explains how to configure the access control for database users and roles
by using the DBMS_NETWORK_ACL_ADMIN PL/SQL package.

This feature enhances security for network connections because it restricts the
external network hosts that a database user can connect to using the PL/SQL network
utility packages UTL_TCP, UTL_SMTP, UTL_MAIL, UTL_HTTP, and UTL_INADDR; the
DBMS_LDAP and DBMS_DEBUG_JDWP PL/SQL packages; and the HttpUriType type.
Otherwise, an intruder who gained access to the database could maliciously attack the
network, because, by default, the PL/SQL utility packages are created with the
EXECUTE privilege granted to PUBLIC users. These PL/SQL network utility packages,
and the DBMS_NETWORK_ACL_ADMIN and DBMS_NETWORK_ACL_UTILITY packages, support
both IP Version 4 (IPv4) and IP Version 6 (IPv6) addresses. This guide explains how
to manage access control to both versions. For detailed information about how the
IPv4 and IPv6 notation works with Oracle Database, see Oracle Database Net
Services Administrator's Guide.

Chapter 8
About Managing Fine-Grained Access in PL/SQL Packages and Types

8-2

See Also:

Tutorial: Adding an Email Alert to a Fine-Grained Audit Policy for an example
of configuring access control to external network services for email alerts

About Access Control to Oracle Wallets
When accessing remote Web server-protected Web pages, users can authenticate
themselves with passwords and client certificates stored in an Oracle wallet.

The Oracle wallet provides secure storage of user passwords and client certificates.

To configure access control to a wallet, you must have the following components:

• An Oracle wallet. You can create the wallet using the Oracle Database mkstore
utility or Oracle Wallet Manager. The HTTP request will use the external password
store or the client certificate in the wallet to authenticate the user

• An access control list to grant privileges to the user to use the wallet. To
configure the access control list, you use the DBMS_NETWORK_ACL_ADMIN PL/SQL
package.

The use of Oracle wallets is beneficial because it provides secure storage of
passwords and client certificates necessary to access protected Web pages.

Related Topics

• Configuring Access Control to an Oracle Wallet
Fine-grained access control for Oracle wallets provide user access to network
services that require passwords or certificates.

Upgraded Applications That Depend on Packages That Use
External Network Services

Upgraded applications may have ORA-24247 network access errors.

If you have upgraded from a release before Oracle Database 11g Release 1 (11.1),
and your applications depend on PL/SQL network utility packages (UTL_TCP, UTL_SMTP,
UTL_MAIL, UTL_HTTP, UTL_INADDR, and DBMS_LDAP) or the HttpUriType type, then the
ORA-24247 error may occur when you try to run the application.

The error message is as follows:

ORA-24247: network access denied by access control list (ACL)

Use the procedures in this chapter to reconfigure the network access for the
application.

Chapter 8
About Access Control to Oracle Wallets

8-3

See Also:

Oracle Database Upgrade Guide for compatibility issues for applications that
depend on the PL/SQL network utility packages

Configuring Access Control for External Network Services
The DBMS_NETWORK_ACL packages configures access control for external network
services.

• Syntax for Configuring Access Control for External Network Services
You can use the DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE procedure to grant
the access control privileges to a user.

• Example: Configuring Access Control for External Network Services
The DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE procedure can configure access
control for external network services.

• Revoking Access Control Privileges for External Network Services
You can remove access control privileges for external network services.

• Example: Revoking External Network Services Privileges
The DBMS_NETWORK_ACL_ADMIN.REMOVE_HOST_ACE procedure can be used to revoke
external network privileges.

Syntax for Configuring Access Control for External Network Services
You can use the DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE procedure to grant the
access control privileges to a user.

This procedure appends an access control entry (ACE) with the specified privilege to
the ACL for the given host, and creates the ACL if it does not exist yet. The resultant
configuration resides in the SYS schema, not the schema of the user who created it.

The syntax is as follows:

BEGIN
 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE (
 host => 'host_name',
 lower_port => null|port_number,
 upper_port => null|port_number,
 ace => ace_definition);
END;

In this specification:

• host: Enter the name of the host. It can be the host name or an IP address of the
host. You can use a wildcard to specify a domain or an IP subnet. (See
Precedence Order for a Host Computer in Multiple Access Control List
Assignments for the precedence order when you use wildcards in domain names.)
The host or domain name is case insensitive. Examples are as follows:

host => 'www.example.com',

host => '*example.com',

Chapter 8
Configuring Access Control for External Network Services

8-4

• lower_port: (Optional) For TCP connections, enter the lower boundary of the port
range. Use this setting for the connect privilege only. Omit it for the resolve
privilege. The default is null, which means that there is no port restriction (that is,
the ACL applies to all ports). The range of port numbers is between 1 and 65535.

For example:

lower_port => 80,

• upper_port: (Optional) For TCP connections, enter the upper boundary of the port
range. Use this setting for connect privileges only. Omit it for the resolve
privilege. The default is null, which means that there is no port restriction (that is,
the ACL applies to all ports). The range of port numbers is between 1 and 65535

For example:

upper_port => 3999);

If you enter a value for the lower_port and leave the upper_port at null (or just
omit it), then Oracle Database assumes the upper_port setting is the same as the
lower_port. For example, if you set lower_port to 80 and omit upper_port, the
upper_port setting is assumed to be 80.

The resolve privilege in the access control list has no effect when a port range is
specified in the access control list assignment.

• ace: Define the ACE by using the XS$ACE_TYPE constant, in the following format:

ace => xs$ace_type(privilege_list => xs$name_list('privilege'),
 principal_name => 'user_or_role',
 principal_type => xs$ace_type_user));

In this specification:

– privilege_list: Enter one or more of the following privileges, which are case
insensitive. Enclose each privilege with single quotation marks and separate
each with a comma (for example, 'http', 'http_proxy').

For tighter access control, grant only the http, http_proxy, or smtp privilege
instead of the connect privilege if the user uses the UTL_HTTP, HttpUriType,
UTL_SMTP, or UTL_MAIL only.

- http: Makes an HTTP request to a host through the UTL_HTTP package and
the HttpUriType type

- http_proxy: Makes an HTTP request through a proxy through the UTL_HTTP
package and the HttpUriType type. You must include http_proxy in
conjunction to the http privilege if the user makes the HTTP request through a
proxy.

- smtp: Sends SMTP to a host through the UTL_SMTP and UTL_MAIL packages

- resolve: Resolves a network host name or IP address through the
UTL_INADDR package

- connect: Grants the user permission to connect to a network service at a
host through the UTL_TCP, UTL_SMTP, UTL_MAIL, UTL_HTTP, and DBMS_LDAP
packages, or the HttpUriType type

- jdwp: Used for Java Debug Wire Protocol debugging operations for Java or
PL/SQL stored procedures. See Configuring Network Access for Java Debug
Wire Protocol Operations for more information.

Chapter 8
Configuring Access Control for External Network Services

8-5

– principal_name: Enter a database user name or role. This value is case
insensistive, unless you enter it in double quotation marks (for example,
'"ACCT_MGR'").

– principal_type: Enter XS_ACL.PTYPE_DB for a database user or role. You
must specify PTYPE_DB because the principal_type value defaults to
PTYPE_XS, which is used to specify an Oracle Database Real Application
Security application user.

See Also:

Oracle Database Real Application Security Administrator's and Developer's
Guide for information about additional XS$ACE_TYPE parameters that you can
include for the ace parameter setting: granted, inverted, start_date, and
end_date

Example: Configuring Access Control for External Network Services
The DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE procedure can configure access
control for external network services.

Example 8-1 shows how to grant the http and smtp privileges to the acct_mgr
database role for an ACL created for the host www.example.com.

Example 8-1 Granting Privileges to a Database Role External Network Services

BEGIN
 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
 host => 'www.example.com',
 ace => xs$ace_type(privilege_list => xs$name_list('http', 'smtp'),
 principal_name => 'acct_mgr',
 principal_type => xs_acl.ptype_db));
END;
/

Revoking Access Control Privileges for External Network Services
You can remove access control privileges for external network services.

• To revoke access control privileges for external network services, run the
DBMS_NETWORK_ACL_ADMIN.REMOVE_HOST_ACE procedure.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_NETWORK_ACL_ADMIN.REMOVE_HOST_ACE procedure

Chapter 8
Configuring Access Control for External Network Services

8-6

Example: Revoking External Network Services Privileges
The DBMS_NETWORK_ACL_ADMIN.REMOVE_HOST_ACE procedure can be used to revoke
external network privileges.

Example 8-2 shows how to revoke external network privileges.

Example 8-2 Revoking External Network Services Privileges

BEGIN
 DBMS_NETWORK_ACL_ADMIN.REMOVE_HOST_ACE (
 host => 'www.example.com',
 lower_port => 80,
 upper_port => upper_port => 3999,
 ace => xs$ace_type(privilege_list => xs$name_list('http', 'smtp'),
 principal_name => 'acct_mgr',
 principal_type => xs_acl.ptype_db),
 remove_empty_acl => TRUE);
END;
/

In this specification, the TRUE setting for remove_empty_acl removes the ACL when it
becomes empty when the ACE is removed.

Configuring Access Control to an Oracle Wallet
Fine-grained access control for Oracle wallets provide user access to network services
that require passwords or certificates.

• About Configuring Access Control to an Oracle Wallet
You can configure access control to grant access to passwords and client
certificates.

• Step 1: Create an Oracle Wallet
An Oracle wallet can use both standard and PKCS11 wallet types, as well as
being an auto-login wallet.

• Step 2: Configure Access Control Privileges for the Oracle Wallet
After you have created the wallet, you are ready to configure access control
privileges for the wallet.

• Step 3: Make the HTTP Request with the Passwords and Client Certificates
The UTL_HTTP package can create an HTTP request object to hold wallet
information, which can authenticate using a client certificate or a password.

• Revoking Access Control Privileges for Oracle Wallets
You can revoke access control privileges for an Oracle wallet.

About Configuring Access Control to an Oracle Wallet
You can configure access control to grant access to passwords and client certificates.

These passwords and client certificates are stored in an Oracle wallet. The access
control that you configure enables users to authenticate themselves to an external
network service when using the PL/SQL network utility packages.

Chapter 8
Configuring Access Control to an Oracle Wallet

8-7

This enables the user to gain access to the network service that requires password or
certificate identification.

Step 1: Create an Oracle Wallet
An Oracle wallet can use both standard and PKCS11 wallet types, as well as being an
auto-login wallet.

1. To create the wallet, use either the mkstore command-line utility or the Oracle
Wallet Manager user interface.

To store passwords in the wallet, you must use the mkstore utility.

2. Ensure that you have exported the wallet to a file.

3. Make a note of the directory in which you created the wallet. You will need this
directory path when you complete the procedures in this section.

Related Topics

• Example: Configuring ACL Access Using Passwords in a Non-Shared Wallet
The DBMS_NETWORK_ACL_ADMIN and UTL_HTTP PL/SQL packages can configure ACL
access using passwords in a non-shared wallet.

• Example: Configuring ACL Access for a Wallet in a Shared Database Session
The DBMS_NETWORK_ACL_ADMIN and UTL_HTTP PL/SQL packages can configure ACL
access for a wallet in a shared database session.

Step 2: Configure Access Control Privileges for the Oracle Wallet
After you have created the wallet, you are ready to configure access control privileges
for the wallet.

• Use the DBMS_NETWORK_ACL_ADMIN.APPEND_WALLET_ACE procedure to configure the
wallet access control privileges.

The syntax for the DBMS_NETWORK_ACL_ADMIN.APPEND_WALLET_ACE procedure is as
follows:

BEGIN
 DBMS_NETWORK_ACL_ADMIN.APPEND_WALLET_ACE (
 wallet_path => 'directory_path_to_wallet',
 ace => xs$ace_type(privilege_list => xs$name_list('privilege'),
 principal_name => 'user_or_role',
 principal_type => xs$ace_type_user));
END;

In this specification:

• wallet_path: Enter the path to the directory that contains the wallet that you
created in Step 1: Create an Oracle Wallet. When you specify the wallet path, you
must use an absolute path and include file: before this directory path. Do not
use environment variables, such as $ORACLE_HOME, nor insert a space after file:
and before the path name. For example:

wallet_path => 'file:/oracle/wallets/hr_wallet',

• ace: Define the ACL by using the XS$ACE_TYPE constant. For example:

Chapter 8
Configuring Access Control to an Oracle Wallet

8-8

 ace => xs$ace_type(privilege_list => xs$name_list(privilege),
 principal_name => 'hr_clerk',
 principal_type => xs_acl.ptype_db);

In this specification, privilege must be one of the following when you enter wallet
privileges using xs$ace_type (note the use of underscores in these privilege
names):

– use_client_certificates

– use_passwords

For detailed information about these parameters, see the ace parameter
description in Syntax for Configuring Access Control for External Network
Services. Be aware that for wallets, you must specify either the
use_client_certificates or use_passwords privileges.

See Also:

Oracle Database Real Application Security Administrator's and Developer's
Guide for information about additional XS$ACE_TYPE parameters that you can
include for the ace parameter setting: granted, inverted, start_date, and
end_date

Step 3: Make the HTTP Request with the Passwords and Client
Certificates

The UTL_HTTP package can create an HTTP request object to hold wallet information,
which can authenticate using a client certificate or a password.

• Making the HTTPS Request with the Passwords and Client Certificates
The UTL_HTTP package makes Hypertext Transfer Protocol (HTTP) callouts from
SQL and PL/SQL.

• Using a Request Context to Hold the Wallet When Sharing the Session with Other
Applications
You should use a request context to hold the wallet when other applications share
the database session.

• Use of Only a Client Certificate to Authenticate
Only a client certificate can authenticate users, as long as the user has been
granted the appropriate privilege in the ACL wallet.

• Use of a Password to Authenticate
If the protected URL being requested requires username and password
authentication, then set the username and password from the wallet to
authenticate.

Chapter 8
Configuring Access Control to an Oracle Wallet

8-9

Making the HTTPS Request with the Passwords and Client Certificates
The UTL_HTTP package makes Hypertext Transfer Protocol (HTTP) callouts from SQL
and PL/SQL.

• Use the UTL_HTTP PL/SQL package to create a request context object that is used
privately with the HTTP request and its response.

For example:

DECLARE
 req_context UTL_HTTP.REQUEST_CONTEXT_KEY;
 req UTL_HTTP.REQ;
BEGIN
 req_context := UTL_HTTP.CREATE_REQUEST_CONTEXT (
 wallet_path => 'file:path_to_directory_containing_wallet',
 wallet_password => 'wallet_password'|NULL);
 req := UTL_HTTP.BEGIN_REQUEST(
 url => 'URL_to_application',
 request_context => 'request_context'|NULL);
 ...
END;

In this specification:

• req_context: Use the UTL_HTTP.CREATE_REQUEST_CONTEXT_KEY data type to create
the request context object. This object stores a randomly-generated numeric key
that Oracle Database uses to identify the request context. The
UTL_HTTP.CREATE_REQUEST_CONTEXT function creates the request context itself.

• req: Use the UTL_HTTP.REQ data type to create the object that will be used to begin
the HTTP request. You will refer to this object later on, when you set the user
name and password from the wallet to access a password-protected Web page.

• wallet_path: Enter the path to the directory that contains the wallet. Ensure that
this path is the same path you specified when you created access control list in
Step 2: Configure Access Control Privileges for the Oracle Wallet in the previous
section. You must include file: before the directory path. Do not use environment
variables, such as $ORACLE_HOME.

For example:

wallet_path => 'file:/oracle/wallets/hr_wallet',

• wallet_password: Enter the password used to open the wallet. The default is
NULL, which is used for auto-login wallets. For example:

wallet_password => 'wallet_password');

• url: Enter the URL to the application that uses the wallet.

For example:

url => 'www.hr_access.example.com',

• request_context: Enter the name of the request context object that you created
earlier in this section. This object prevents the wallet from being shared with other
applications in the same database session.

For example:

request_context => req_context);

Chapter 8
Configuring Access Control to an Oracle Wallet

8-10

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about the UTL_HTTP package

Using a Request Context to Hold the Wallet When Sharing the Session with
Other Applications

You should use a request context to hold the wallet when other applications share the
database session.

If your application has exclusive use of the database session, you can hold the wallet
in the database session by using the UTL_HTTP.SET_WALLET procedure.

• Use the UTL_HTTP.SET_WALLET procedure to configure the request to hold the
wallet.

For example:

DECLARE
 req UTL_HTTP.REQ;
BEGIN
 UTL_HTTP.SET_WALLET(
 path => 'file:path_to_directory_containing_wallet',
 password => 'wallet_password'|NULL);
 req := UTL_HTTP.BEGIN_REQUEST(
 url => 'URL_to_application');
 ...
END;

If the protected URL being requested requires the user name and password to
authenticate, then you can use the SET_AUTHENTICATION_FROM_WALLET procedure to
set the user name and password from the wallet to authenticate.

Use of Only a Client Certificate to Authenticate
Only a client certificate can authenticate users, as long as the user has been granted
the appropriate privilege in the ACL wallet.

If the protected URL being requested requires only the client certificate to authenticate,
then the BEGIN_REQUEST function sends the necessary client certificate from the wallet.
assuming the user has been granted the use_client_certificates privilege in the
ACL assigned to the wallet.

The authentication should succeed at the remote Web server and the user can
proceed to retrieve the HTTP response by using the GET_RESPONSE function.

Use of a Password to Authenticate
If the protected URL being requested requires username and password authentication,
then set the username and password from the wallet to authenticate.

For example:

DECLARE
 req_context UTL_HTTP.REQUEST_CONTEXT_KEY;

Chapter 8
Configuring Access Control to an Oracle Wallet

8-11

 req UTL_HTTP.REQ;
BEGIN
...
 UTL_HTTP.SET_AUTHENTICATION_FROM_WALLET(
 r => HTTP_REQUEST,
 alias => 'alias_to_retrieve_credentials_stored_in_wallet',
 scheme => 'AWS|Basic',
 for_proxy => TRUE|FALSE);
END;

In this specification:

• r: Enter the HTTP request defined in the UTL_HTTP.BEGIN_REQUEST procedure that
you created above, in the previous section. For example:

r => req,

• alias: Enter the alias used to identify and retrieve the user name and password
credential stored in the Oracle wallet. For example, assuming the alias used to
identify this user name and password credential is hr_access.

alias => 'hr_access',

• scheme: Enter one of the following:

– AWS: Specifies the Amazon Simple Storage Service (S3) scheme. Use this
scheme only if you are configuring access to the Amazon.com Web site.
(Contact Amazon for more information about this setting.)

– Basic: Specifies HTTP basic authentication. The default is Basic.

For example:

scheme => 'Basic',

• for_proxy: Specify whether the HTTP authentication information is for access to
the HTTP proxy server instead of the Web server. The default is FALSE.

For example:

for_proxy => TRUE);

The use of the user name and password in the wallet requires the use_passwords
privilege to be granted to the user in the ACL assigned to the wallet.

Revoking Access Control Privileges for Oracle Wallets
You can revoke access control privileges for an Oracle wallet.

• To revoke privileges from access control entries (ACE) in the access control list
(ACL) of a wallet, run the DBMS_NETWORK_ACL_ADMIN.REMOVE_WALLET_ACE
procedure.

For example:

BEGIN
 DBMS_NETWORK_ACL_ADMIN.REMOVE_WALLET_ACE (
 wallet_path => 'file:/oracle/wallets/hr_wallet',
 ace => xs$ace_type(privilege_list => xs$name_list(privilege),
 principal_name => 'hr_clerk',
 principal_type => xs_acl.ptype_db),
 remove_empty_acl => TRUE);
END;
/

Chapter 8
Configuring Access Control to an Oracle Wallet

8-12

In this example, the TRUE setting for remove_empty_acl removes the ACL when it
becomes empty when the wallet ACE is removed.

Examples of Configuring Access Control for External
Network Services

You can configure access control for a variety of situations, such as for a single role
and network connection.

• Example: Configuring Access Control for a Single Role and Network Connection
The DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE procedure can configure access
control for a single role and network connection.

• Example: Configuring Access Control for a User and Role
The DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE can configure access control to
deny or grant privileges for a user and a role.

• Example: Using the DBA_HOST_ACES View to Show Granted Privileges
The DBA_HOST_ACE data dictionary view shows privileges that have been granted to
users.

• Example: Configuring ACL Access Using Passwords in a Non-Shared Wallet
The DBMS_NETWORK_ACL_ADMIN and UTL_HTTP PL/SQL packages can configure ACL
access using passwords in a non-shared wallet.

• Example: Configuring ACL Access for a Wallet in a Shared Database Session
The DBMS_NETWORK_ACL_ADMIN and UTL_HTTP PL/SQL packages can configure ACL
access for a wallet in a shared database session.

Example: Configuring Access Control for a Single Role and Network
Connection

The DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE procedure can configure access
control for a single role and network connection.

Example 8-3 shows how you would configure access control for a single role
(acct_mgr) and grant this role the http privilege for access to the www.us.example.com
host. The privilege expires January 1, 2013.

Example 8-3 Configuring Access Control for a Single Role and Network
Connection

BEGIN
 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
 host => 'www.us.example.com',
 lower_port => 80,
 ace => xs$ace_type(privilege_list => xs$name_list('http'),
 principal_name => 'acct_mgr',
 principal_type => xs_acl.ptype_db,
 end_date => TIMESTAMP '2013-01-01 00:00:00.00 -08:00');
END;
/

Chapter 8
Examples of Configuring Access Control for External Network Services

8-13

Example: Configuring Access Control for a User and Role
The DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE can configure access control to deny
or grant privileges for a user and a role.

Afterwards, you can query the DBA_HOST_ACES data dictionary view to find information
about the privilege grants.

Example 8-4 grants to a database role (acct_mgr) but denies a particular user
(psmith) even if he has the role. The order is important because ACEs are evaluated
in the given order. In this case, the deny ACE (granted => false) must be appended
first or else the user cannot be denied.

Example 8-4 Configuring Access Control Using a Grant and a Deny for User
and Role

BEGIN
 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
 host => 'www.us.example.com',
 lower_port => 80,
 upper_port => 80,
 ace => xs$ace_type(privilege_list => xs$name_list('http'),
 principal_name => 'psmith',
 principal_type => xs_acl.ptype_db,
 granted => false));

 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
 host => 'www.us.example.com',
 lower_port => 80,
 upper_port => 80,
 ace => xs$ace_type(privilege_list => xs$name_list('http'),
 principal_name => 'acct_mgr',
 principal_type => xs_acl.ptype_db,
 granted => true));
END;

Example: Using the DBA_HOST_ACES View to Show Granted
Privileges

The DBA_HOST_ACE data dictionary view shows privileges that have been granted to
users.

Example 8-5 shows how the DBA_HOST_ACES data dictionary view displays the privilege
granted in the previous access control list.

Example 8-5 Using the DBA_HOST_ACES View to Show Granted Privileges

SELECT PRINCIPAL, PRIVILEGE, GRANT_TYPE FROM DBA_HOST_ACE WHERE PRIVILEGE = 'HTTP';

PRINCIPAL PRIVILEGE GRANT_TYPE
------------ ---------- --------------------
PSMITH HTTP FALSE
ACCT_MGR HTTP TRUE

Chapter 8
Examples of Configuring Access Control for External Network Services

8-14

Example: Configuring ACL Access Using Passwords in a Non-Shared
Wallet

The DBMS_NETWORK_ACL_ADMIN and UTL_HTTP PL/SQL packages can configure ACL
access using passwords in a non-shared wallet.

Example 8-6 configures wallet access for two Human Resources department roles,
hr_clerk and hr_manager. These roles use the use_passwords privilege to access
passwords stored in the wallet. In this example, the wallet will not be shared with other
applications within the same database session.

Example 8-6 Configuring ACL Access Using Passwords in a Non-Shared
Wallet

/* 1. At a command prompt, create the wallet. The following example uses the
 user name hr_access as the alias to identify the user name and password
 stored in the wallet. You must use this alias name when you call the
 SET_AUTHENTICATION_FROM_WALLET procedure later on. */
$ mkstore -wrl $ORACLE_HOME/wallets/hr_wallet -create
Enter password: password
Enter password again: password
$ mkstore -wrl $ORACLE_HOME/wallets/hr_wallet -createCredential hr_access hr_usr
Your secret/Password is missing in the command line
Enter your secret/Password: password
Re-enter your secret/Password: password
Enter wallet password: password

/* 2. In SQL*Plus, create an access control list to grant privileges for the
 wallet. The following example grants the use_passwords privilege to the
 hr_clerk role.*/
BEGIN
 DBMS_NETWORK_ACL_ADMIN.APPEND_WALLET_ACE (
 wallet_path => 'file:/oracle/wallets/hr_wallet',
 ace => xs$ace_type(privilege_list => xs$name_list('use_passwords'),
 principal_name => 'hr_clerk',
 principal_type => xs_acl.ptype_db));
END;
/

/* 3. Create a request context and request object, and then set the authentication
 for the wallet. */
DECLARE
 req_context UTL_HTTP.REQUEST_CONTEXT_KEY;
 req UTL_HTTP.REQ;

BEGIN
 req_context := UTL_HTTP.CREATE_REQUEST_CONTEXT(
 wallet_path => 'file:/oracle/wallets/hr_wallet',
 wallet_password => NULL,
 enable_cookies => TRUE,
 max_cookies => 300,
 max_cookies_per_site => 20);
 req := UTL_HTTP.BEGIN_REQUEST(
 url => 'www.hr_access.example.com',
 request_context => req_context);
 UTL_HTTP.SET_AUTHENTICATION_FROM_WALLET(
 r => req,
 alias => 'hr_access'),

Chapter 8
Examples of Configuring Access Control for External Network Services

8-15

 scheme => 'Basic',
 for_proxy => FALSE);
END;
/

Example: Configuring ACL Access for a Wallet in a Shared Database
Session

The DBMS_NETWORK_ACL_ADMIN and UTL_HTTP PL/SQL packages can configure ACL
access for a wallet in a shared database session.

Example 8-7 configures the wallet to be used for a shared database session; that is,
all applications within the current database session will have access to this wallet.

Example 8-7 Configuring ACL Access for a Wallet in a Shared Database
Session

/* Follow these steps:
 1. Use Oracle Wallet Manager to create the wallet and add the client
 certificate.

 2. In SQL*Plus, configure access control to grant privileges for the wallet.
 The following example grants the use_client_certificates privilege
 to the hr_clerk and hr_mgr roles. */
BEGIN
 DBMS_NETWORK_ACL_ADMIN.APPEND_WALLET_ACE (
 wallet_path => 'file:/oracle/wallets/hr_wallet',
 ace => xs$ace_type(privilege_list => xs$name_list('use-
client_certificates'),
 principal_name => 'hr_clerk',
 principal_type => xs_acl.ptype_db));

 DBMS_NETWORK_ACL_ADMIN.APPEND_WALLET_ACE (
 wallet_path => 'file:/oracle/wallets/hr_wallet',
 ace => xs$ace_type(privilege_list =>
xs$name_list('use_client_certificates'),
 principal_name => 'hr_mgr',
 principal_type => xs_acl.ptype_db));
END;
/
COMMIT;

/* 3. Create a request object to handle the HTTP authentication for the wallet.*/
DECLARE
 req UTL_HTTP.req;
BEGIN
 UTL_HTTP.SET_WALLET(
 path => 'file:/oracle/wallets/hr_wallet',
 password => NULL);
 req := UTL_HTTP.BEGIN_REQUEST(
 url => 'www.hr_access.example.com',
 method => 'POST',
 http_version => NULL,
 request_context => NULL);
END;
/

Chapter 8
Examples of Configuring Access Control for External Network Services

8-16

Specifying a Group of Network Host Computers
You can use wildcards to specify a group of network host computers.

• To assign an access control list to a group of network host computers, use the
asterisk (*) wildcard character.

For example, enter *.example.com for host computers that belong to a domain or
192.0.2.* for IPv4 addresses that belong to an IP subnet. The asterisk wildcard must
be at the beginning, before a period (.) in a domain, or at the end, after a period (.), in
an IP subnet. For example, *.example.com is valid, but *example.com and
.example. are not. Be aware that the use of wildcard characters affects the order of
precedence for multiple access control lists that are assigned to the same host
computer. You cannot use wildcard characters for IPv6 addresses.

The Classless Inter-Domain Routing (CIDR) notation defines how IPv4 and IPv6
addresses are categorized for routing IP packets on the internet. The
DBMS_NETWORK_ACL_ADMIN package supports CIDR notation for both IPv4 and IPv6
addresses. This package considers an IPv4-mapped IPv6 address or subnet
equivalent to the IPv4-native address or subnet it represents. For example, ::ffff:
192.0.2.1 is equivalent to 192.0.2.1, and ::ffff:192.0.2.1/120 is equivalent to
192.0.2.*.

Precedence Order for a Host Computer in Multiple Access
Control List Assignments

The access control list assigned to a domain has a lower precedence than those
assigned to the subdomains.

For multiple access control lists that are assigned to the host computer and its
domains, the access control list that is assigned to the host computer takes
precedence over those assigned to the domains.

The access control list assigned to a domain has a lower precedence than those
assigned to the subdomains.For example, Oracle Database first selects the access
control list assigned to the host server.us.example.com, ahead of other access
control lists assigned to its domains. If additional access control lists were assigned to
the sub domains, their order of precedence is as follows:

1. server.us.example.com

2. *.us.example.com

3. *.example.com

4. *.com

5. *

Similarly, for multiple access control lists that are assigned to the IP address (both
IPv4 and IPv6) and the subnets it belongs to, the access control list that is assigned to
the IP address takes precedence over those assigned to the subnets. The access
control list assigned to a subnet has a lower precedence than those assigned to the
smaller subnets it contains.

Chapter 8
Specifying a Group of Network Host Computers

8-17

For example, Oracle Database first selects the access control list assigned to the IP
address 192.0.2.3, ahead of other access control lists assigned to the subnets it
belongs to. If additional access control lists were assigned to the subnets, their order
of precedence is as follows:

1. 192.0.2.3 (or ::ffff:192.0.2.3)

2. 192.0.2.3/31 (or ::ffff:192.0.2.3/127)

3. 192.0.2.3/30 (or ::ffff:192.0.2.3/126)

4. 192.0.2.3/29 (or ::ffff:192.0.2.3/125)

5. ...

6. 192.0.2.3/24 (or ::ffff:192.0.2.3/120 or 192.0.2.*)

7. ...

8. 192.0.2.3/16 (or ::ffff:192.0.2.3/112 or 192.0.*)

9. ...

10. 192.0.2.3/8 (or ::ffff:192.0.2.3/104 or 192.*)

11. ...

12. ::ffff:192.0.2.3/95

13. ::ffff:192.0.2.3/94

14. ...

15. *

Precedence Order for a Host in Access Control List
Assignments with Port Ranges

The precedence order for a host in an access control list is determined by the use of
port ranges.

When an access control list is assigned to a host computer, a domain, or an IP subnet
with a port range, it takes precedence over the access control list assigned to the
same host, domain, or IP subnet without a port range.

For example, suppose you have TCP connections to any port between port 80 and 99
at server.us.example.com. Oracle Database first selects the access control list
assigned to port 80 through 99 at server.us.example.com, ahead of the other access
control list assigned to server.us.example.com that is without a port range.

Checking Privilege Assignments That Affect User Access to
Network Hosts

Both administrators and users can check network connection and domain privileges.

• About Privilege Assignments that Affect User Access to Network Hosts
Oracle provides DBA-specific data dictionary views to find information about
privilege assignments.

Chapter 8
Precedence Order for a Host in Access Control List Assignments with Port Ranges

8-18

• How to Check User Network Connection and Domain Privileges
A database administrator can query the DBA_HOST_ACES data dictionary view to find
the privileges that have been granted for specific users or roles.

• Example: Administrator Checking User Network Access Control Permissions
The DBA_HOST_ACES data dictionary view can check the network access control
permissions for users.

• How Users Can Check Their Network Connection and Domain Privileges
Users can query the USER_HOST_ACES data dictionary view to check their network
and domain permissions.

• Example: User Checking Network Access Control Permissions
The USER_HOST_ACES data dictionary view shows network access control
permissions for a host computer.

About Privilege Assignments that Affect User Access to Network Hosts
Oracle provides DBA-specific data dictionary views to find information about privilege
assignments.

Database administrators can use the DBA_HOST_ACES data dictionary view to query
network privileges that have been granted to or denied from database users and roles
in the access control lists, and whether those privileges take effect during certain times
only

Using the information provided by the view, you may need to combine the data to
determine if a user is granted the privilege at the current time, the roles the user has,
the order of the access control entries, and so on.

Users without database administrator privileges do not have the privilege to access the
access control lists or to invoke those DBMS_NETWORK_ACL_ADMIN functions. However,
they can query the USER_HOST_ACES data dictionary view to check their privileges
instead.

Database administrators and users can use the following DBMS_NETWORK_ACL_UTILITY
functions to determine if two hosts, domains, or subnets are equivalent, or if a host,
domain, or subnet is equal to or contained in another host, domain, or subnet:

• EQUALS_HOST: Returns a value to indicate if two hosts, domains, or subnets are
equivalent

• CONTAINS_HOST: Returns a value to indicate if a host, domain, or subnet is equal to
or contained in another host, domain, or subnet, and the relative order of
precedence of the containing domain or subnet for its ACL assignments

If you do not use IPv6 addresses, database administrators and users can use the
following DBMS_NETWORK_ACL_UTILITY functions to generate the list of domains or IPv4
subnet a host belongs to and to sort the access control lists by their order of
precedence according to their host assignments:

• DOMAINS: Returns a list of the domains or IP subnets whose access control lists
may affect permissions to a specified network host, subdomain, or IP subnet

• DOMAIN_LEVEL: Returns the domain level of a given host

Chapter 8
Checking Privilege Assignments That Affect User Access to Network Hosts

8-19

How to Check User Network Connection and Domain Privileges
A database administrator can query the DBA_HOST_ACES data dictionary view to find the
privileges that have been granted for specific users or roles.

The DBA_HOST_ACES view shows the access control lists that determine the access to
the network connection or domain, and then determines if each access control list
grants (GRANTED), denies (DENIED), or does not apply (NULL) to the access privilege of
the user. Only the database administrator can query this view.

Example: Administrator Checking User Network Access Control
Permissions

The DBA_HOST_ACES data dictionary view can check the network access control
permissions for users.

Example 8-8 shows how a database administrator can check the privileges for user
preston to connect to www.us.example.com.

In this example, user preston was granted privileges for all the network host
connections found for www.us.example.com. However, suppose preston had been
granted access to a host connection on port 80, but then denied access to the host
connections on ports 3000–3999. In this case, you must configure access control for
the host connection on port 80, and a separate access control configuration for the
host connection on ports 3000–3999.

Example 8-8 Administrator Checking User Network Access Control Permissions

SELECT HOST, LOWER_PORT, UPPER_PORT,
 ACE_ORDER, PRINCIPAL, PRINCIPAL_TYPE,
 GRANT_TYPE, INVERTED_PRINCIPAL, PRIVILEGE,
 START_DATE, END_DATE
 FROM (SELECT ACES.*,
DBMS_NETWORK_ACL_UTILITY.CONTAINS_HOST('www.us.example.com', HOST) PRECEDENCE
 FROM DBA_HOST_ACES ACES)
 WHERE PRECEDENCE IS NOT NULL
 ORDER BY PRECEDENCE DESC,
 LOWER_PORT NULLS LAST,
 UPPER_PORT NULLS LAST,
 ACE_ORDER;
HOST LOWER_PORT UPPER_PORT ACE_ORDER PRINCIPAL PRINCIPAL_TYPE GRANT_TYPE
INVERTED_PRINCIPAL PRIVILEGE START_DATE END_DATE
------------------ ---------- ---------- --------- --------- ---------------- ----------
------------------ --------- ---------- --------
www.us.example.com 80 80 1 PRESTON DATABASE USER GRANT
NO HTTP
www.us.example.com 80 80 2 SEBASTIAN DATABASE USER GRANT
NO HTTP
*.us.example.com 1 ACCT_MGR DATABASE USER GRANT
NO CONNECT
* 1 HR_DBA DATABASE USER GRANT
NO CONNECT
* 1 HR_DBA DATABASE USER GRANT
NO RESOLVE

Chapter 8
Checking Privilege Assignments That Affect User Access to Network Hosts

8-20

How Users Can Check Their Network Connection and Domain
Privileges

Users can query the USER_HOST_ACES data dictionary view to check their network and
domain permissions.

The USER_HOST_ACES view is PUBLIC, so all users can query it.

This view hides the access control lists from the user. It evaluates the permission
status for the user (GRANTED or DENIED) and filters out the NULL case because the user
does not need to know when the access control lists do not apply to him or her. In
other words, Oracle Database only shows the user on the network hosts that explicitly
grant or deny access to him or her. Therefore, the output does not display the
*.example.com and * that appear in the output from the database administrator-
specific DBA_HOST_ACES view.

Example: User Checking Network Access Control Permissions
The USER_HOST_ACES data dictionary view shows network access control
permissions for a host computer.

Example 8-9 shows how user preston can check her privileges to connect to
www.us.example.com.

Example 8-9 User Checking Network Access Control Permissions

SELECT HOST, LOWER_PORT, UPPER_PORT, PRIVILEGE, STATUS
 FROM (SELECT ACES.*,
DBMS_NETWORK_ACL_UTILITY.CONTAINS_HOST('www.us.example.com', HOST) PRECEDENCE
 FROM USER_HOST_ACES ACES)
 WHERE PRECEDENCE IS NOT NULL
 ORDER BY PRECEDENCE DESC,
 LOWER_PORT NULLS LAST,
 UPPER_PORT NULLS LAST;

HOST LOWER_PORT UPPER_PORT PRIVILEGE STATUS
------------------ ---------- ---------- --------- -------
www.us.example.com 80 80 HTTP GRANTED

Configuring Network Access for Java Debug Wire Protocol
Operations

Before you can debug Java PL/SQL procedures, you must be granted the jdwp ACL
privilege.

If you want to debug Java PL/SQL procedures in the database through a Java Debug
Wire Protocol (JDWP)-based debugger, such as SQL Developer, JDeveloper, or
Oracle Developer Tools For Visual Studio (ODT), then you must be granted the jdwp
ACL privilege to connect your database session to the debugger at a particular host.

The jdwp privilege is needed in conjunction with the DEBUG CONNECT SESSION system
privilege.

Chapter 8
Configuring Network Access for Java Debug Wire Protocol Operations

8-21

If you have not been granted the jdwp ACL privilege, then when you try to debug your
Java and PL/SQL stored procedures from a remote host, the following errors may
appear:

ORA-24247: network access denied by access control list (ACL)
ORA-06512: at "SYS.DBMS_DEBUG_JDWP", line line_number

• To configure network access for JDWP operations, use the
DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE procedure.

The following example illustrates how to configure network access for JDWP
operations.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
 host => 'host',
 lower_port => null|port_number,
 upper_port => null|port_number,
 ace => xs$ace_type(privilege_list => xs$name_list('jdwp'),
 principal_name => 'username',
 principal_type => xs_acl.ptype_db));
END;
/

In this specification:

• host can be a host name, domain name, IP address, or subnet.

• port_number enables you to specify a range of ports. If you want to use any port,
then omit the lower_port and upper_port values.

• username is case-insensitive unless it is quoted (for example, principal_name =>
'"PSMITH"').

See Also:

• Oracle Database Java Developer’s Guide for more information about
debugging server applications with JDWP

• Oracle SQL Developer User's Guide for information about remote
debugging in SQL Developer

Data Dictionary Views for Access Control Lists Configured
for User Access

Oracle Database provides data data dictionary views that you can use to find
information about existing access control lists.

Table 8-1 lists these views.

Chapter 8
Data Dictionary Views for Access Control Lists Configured for User Access

8-22

Table 8-1 Data Dictionary Views That Display Information about Access Control Lists

View Description

DBA_HOST_ACES Shows the network privileges defined for the network hosts. The SELECT
privilege on this view is granted to the SELECT_CATALOG_ROLE role only.

DBA_WALLET_ACES Lists the wallet path, ACE order, start and end times, grant type, privilege,
and information about principals

DBA_WALLET_ACLS Shows the access control list assignments to the wallets. The SELECT
privilege on this view is granted to the SELECT_CATALOG_ROLE role only.

DBA_HOST_ACLS Shows the access control list assignments to the network hosts. The
SELECT privilege on this view is granted to the SELECT_CATALOG_ROLE role
only.

USER_HOST_ACES Shows the status of the network privileges for the current user to access
network hosts. The SELECT privilege on the view is granted to PUBLIC.

USER_WALLET_ACES Shows the status of the wallet privileges for the current user to access
contents in the wallets. The SELECT privilege on the view is granted to
PUBLIC.

See Also:

Oracle Database Reference for more information about these views

Chapter 8
Data Dictionary Views for Access Control Lists Configured for User Access

8-23

9
Managing Security for a Multitenant
Environment in Enterprise Manager

You can manage common and local users and roles for a multitenant environment by
using Oracle Enterprise Manager.

This section contains the following topics:

• About Managing Security for a Multitenant Environment in Enterprise Manager
Oracle Enterprise Manager Cloud Control supports the management of multitenant
environment security.

• Logging into a Multitenant Environment in Enterprise Manager
In a multitenant environment, you can log in to a CDB or a PDB, and switch from a
PDB to a different PDB or to the root.

• Managing Common and Local Users in Enterprise Manager
In a multitenant environment, Oracle Enterprise Manager enables you to create,
edit, and drop common and local users.

• Managing Common and Local Roles and Privileges in Enterprise Manager
In a multitenant environment, you can use Oracle Enterprise Manager to create,
edit, drop, and revoke common and local roles.

About Managing Security for a Multitenant Environment in
Enterprise Manager

Oracle Enterprise Manager Cloud Control supports the management of multitenant
environment security.

In a multitenant environment, you can use Oracle Enterprise Manager Cloud Control to
create, manage, and monitor common users and roles for both the root and the
associated pluggable databases (PDBs).

Enterprise Manager enables you to switch easily between the root and a designated
PDB.

Logging into a Multitenant Environment in Enterprise
Manager

In a multitenant environment, you can log in to a CDB or a PDB, and switch from a
PDB to a different PDB or to the root.

This section contains the following topics:

• Logging into a CDB or a PDB
Different variations of the Enterprise Manager Database login page appear
automatically based on the feature that you requested while logging in.

9-1

• Switching to a Different PDB or to the Root
From Oracle Enterprise Manager, you can switch from one PDB to a different
PDB, or to the root.

Logging into a CDB or a PDB
Different variations of the Enterprise Manager Database login page appear
automatically based on the feature that you requested while logging in.

To log into a multitenant environment as a CDB administrator (an Enterprise Manager
user who has the CONNECT privilege on the CDB target) to use a CDB-scoped feature:

1. Log into Oracle Enterprise Manager Cloud Control as either user SYSTEM or
SYSMAN.

The URL is as follows:

https://host:port/em

2. Navigate to the Databases page.

3. Select the database that you want to access.

The database home page appears.

4. Select the menu item for the action that you want to perform, such as selecting
Administration, then Security, and then Users to authenticate a user.

The Database Login page appears. The following example shows the Database
Login page for the CDB (because the database name is shown as CDB$ROOT).
Because of this name, this page is colloquially referred to as the database login
page for the root of the multitenant environment. The Database field refers to the
current database; had you selected a PDB, then the name of the PDB would
appear in this field.

Chapter 9
Logging into a Multitenant Environment in Enterprise Manager

9-2

5. Log in using the appropriate credentials.

Remember that only common users can log into the root, and that the names of
common users begin with C## or c##. Both common and local users can log into a
PDB, depending on their privileges.

Switching to a Different PDB or to the Root
From Oracle Enterprise Manager, you can switch from one PDB to a different PDB, or
to the root.

1. At the top left side of the page, find the database link.

In the database link, the current container name appears. The following example
shows that the current database is the CDB itself (CDB$ROOT), colloquially known
as the root.

2. Select the menu icon to the right of the container, and from this menu, select the
database that you want to access.

If the menu item does not appear, then navigate to a page where it does appear,
such as the Database home page.

3. When you decide which activity you want to perform (such as creating users), log
in with the appropriate privileges.

If you attempt to perform an activity without first having authenticated with the
appropriate privileges, then you will be prompted to log in with the appropriate
privilege.

Managing Common and Local Users in Enterprise Manager
In a multitenant environment, Oracle Enterprise Manager enables you to create, edit,
and drop common and local users.

This section contains the following topics:

• Creating a Common User Account in Enterprise Manager
A common user is a user that exists in the root and can access PDBs in the CDB.

• Editing a Common User Account in Enterprise Manager
You can edit a common user account from the root.

• Dropping a Common User Account in Enterprise Manager
You can drop a common user from the CDB root.

• Creating a Local User Account in Enterprise Manager
A local user is a user that exists only in a specific PDB and does not have access
to any other PDBs in the multitenant environment.

Chapter 9
Managing Common and Local Users in Enterprise Manager

9-3

• Editing a Local User Account in Enterprise Manager
You can edit a local user from the PDB in which the local user resides.

• Dropping a Local User Account in Enterprise Manager
You can drop a local user from the PDB in which the local user resides.

Creating a Common User Account in Enterprise Manager
A common user is a user that exists in the root and can access PDBs in the CDB.

1. From the Enterprise Manager database home page, log in to the root as a
common user who has the common CREATE USER and SET CONTAINER privileges.

2. From the Administration menu, select Security, then Users.

If prompted, enter your login information. Afterward, the Users page appears.

3. Click Create.

The Create User page appears.

4. Select the options to create a common user and grant this user privileges.

Ensure that you preface the user name with C## or c##.

5. Click OK or Apply.

The common user is created in the root and will appear in the Users page for any
associated PDBs.

Related Topics

• Logging into a Multitenant Environment in Enterprise Manager
In a multitenant environment, you can log in to a CDB or a PDB, and switch from a
PDB to a different PDB or to the root.

Editing a Common User Account in Enterprise Manager
You can edit a common user account from the root.

1. From the Enterprise Manager database home page, log in to the root as a
common user who has the common CREATE USER and SET CONTAINER privileges.

Chapter 9
Managing Common and Local Users in Enterprise Manager

9-4

• If you are logging into the root, then ensure that you are a common user who
has the common CREATE USER and SET CONTAINER privileges.

• If you are logging into a PDB, ensure that you have the CREATE USER privilege
for that PDB.

2. From the Administration menu, select Security, then Users.

If prompted, enter your login information. Afterward, the Users page appears. In
the root, only common users are listed. In the PDB, both common and local users
are listed.

3. Select the common user to be edited and then click Edit.

The Edit User page appears. For a common user in the root, you can modify all
settings for the common user. For a common user in a PDB, you cannot change
the user password, default tablespace, and temporary tablespace. The settings
that you make apply only to the current PDB. The following screen shows how a
common user Edit User page appears in a PDB.

4. Modify the common user as necessary.

5. Click Apply.

Related Topics

• Logging into a Multitenant Environment in Enterprise Manager
In a multitenant environment, you can log in to a CDB or a PDB, and switch from a
PDB to a different PDB or to the root.

• ALTER USER Statement for Altering Common or Local User Accounts
The ALTER USER statement can alter both common and local user accounts.

Dropping a Common User Account in Enterprise Manager
You can drop a common user from the CDB root.

1. From the Enterprise Manager database home page, log in to the root as a
common user who has the common CREATE USER and SET CONTAINER privileges.

You cannot drop common users from PDBs.

2. From the Administration menu, select Security, then Users.

If prompted, enter your login information. Afterward, the Users page appears,
listing only common users.

3. Select the common user that you want to drop and then click Delete.

Chapter 9
Managing Common and Local Users in Enterprise Manager

9-5

4. Confirm that you want to delete the common user.

Related Topics

• Logging into a Multitenant Environment in Enterprise Manager
In a multitenant environment, you can log in to a CDB or a PDB, and switch from a
PDB to a different PDB or to the root.

Creating a Local User Account in Enterprise Manager
A local user is a user that exists only in a specific PDB and does not have access to
any other PDBs in the multitenant environment.

1. From the Enterprise Manager database home page, log in to the root as a local or
common user who has the local CREATE USER privilege.

2. From the Administration menu, select Security, then Users.

If prompted, enter your login information. Afterward, the Users page appears,
showing only local users for the current PDB.

3. Click Create.

The Create User page appears.

4. Select the options that create a local user and grant this user privileges.

Ensure that you do not preface the user name with C## or c##.

5. Click OK.

The local user is created in the current PDB.

Related Topics

• Logging into a Multitenant Environment in Enterprise Manager
In a multitenant environment, you can log in to a CDB or a PDB, and switch from a
PDB to a different PDB or to the root.

• About Creating Local User Accounts
Be aware of local user account restrictions such as where they can be created,
naming conventions, and objects stored in their schemas.

Editing a Local User Account in Enterprise Manager
You can edit a local user from the PDB in which the local user resides.

1. From the Enterprise Manager database home page, log in to the PDB as a local or
common user who has the local CREATE USER privilege.

2. From the Administration menu, select Security, then Users.

If prompted, enter your login information. Afterward, the Users page appears,
showing only local users for the current PDB and common users.

3. Select the local user to be edited and then click Edit.

The Edit User page appears.

4. Modify the local user as necessary.

5. Click Apply.

Chapter 9
Managing Common and Local Users in Enterprise Manager

9-6

Related Topics

• Logging into a Multitenant Environment in Enterprise Manager
In a multitenant environment, you can log in to a CDB or a PDB, and switch from a
PDB to a different PDB or to the root.

• ALTER USER Statement for Altering Common or Local User Accounts
The ALTER USER statement can alter both common and local user accounts.

Dropping a Local User Account in Enterprise Manager
You can drop a local user from the PDB in which the local user resides.

1. From the Enterprise Manager database home page, log in to the PDB as a local or
common user who has the local CREATE USER privilege.

2. From the Administration menu, select Security, then Users.

If prompted, enter your login information. Afterward, the Users page appears,
showing only local users for the current PDB and common users. (You cannot
drop common users from a PDB.)

3. Select the local user you want to drop and then click Delete.

Enterprise Manager prompts you to confirm deletion of the user.

4. Confirm that you want to delete the local user.

Related Topics

• Logging into a Multitenant Environment in Enterprise Manager
In a multitenant environment, you can log in to a CDB or a PDB, and switch from a
PDB to a different PDB or to the root.

Managing Common and Local Roles and Privileges in
Enterprise Manager

In a multitenant environment, you can use Oracle Enterprise Manager to create, edit,
drop, and revoke common and local roles.

This section contains the following topics:

• Creating a Common Role in Enterprise Manager
Common roles can be used to assign common privileges to common users.

• Editing a Common Role in Enterprise Manager
You can edit a common role from the root.

• Dropping a Common Role in Enterprise Manager
You can drop a common role from the root.

• Revoking Common Privilege Grants in Enterprise Manager
You can revoke common privilege grants from the root.

• Creating a Local Role in Enterprise Manager
A common role can be used to assign a local set of privileges to local users later.

• Editing a Local Role in Enterprise Manager
You can edit a local role in the PDB in which the local role resides.

Chapter 9
Managing Common and Local Roles and Privileges in Enterprise Manager

9-7

• Dropping a Local Role in Enterprise Manager
You can drop local role from the PDB in which the local role resides.

• Revoking Local Privilege Grants in Enterprise Manager
You can revoke local privileges in the PDB in which the privileges are used.

Creating a Common Role in Enterprise Manager
Common roles can be used to assign common privileges to common users.

These roles are valid across all containers of the multitenant environment.

1. From the Enterprise Manager database home page, log in to the root as a
common user who has the common CREATE ROLE and SET CONTAINER privileges.

2. From the Administration menu, select Security, then Roles.

If prompted, enter your login information. Afterward, the Create Role page
appears.

3. Click Create.

The Create Role page appears.

4. Select the options that create a common role and grant this role privileges.

Ensure that you preface the role name with C## or c##.

5. Click OK.

The common role is created in the root.

Related Topics

• Logging into a Multitenant Environment in Enterprise Manager
In a multitenant environment, you can log in to a CDB or a PDB, and switch from a
PDB to a different PDB or to the root.

• Rules for Creating Common Roles
When you create a common role, you must follow special rules.

• Granting or Revoking Privileges to Access a PDB
You can grant and revoke privileges for PDB access in a multitenant environment.

Editing a Common Role in Enterprise Manager
You can edit a common role from the root.

1. From the Enterprise Manager database home page, log in to the root or the PDB.
If you are logging into the root, then ensure that you are a common user who has

Chapter 9
Managing Common and Local Roles and Privileges in Enterprise Manager

9-8

the common CREATE ROLE and SET CONTAINER privileges. If you are logging into a
PDB, ensure that you have the CREATE ROLE privilege for that PDB.

2. From the Administration menu, select Security, then Roles.

If prompted, enter your login information. Afterward, the Roles page appears. In
the root, only common roles are shown. In the PDB, both common and local roles
are shown.

3. Select the common role to be edited and then click Edit.

The Edit Role page appears. For a common user in the root, you can modify all
settings for the common user.

For a common role in a PDB, you can only change the role's authentication and
grant this user different roles, system privileges, object privileges, and consumer
group privileges. These settings apply only to the current PDB.

4. Modify the common user as necessary.

5. Click Apply.

Related Topics

• Logging into a Multitenant Environment in Enterprise Manager
In a multitenant environment, you can log in to a CDB or a PDB, and switch from a
PDB to a different PDB or to the root.

Dropping a Common Role in Enterprise Manager
You can drop a common role from the root.

1. From the Enterprise Manager database home page, log in to the root as a
common user who has the common CREATE ROLE and SET CONTAINER privileges.

You cannot drop common roles from PDBs.

2. From the Administration menu, select Security, then Roles.

If prompted, enter your login information. Afterward, the Roles page appears,
showing only common roles.

3. Select the common role that you want to drop and then click Delete.

4. Confirm that you want to delete the common role.

Related Topics

• Logging into a Multitenant Environment in Enterprise Manager
In a multitenant environment, you can log in to a CDB or a PDB, and switch from a
PDB to a different PDB or to the root.

Revoking Common Privilege Grants in Enterprise Manager
You can revoke common privilege grants from the root.

1. From the Enterprise Manager database home page, log in to the root as a
common user who has the common CREATE USER, CREATE ROLE, and SET
CONTAINER privileges.

2. From the Administration menu, select Security, then Users.

The Users page lists the common users.

Chapter 9
Managing Common and Local Roles and Privileges in Enterprise Manager

9-9

3. Select the user whose privileges you want to revoke and then click Edit.

The Edit User page appears.

4. Select Roles or the appropriate Privileges tab.

Enterprise Manager displays a list of roles and privileges assigned to this user.

5. Select Edit List and then remove the roles or privileges as necessary.

6. Click the OK button.

Related Topics

• Logging into a Multitenant Environment in Enterprise Manager
In a multitenant environment, you can log in to a CDB or a PDB, and switch from a
PDB to a different PDB or to the root.

• Granting or Revoking Privileges to Access a PDB
You can grant and revoke privileges for PDB access in a multitenant environment.

Creating a Local Role in Enterprise Manager
A common role can be used to assign a local set of privileges to local users later.

These roles will be valid across PDB containers for whom they are defined.

1. From the Enterprise Manager database home page, log in to the PDB as a user
who has the local CREATE ROLE privilege.

2. From the Administration menu, select Security, then Roles.

The Roles page appears.

3. Click Create.

If prompted, enter your login information. Afterward, the Create Role page
appears.

4. Select the options that create a local role and grant this role privileges.

Ensure that you do not preface the role name with C## or c##.

5. Click OK.

The local role is created in the current PDB.

Related Topics

• Logging into a Multitenant Environment in Enterprise Manager
In a multitenant environment, you can log in to a CDB or a PDB, and switch from a
PDB to a different PDB or to the root.

• Granting or Revoking Privileges to Access a PDB
You can grant and revoke privileges for PDB access in a multitenant environment.

Editing a Local Role in Enterprise Manager
You can edit a local role in the PDB in which the local role resides.

1. From the Enterprise Manager database home page, log in to the PDB as a user
who has the local CREATE ROLE privilege.

2. From the Administration menu, select Security, then Roles.

Chapter 9
Managing Common and Local Roles and Privileges in Enterprise Manager

9-10

If prompted, enter your login information. Afterward, the Roles page appears,
showing only local roles for the current PDB and common roles.

3. Select the local role to be edited and then click Edit.

The Edit User page appears.

4. Modify the local user as necessary.

5. Click Apply.

Related Topics

• Logging into a Multitenant Environment in Enterprise Manager
In a multitenant environment, you can log in to a CDB or a PDB, and switch from a
PDB to a different PDB or to the root.

Dropping a Local Role in Enterprise Manager
You can drop local role from the PDB in which the local role resides.

1. From the Enterprise Manager database home page, log in to the PDB as a user
who has the local CREATE ROLE privilege.

2. From the Administration menu, select Security, then Role.

If prompted, enter your login information. Afterward, the Roles page appears,
showing only local roles for the current PDB and common roles. (You cannot drop
common roles from a PDB.)

3. Select the local role you want to drop and then click Delete.

Enterprise Manager prompts you to confirm deletion of the role.

4. Confirm that you want to delete the local role.

Related Topics

• Logging into a Multitenant Environment in Enterprise Manager
In a multitenant environment, you can log in to a CDB or a PDB, and switch from a
PDB to a different PDB or to the root.

Revoking Local Privilege Grants in Enterprise Manager
You can revoke local privileges in the PDB in which the privileges are used.

1. From the Enterprise Manager database home page, log in to the PDB as a
common or local user who has the CREATE USER and CREATE ROLE privileges.

2. From the Administration menu, select Security, then Users.

If prompted, enter your login information. Afterward, the Users page appears. In a
PDB, both common and local users are listed.

3. Select the user whose privileges you want to revoke and then click Edit.

The Edit User page appears.

4. Select Roles or the appropriate Privileges tab.

Enterprise Manager displays a list of roles and privileges assigned to this user.

5. Select Edit List and then remove the privileges as necessary.

6. Click the OK button.

Chapter 9
Managing Common and Local Roles and Privileges in Enterprise Manager

9-11

Related Topics

• Logging into a Multitenant Environment in Enterprise Manager
In a multitenant environment, you can log in to a CDB or a PDB, and switch from a
PDB to a different PDB or to the root.

• Granting or Revoking Privileges to Access a PDB
You can grant and revoke privileges for PDB access in a multitenant environment.

Chapter 9
Managing Common and Local Roles and Privileges in Enterprise Manager

9-12

Part II
Application Development Security

Part II describes how to manage application development security.

• Managing Security for Application Developers
A security policy for application developers should encompass areas such as
password management and securing external procedures and application
privileges.

10
Managing Security for
Application Developers

A security policy for application developers should encompass areas such as
password management and securing external procedures and application privileges.

• About Application Security Policies
An application security policy is a list of application security requirements and rules
that regulate user access to database objects.

• Considerations for Using Application-Based Security
An application security implementation should consider both application and
database users and whether to enforce security in the application or in the
database.

• Securing Passwords in Application Design
Oracle provides strategies for securely invoking password services, such as from
scripts, and for applying these strategies to other sensitive data.

• Securing External Procedures
An external procedure is stored in a .dll or an .so file, separately from the
database, and can be through a credential authentication.

• Securing LOBs with LOB Locator Signatures
You can secure large objects (LOB) by regenerating their LOB locator signatures.

• Managing Application Privileges
Most database applications involve different privileges on different schema
objects.

• Advantages of Using Roles to Manage Application Privileges
Grouping application privileges in a role aids privilege management.

• Creating Secure Application Roles to Control Access to Applications
A secure application role is only enabled through its associated PL/SQL package
or procedure.

• Association of Privileges with User Database Roles
Ensure that users have only the privileges associated with the current database
role.

• Protecting Database Objects by Using Schemas
A schema is a security domain that can contain database objects. Privileges
granted to users and roles control access to these database objects.

• Object Privileges in an Application
When you design an application, consider the types of users and the level access
they need.

• Parameters for Enhanced Security of Database Communication
Parameters can be used to manage security, such as handling bad packets from
protocol errors or configuring the maximum number of authentication errors.

10-1

About Application Security Policies
An application security policy is a list of application security requirements and rules
that regulate user access to database objects.

Creating an application security policy is the first step to create a secure database
application. You should draft security policies for each database application. For
example, each database application should have one or more database roles that
provide different levels of security when executing the application. You then can grant
the database roles to other roles or directly to specific users.

Applications that can potentially allow unrestricted SQL statement processing (through
tools such as SQL*Plus or SQL Developer) also need security policies that prevent
malicious access to confidential or important schema objects. In particular, you must
ensure that your applications handle passwords in a secure manner.

Considerations for Using Application-Based Security
An application security implementation should consider both application and database
users and whether to enforce security in the application or in the database.

• Are Application Users Also Database Users?
Where possible, build applications in which application users are database users,
so that you can use the intrinsic security mechanisms of the database.

• Is Security Better Enforced in the Application or in the Database?
Oracle recommends that applications use the security enforcement mechanisms
of the database as much as possible.

Are Application Users Also Database Users?
Where possible, build applications in which application users are database users, so
that you can use the intrinsic security mechanisms of the database.

For many commercial packaged applications, application users are not database
users. For these applications, multiple users authenticate themselves to the
application, and the application then connects to the database as a single, highly-
privileged user. This is called the One Big Application User model.

Applications built in this way generally cannot use many of the intrinsic security
features of the database, because the identity of the user is not known to the
database. However, you can use client identifiers to perform some types of tracking.
For example, the OCI_ATTR_CLIENT_IDENTIFIER attribute of the Oracle Call Interface
method OCIAttrSet can be used to enable auditing and monitoring of client
connections. Client identifiers can be used to gather audit trail data on individual Web
users, apply rules that restrict data access by Web users, and monitor and trace
applications that each Web user users.

Table 10-1 describes how the One Big Application User model affects various Oracle
Database security features:

Chapter 10
About Application Security Policies

10-2

Table 10-1 Features Affected by the One Big Application User Model

Oracle Database Feature Limitations of One Big Application User Model

Auditing A basic principle of security is accountability through
auditing. If One Big Application User performs all actions in
the database, then database auditing cannot hold
individual users accountable for their actions. The
application must implement its own auditing mechanisms
to capture individual user actions.

Oracle strong authentication Strong forms of authentication (such as client
authentication over SSL, tokens, and so on) cannot be
used if the client authenticating to the database is the
application, rather than an individual user.

Roles Roles are assigned to database users. Enterprise roles are
assigned to enterprise users who, though not created in
the database, are known to the database. If application
users are not database users, then the usefulness of roles
is diminished. Applications must then craft their own
mechanisms to distinguish between the privileges which
various application users need to access data within the
application.

Enterprise user management The Enterprise user management feature enables an
Oracle database to use the Oracle Identity Management
Infrastructure by securely storing and managing user
information and authorizations in an LDAP-based directory
such as Oracle Internet Directory. While enterprise users
do not need to be created in the database, they do need to
be known to the database. The One Big Application User
model cannot take advantage of Oracle Identity
Management.

Is Security Better Enforced in the Application or in the Database?
Oracle recommends that applications use the security enforcement mechanisms of the
database as much as possible.

Applications, whose users are also database users, can either build security into the
application, or rely on intrinsic database security mechanisms such as granular
privileges, virtual private databases (fine-grained access control with application
context), roles, stored procedures, and auditing (including fine-grained auditing).

When security is enforced in the database itself, rather than in the application, it
cannot be bypassed. The main shortcoming of application-based security is that
security is bypassed if the user bypasses the application to access data. For example,
a user who has SQL*Plus access to the database can execute queries without going
through the Human Resources application. The user, therefore, bypasses all of the
security measures in the application.

Applications that use the One Big Application User model must build security
enforcement into the application rather than use database security mechanisms.
Because it is the application, and not the database, that recognizes users; the
application itself must enforce security measures for each user.

This approach means that each application that accesses data must re-implement
security. Security becomes expensive, because organizations must implement the

Chapter 10
Considerations for Using Application-Based Security

10-3

same security policies in multiple applications, and each new application requires an
expensive reimplementation.

Related Topics

• Potential Security Problems of Using Ad Hoc Tools
Ad hoc tools can pose problems if malicious users have access to such tools.

Securing Passwords in Application Design
Oracle provides strategies for securely invoking password services, such as from
scripts, and for applying these strategies to other sensitive data.

• General Guidelines for Securing Passwords in Applications
Guidelines for securing passwords in applications cover areas such as platform-
specific security threats.

• Use of an External Password Store to Secure Passwords
You can store password credentials for connecting to a database by using a client-
side Oracle wallet.

• Securing Passwords Using the ORAPWD Utility
SYSDBA or SYSOPER users can use password files to connect to an application over
a network.

• Example: Java Code for Reading Passwords
You can create Java packages that can be used to read passwords.

General Guidelines for Securing Passwords in Applications
Guidelines for securing passwords in applications cover areas such as platform-
specific security threats.

• Platform-Specific Security Threats
You should be aware of potential security threats, which may not be obvious.

• Guidelines for Designing Applications to Handle Password Input
Oracle provides guidelines for designing applications to handle password input.

• Guidelines for Configuring Password Formats and Behavior
Oracle Database provides guidelines for configuring password formats and
behavior.

• Guidelines for Handling Passwords in SQL Scripts
Oracle provides guidelines for handling passwords in SQL scripts.

Platform-Specific Security Threats
You should be aware of potential security threats, which may not be obvious.

These security threats are as follows:

• On UNIX and Linux platforms, command parameters are available for
viewing by all operating system users on the same host computer. As a
result, passwords entered on the command line could be exposed to other users.
However, do not assume that non-UNIX and Linux platforms are safe from this
threat.

Chapter 10
Securing Passwords in Application Design

10-4

• On some UNIX platforms, such as HP Tru64 and IBM AIX, environment
variables for all processes are available for viewing by all operating system
users. However, do not assume that non-UNIX and Linux platforms are safe from
this threat.

• On Microsoft Windows, the command recall feature (the Up arrow)
remembers user input across command invocations. For example, if you use
the CONNECT SYSTEM/password notation in SQL*Plus, exit, and then press the Up
arrow to repeat the CONNECT command, the command recall feature reveals the
connect string and displays the password. In addition, do not assume that non-
Microsoft Windows platforms are safe from this threat.

Guidelines for Designing Applications to Handle Password Input
Oracle provides guidelines for designing applications to handle password input.

• Design applications to interactively prompt for passwords. For command-line
utilities, do not force users to expose passwords at a command prompt.

Check the APIs for the programming language you use to design applications for
the best way to handle passwords from users. For an example of Java code that
handles this functionality, see Example: Java Code for Reading Passwords.

• Protect your database against code injection attacks. Code injection attacks
most commonly occur in the client application tool that sends SQL to the database
(for example, SQL*Plus, or any Oracle Call Interface (OCI) or JDBC application.
This includes database drivers that are built using these tools. A SQL injection
attack causes SQL statements to behave in a manner that is not intended by the
PL/SQL application. The injection attack takes place before the statement is sent
to the database. For example, an intruder can bypass password authentication by
setting a WHERE clause to TRUE.

To address the problem of SQL injection attacks, use bind variable arguments or
create validation checks. If you cannot use bind variables, then consider using the
DBMS_ASSERT PL/SQL package to validate the properties of input values. Oracle
Database PL/SQL Packages and Types Reference describes the DBMS_ASSERT
package in detail. You also should review any grants to roles such as PUBLIC.

Note that client applications users may not always associate SQL injection with
PL/SQL, because the injection could occur before the statement is sent to the
database.

See Oracle Database PL/SQL Language Reference for more information about
preventing SQL injection.

• If possible, design your applications to defer authentication. For example:

– Use certificates for logins.

– Authenticate users by using facilities provided by the operating system. For
example, applications on Microsoft Windows can use domain authentication.

• Mask or encrypt passwords. If you must store passwords, then mask or encrypt
them. For example, you can mask passwords in log files and encrypt passwords in
recovery files.

• Authenticate each connection. For example, if schema A exists in database 1,
then do not assume that schema A in database 2 is the same user. Similarly, the
local operating system user psmith is not necessarily the same person as remote
user psmith.

Chapter 10
Securing Passwords in Application Design

10-5

• Do not store clear text passwords in files or repositories. Storing passwords
in files increases the risk of an intruder accessing them.

• Use a single master password. For example:

– You can grant a single database user proxy authentication to act as other
database users. In this case, only a single database password is needed. See
Proxy User Accounts and the Authorization of Users to Connect Through
Them for more information.

– You can create a password wallet, which can be opened by the master
password. The wallet then contains the other passwords. See Oracle
Database Enterprise User Security Administrator's Guide for more information
about Wallet Manager.

Guidelines for Configuring Password Formats and Behavior
Oracle Database provides guidelines for configuring password formats and behavior.

• Limit the lifetime for passwords. You can set a password lifetime, after which
the password expires and must be changed before the user can log in to the
account. See About Controlling Password Aging and Expiration for parameters
you can use to control the lifetime of a password.

• Limit the ability of users to reuse old passwords. See Controlling the User
Ability to Reuse Previous Passwords for more information.

• Force users to create strong, secure passwords. See Guidelines for Securing
Passwords for advice on creating strong passwords. About Password Complexity
Verification explains how you can customize password requirements.

• Enable case sensitivity in passwords. See Managing Password Case
Sensitivity for more information.

Related Topics

• Minimum Requirements for Passwords
Oracle provides a set of minimum requirements for passwords.

• About Password Complexity Verification
Complexity verification checks that each password is complex enough to protect
against intruders who try to guess user passwords.

Guidelines for Handling Passwords in SQL Scripts
Oracle provides guidelines for handling passwords in SQL scripts.

• Do not invoke SQL*Plus with a password on the command line, either in
programs or scripts. If a password is required but omitted, SQL*Plus prompts the
user for it and then automatically disables the echo feature so that the password is
not displayed.

The following examples are secure because passwords are not exposed on the
command line. Oracle Database also automatically encrypts these passwords over
the network.

$ sqlplus system
Enter password: password

SQL> CONNECT SYSTEM
Enter password: password

Chapter 10
Securing Passwords in Application Design

10-6

The following example exposes the password to other operating system users:

sqlplus system/password

The next example poses two security risks. First, it exposes the password to other
users who may be watching over your shoulder. Second, on some platforms, such
as Microsoft Windows, it makes the password vulnerable to a command line recall
attack.

$ sqlplus /nolog
SQL> CONNECT SYSTEM/password

• For SQL scripts that require passwords or secret keys, for example, to
create an account or to log in as an account, do not use positional
parameters, such as substitution variables &1, &2, and so on. Instead, design
the script to prompt the user for the value. You should also disable the echo
feature, which displays output from a script or if you are using spool mode. To
disable the echo feature, use the following setting:

SET ECHO OFF

A good practice is to ensure that the script makes the purpose of the value clear.
For example, it should be clear whether or not the value will establish a new value,
such as an account or a certificate, or if the value will authenticate, such as
logging in to an existing account.

The following example is secure because it prevents users from invoking the script
in a manner that poses security risks: It does not echo the password; it does not
record the password in a spool file.

SET VERIFY OFF
 ACCEPT user CHAR PROMPT ‘Enter user to connect to: ‘
 ACCEPT password CHAR PROMPT ‘Enter the password for that user: ' HIDE
 CONNECT &user/&password

In this example:

– SET VERIFY OFF prevents the password from being displayed. (SET VERIFY
lists each line of the script before and after substitution.) Combining the SET
VERIFY OFF command with the HIDE command is a useful technique for hiding
passwords and other sensitive input data.

– ACCEPT password CHAR PROMPT includes the HIDE option for the ACCEPT
password prompt, which prevents the input password from being echoed.

The next example, which uses positional parameters, poses security risks
because a user may invoke the script by passing the password on the command
line. If the user does not enter a password and instead is prompted, the danger
lies in that whatever the user types is echoed to the screen and to a spool file if
spooling is enabled.

CONNECT &1/&2

• Control the log in times for batch scripts. For batch scripts that require
passwords, configure the account so that the script can only log in during the time
in which it is supposed to run. For example, suppose you have a batch script that
runs for an hour each evening starting at 8 p.m. Set the account so that the script
can only log in during this time. If an intruder manages to gain access, then he or
she has less of a chance of exploiting any compromised accounts.

Chapter 10
Securing Passwords in Application Design

10-7

• Be careful when using DML or DDL SQL statements that prompt for
passwords. In this case, sensitive information is passed in clear text over the
network. You can remedy this problem by using Oracle strong authentication.

The following example of altering a password is secure because the password is
not exposed:

password psmith
Changing password for psmith
New password: password
Retype new password: password

This example poses a security risk because the password is exposed both at the
command line and on the network:

ALTER USER psmith IDENTIFIED BY password

Use of an External Password Store to Secure Passwords
You can store password credentials for connecting to a database by using a client-side
Oracle wallet.

An Oracle wallet is a secure software container that stores the authentication and
signing credentials needed for a user to log in.

See Also:

• Managing the Secure External Password Store for Password Credentials
for more information about the secure external password store

• Oracle Database Enterprise User Security Administrator's Guide for
information about using Oracle Wallet Manager to configure Oracle
wallets

Securing Passwords Using the ORAPWD Utility
SYSDBA or SYSOPER users can use password files to connect to an application over a
network.

• To create the password file, use the ORAPWD utility.

See Also:

Oracle Database Administrator’s Guide for more information about creating
and maintaining a password file

Example: Java Code for Reading Passwords
You can create Java packages that can be used to read passwords.

Chapter 10
Securing Passwords in Application Design

10-8

Example 10-1 demonstrates how to create a Java package that can be used to read
passwords.

Example 10-1 Java Code for Reading Passwords

// Change the following line to a name for your version of this package
package passwords.sysman.emSDK.util.signing;

import java.io.IOException;
import java.io.PrintStream;
import java.io.PushbackInputStream;
import java.util.Arrays;

/**
 * The static readPassword method in this class issues a password prompt
 * on the console output and returns the char array password
 * entered by the user on the console input.
 */
public final class ReadPassword {
 //----------------------------------
 /**
 * Test driver for readPassword method.
 * @param args the command line args
 */
 public static void main(String[] args) {
 char[] pass = ReadPassword.readPassword("Enter password: ");
 System.out.println("The password just entered is \""
 + new String(pass) + "\"");
 System.out.println("The password length is " + pass.length);
 }
 * Issues a password prompt on the console output and returns
 * the char array password entered by the user on the console input.
 * The password is not displayed on the console (chars are not echoed).
 * As soon as the returned char array is not needed,
 * it should be erased for security reasons (Arrays.fill(charArr, ' '));
 * A password should never be stored as a java String.
 *
 * Note that Java 6 has a Console class with a readPassword method,
 * but there is no equivalent in Java 5 or Java 1.4.
 * The readPassword method here is based on Sun's suggestions at
 * http://java.sun.com/developer/technicalArticles/Security/pwordmask.
 *
 * @param prompt the password prompt to issue
 * @return new char array containing the password
 * @throws RuntimeException if some error occurs
 */
 public static final char[] readPassword(String prompt)
 throws RuntimeException {
 try {
 StreamMasker masker = new StreamMasker(System.out, prompt);
 Thread threadMasking = new Thread(masker);
 int firstByte = -1;
 PushbackInputStream inStream = null;
 try {
 threadMasking.start();
 inStream = new PushbackInputStream(System.in);
 firstByte = inStream.read();
 } finally {
 masker.stopMasking();
 }
 try {

Chapter 10
Securing Passwords in Application Design

10-9

 threadMasking.join();
 } catch (InterruptedException e) {
 throw new RuntimeException("Interrupt occurred when reading password");
 }
 if (firstByte == -1) {
 throw new RuntimeException("Console input ended unexpectedly");
 }
 if (System.out.checkError()) {
 throw new RuntimeException("Console password prompt output error");
 }
 inStream.unread(firstByte);
 return readLineSecure(inStream);
 }
 catch (IOException e) {
 throw new RuntimeException("I/O error occurred when reading password");
 }
 }
 //----------------------------------
 /**
 * Reads one line from an input stream into a char array in a secure way
 * suitable for reading a password.
 * The char array will never contain a '\n' or '\r'.
 *
 * @param inStream the pushback input stream
 * @return line as a char array, not including end-of-line-chars;
 * never null, but may be zero length array
 * @throws RuntimeException if some error occurs
 */
 private static final char[] readLineSecure(PushbackInputStream inStream)
 throws RuntimeException {
 if (inStream == null) {
 throw new RuntimeException("readLineSecure inStream is null");
 }
 try {
 char[] buffer = null;
 try {
 buffer = new char[128];
 int offset = 0;
 // EOL is '\n' (unix), '\r\n' (windows), '\r' (mac)
 loop:
 while (true) {
 int c = inStream.read();
 switch (c) {
 case -1:
 case '\n':
 break loop;
 case '\r':
 int c2 = inStream.read();
 if ((c2 != '\n') && (c2 != -1))
 inStream.unread(c2);
 break loop;
 default:
 buffer = checkBuffer(buffer, offset);
 buffer[offset++] = (char) c;
 break;
 }
 }
 char[] result = new char[offset];
 System.arraycopy(buffer, 0, result, 0, offset);
 return result;
 }

Chapter 10
Securing Passwords in Application Design

10-10

 finally {
 if (buffer != null)
 Arrays.fill(buffer, ' ');
 }
 }
 catch (IOException e) {
 throw new RuntimeException("I/O error occurred when reading password");
 }
 }
 //----------------------------------
 /**
 * This is a helper method for readLineSecure.
 *
 * @param buffer the current char buffer
 * @param offset the current position in the buffer
 * @return the current buffer if it is not yet full;
 * otherwise return a larger buffer initialized with a copy
 * of the current buffer and then erase the current buffer
 * @throws RuntimeException if some error occurs
 */
 private static final char[] checkBuffer(char[] buffer, int offset)
 throws RuntimeException
 {
 if (buffer == null)
 throw new RuntimeException("checkBuffer buffer is null");
 if (offset < 0)
 throw new RuntimeException("checkBuffer offset is negative");
 if (offset < buffer.length)
 return buffer;
 else {
 try {
 char[] bufferNew = new char[offset + 128];
 System.arraycopy(buffer, 0, bufferNew, 0, buffer.length);
 return bufferNew;
 } finally {
 Arrays.fill(buffer, ' ');
 }
 }
 }
 //----------------------------------
 /**
 * This private class prints a one line prompt
 * and erases reply chars echoed to the console.
 */
 private static final class StreamMasker
 extends Thread {
 private static final String BLANKS = StreamMasker.repeatChars(' ', 10);
 private String m_promptOverwrite;
 private String m_setCursorToStart;
 private PrintStream m_out;
 private volatile boolean m_doMasking;
 //----------------------------------
 /**
 * Constructor.
 * @throws RuntimeException if some error occurs
 */
 public StreamMasker(PrintStream outPrint, String prompt)
 throws RuntimeException {
 if (outPrint == null)
 throw new RuntimeException("StreamMasker outPrint is null");
 if (prompt == null)

Chapter 10
Securing Passwords in Application Design

10-11

 throw new RuntimeException("StreamMasker prompt is null");
 if (prompt.indexOf('\r') != -1)
 throw new RuntimeException("StreamMasker prompt contains a CR");
 if (prompt.indexOf('\n') != -1)
 throw new RuntimeException("StreamMasker prompt contains a NL");
 m_out = outPrint;
 m_setCursorToStart = StreamMasker.repeatChars('\010',
 prompt.length() + BLANKS.length());
 m_promptOverwrite = m_setCursorToStart + prompt + BLANKS
 + m_setCursorToStart + prompt;
 }
 //----------------------------------
 /**
 * Begin masking until asked to stop.
 * @throws RuntimeException if some error occurs
 */
 public void run()
 throws RuntimeException {
 int priorityOriginal = Thread.currentThread().getPriority();
 Thread.currentThread().setPriority(Thread.MAX_PRIORITY);
 try {
 m_doMasking = true;
 while (m_doMasking) {
 m_out.print(m_promptOverwrite);
 if (m_out.checkError())
 throw new RuntimeException("Console output error writing prompt");
 try {
 Thread.currentThread().sleep(1);
 } catch (InterruptedException ie) {
 Thread.currentThread().interrupt();
 return;
 }
 }
 m_out.print(m_setCursorToStart);
 } finally {
 Thread.currentThread().setPriority(priorityOriginal);
 }
 }
 //----------------------------------
 /**
 * Instructs the thread to stop masking.
 */
 public void stopMasking() {
 m_doMasking = false;
 }
 //----------------------------------
 /**
 * Returns a repeated char string.
 *
 * @param c the char to repeat
 * @param length the number of times to repeat the char
 * @throws RuntimeException if some error occurs
 */
 private static String repeatChars(char c, int length)
 throws RuntimeException {
 if (length < 0)
 throw new RuntimeException("repeatChars length is negative");
 StringBuffer sb = new StringBuffer(length);
 for (int i = 0; i < length; i++)
 sb.append(c);
 return sb.toString();

Chapter 10
Securing Passwords in Application Design

10-12

 }
 }
}

Securing External Procedures
An external procedure is stored in a .dll or an .so file, separately from the database,
and can be through a credential authentication.

• About Securing External Procedures
For safety reasons, Oracle external procedures run in a process that is physically
separate from the database.

• General Process for Configuring extproc for a Credential Authentication
For better security, you can configure the extproc process to be authenticated
through a credential.

• extproc Process Authentication and Impersonation Expected Behaviors
The extproc process has a set of behaviors for authentication and
impersonation.

• Configuring Authentication for External Procedures
To configure a credential for extproc processes, you can use the
DBMS_CREDENTIAL PL/SQL package.

• External Procedures for Legacy Applications
For maximum security, set the ENFORCE_CREDENTIAL environment variable to TRUE.

About Securing External Procedures
For safety reasons, Oracle external procedures run in a process that is physically
separate from the database.

In most cases, you configure this process to execute as a user other than the Oracle
software account. When your application invokes this external procedure—such as
when a library of .dll or .so files must be accessed—then Oracle Database creates
an operating system process called extproc. By default, the extproc process
communicates directly through your server process. In other words, if you do not use a
credential, then Oracle Database creates an extproc process for you in the default
Oracle Database server configuration, and runs extproc as the oracle software
account. Alternatively, it can communicate through the Oracle Database listener.

See Also:

Guideline for Securing External Procedures

General Process for Configuring extproc for a Credential
Authentication

For better security, you can configure the extproc process to be authenticated through
a credential.

Chapter 10
Securing External Procedures

10-13

The general process is as follows:

1. You create a credential.

The credential is in an encrypted container. Both public and private synonyms can
refer to this credential. Configuring Authentication for External Procedures
describes how to create this credential and configure your database to use it.

2. You make your initial connection to the database, which you are running in either a
dedicated server or a shared server process.

3. Your application makes a call to an external procedure.

If this is the first call, then Oracle Database creates an extproc process. Note that
if you want to use a credential for extproc, then you cannot use the Oracle listener
to spawn the extproc process.

4. The extproc process impersonates (that is, it runs on behalf of your supplied
credential), loads the requisite .dll, .so, .sl, or .a file, and then sends your data
between SQL and C.

extproc Process Authentication and Impersonation Expected
Behaviors

The extproc process has a set of behaviors for authentication and impersonation.

Table 10-2 describes the expected behaviors of an extproc process based on
possible authentication and impersonation scenarios.

Table 10-2 Expected Behaviors for extproc Process Authentication and Impersonation Settings

ENFORCE_CREDENTI
AL Environment
Variable Setting

PL/SQL
Library
with
Credential?

GLOBAL_EXTPROC_CREDENTIAL
Credential Existence1

Expected Behavior

FALSE No No Uses the pre-release 12c
authentication, which
authenticates by operating
system privilege of the owners of
the Oracle listener or Oracle
server process.

FALSE No Yes Authenticates and impersonates
with the Oracle instance-wide
supplied
GLOBAL_EXTPROC_CREDENTIAL
(2)

FALSE Yes No Authenticates and impersonates
with the credential defined in the
PL/SQL library

FALSE Yes Yes Authenticates and impersonates
(3)

TRUE No No Returns error ORA-28575:
unable to open RPC
connection to external
procedure agent

Chapter 10
Securing External Procedures

10-14

Table 10-2 (Cont.) Expected Behaviors for extproc Process Authentication and Impersonation
Settings

ENFORCE_CREDENTI
AL Environment
Variable Setting

PL/SQL
Library
with
Credential?

GLOBAL_EXTPROC_CREDENTIAL
Credential Existence1

Expected Behavior

TRUE No Yes Authenticates and impersonates
with the Oracle system-wide
supplied
GLOBAL_EXTPROC_CREDENTIAL
(footnote 1)

TRUE Yes No Authenticates and impersonates
with the credential defined in the
PL/SQL library

TRUE Yes Yes Authenticates and impersonates
(footnote 2)

1 GLOBAL_EXTPROC_CREDENTIAL is a reserved credential name for the default credential if the credential is not explicitly
specified and the ENFORCE_CREDENTIAL environment variable is set to TRUE. Therefore, Oracle strongly recommends that
you create a credential by the that name if ENFORCE_CREDENTIAL is set to TRUE.

2 If only the GLOBAL_EXTPROC_CREDENTIAL credential is in use, then the EXECUTE privilege on this global credential is
automatically granted to all users implicitly.

3 If both the PL/SQL library and the GLOBAL_EXTPROC_CREDENTIAL settings have credentials defined, then the credential of
the PL/SQL library takes precedence.

Configuring Authentication for External Procedures
To configure a credential for extproc processes, you can use the DBMS_CREDENTIAL
PL/SQL package.

1. Log in to SQL*Plus as a user who has been granted the CREATE CREDENTIAL or
CREATE ANY CREDENTIAL privilege.

sqlplus psmith
Enter password: password
Connected.

In a multitenant environment, you must connect to the appropriate pluggable
database (PDB). For example:

sqlplus psmith@hpdb
Enter password: password
Connected.

In addition, ensure that you also have the CREATE LIBRARY or CREATE ANY LIBRARY
privilege, and the EXECUTE object privilege on the library that contains the external
calls.

2. Using the DBMS_CREDENTIAL PL/SQL package, create a new credential.

For example:

BEGIN
 DBMS_CREDENTIAL.CREATE_CREDENTIAL (
 credential_name => 'smith_credential',
 user_name => 'tjones',

Chapter 10
Securing External Procedures

10-15

 password => 'password')
END;
/

In this example:

• credential_name: Enter the name of the credential. Optionally, prefix it with
the name of a schema (for example, psmith.smith_credential). If the
ENFORCE_CREDENTIAL environment variable is set to TRUE, then you should
create a credential with credential_name GLOBAL_EXTPROC_CREDENTIAL.

• user_name: Enter a valid operating system user name to be to used to run as
the user.

• password: Enter the password for the user_name user.

3. Associate the credential with a PL/SQL library.

For example:

CREATE OR REPLACE LIBRARY ps_lib
 AS 'smith_lib.so' IN DLL_LOC
 CREDENTIAL smith_credential;

In this example, DLL_LOC is a directory object that points to the $ORACLE_HOME/bin
directory. Oracle does not recommend using absolute paths to the DLL.

When the PL/SQL library is loaded by an external procedure call through the
extproc process, extproc now can authenticate and impersonate on behalf of the
defined smith_credential credential.

4. Register the external procedure by creating a PL/SQL procedure or function that
tells PL/SQL how to call the external procedure and what arguments to pass to it.

For example, to create a function that registers an external procedure that was
written in C, only use the AS LANGUAGE C, LIBRARY, and NAME clauses of the CREATE
FUNCTION statement, as follows:

CREATE OR REPLACE FUNCTION getInt (x VARCHAR2, y BINARY_INTEGER)
RETURN BINARY_INTEGER
AS LANGUAGE C
LIBRARY ps_lib
NAME "get_int_vals"
PARAMETERS (x STRING, y int);

See Also:

• Guideline for Securing External Procedures

• Oracle Database PL/SQL Packages and Types Reference, for
information about the DBMS_CREDENTIAL package

• Oracle Call Interface Programmer's Guide for information about the
extproc agent

• Oracle Database Net Services Administrator's Guide for detailed
information about the extproc.ora file

Chapter 10
Securing External Procedures

10-16

External Procedures for Legacy Applications
For maximum security, set the ENFORCE_CREDENTIAL environment variable to TRUE.

However, if you must accommodate backward compatibility, then set
ENFORCE_CREDENTIAL to FALSE. FALSE enables the extproc process to authenticate,
impersonate, and perform user-defined callout functions on behalf of the supplied
credential when either of the following occurs:

• The credential is defined with a PL/SQL library.

• The credential is not defined but the GLOBAL_EXTPROC_CREDENTIAL credential
exists.

If neither of these credential definitions is in place, then setting the
ENFORCE_CREDENTIAL parameter to FALSE sets the extproc process to be authenticated
by the operating system privilege of the owners of the Oracle listener or Oracle server
process.

For legacy applications that run on top of extproc processes, ideally you should
change the legacy application code to associate all alias libraries with credentials. If
you cannot do this, then Oracle Database uses the GLOBAL_EXTPROC_CREDENTIAL
credential to determine how authentication will be handled. If the
GLOBAL_EXTPROC_CREDENTIAL credential is not defined, then the extproc process is
authenticated by the operating system privilege of the owners of the Oracle listener or
Oracle server process.

Securing LOBs with LOB Locator Signatures
You can secure large objects (LOB) by regenerating their LOB locator signatures.

• About Securing LOBs with LOB Locator Signatures
A LOB locator, which is a pointer to the actual location of a large object (LOB)
value, can be assigned a signature, which can be used to secure the LOB.

• Managing the Encryption of a LOB Locator Signature Key
You can use the ALTER DATABASE DICTIONARY SQL statement to encrypt a LOB
locator signature key.

About Securing LOBs with LOB Locator Signatures
A LOB locator, which is a pointer to the actual location of a large object (LOB) value,
can be assigned a signature, which can be used to secure the LOB.

When you create a LOB, Oracle Database automatically assigns a signature to the
LOB locator. Oracle Database verifies the signature matches when it receives a
locator from a client to ensure that the locator has not been tampered with. Signature-
based security can be used for both persistent and temporary LOB locators. It is also
used for distributed CLOBs, BLOBs, and NBLOBs that come from index organized
table (IOT) locators.

In an Oracle Real Applications Clusters (Oracle RAC) environment, all instances will
share the same signature key, which is persisted in the database. In a multitenant
environment, each pluggable database (PDB) will have its own signature key. If a LOB
locator has been tampered with, the signature verification rejects the LOB and raises
an ORA-64219: invalid LOB locator encountered error.

Chapter 10
Securing LOBs with LOB Locator Signatures

10-17

You can encrypt, rekey, and delete the LOB signature key that was used to generate
LOB signature for LOB locators that are sent from a standalone database or PDB to a
client. If you plan to encrypt the signature key, then the database (or PDB) in which the
key resides must have an open TDE keystore.

To enable the LOB signature feature, you must set the LOB_SIGNATURE_ENABLE
initialization parameter to TRUE. By default, LOB_SIGNATURE_ENABLE is set to FALSE for
Oracle Database release 19c.

Managing the Encryption of a LOB Locator Signature Key
You can use the ALTER DATABASE DICTIONARY SQL statement to encrypt a LOB
locator signature key.

1. Log in to the database as a user who has ALTER DATABASE DICTIONARY privileges.

2. If necessary, enable the LOB signature key feature by setting the
LOB_SIGNATURE_ENABLE initialization parameter to TRUE.

ALTER SYSTEM SET LOB_SIGNATURE_ENABLE = TRUE;

Alternatively, you can set the LOB_SIGNATURE_ENABLE parameter in the init.ora
initialization file before a database restart. This enables the LOB signature key
feature for all PDBs.

3. If you plan to encrypt the signature key, then ensure that the database or PDB has
an open TDE keystore.

You must have the SYSKM administrative privilege to create a TDE keystore.

For example, to create and open a software TDE keystore:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE '/etc/ORACLE/WALLETS/orcl' IDENTIFIED
BY password;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY password;

4. Execute the ALTER DATABASE DICTIONARY statement to set the LOB signature key
configuration.

• To encrypt the LOB locator signature key instead of obfuscating it, execute the
following statement:

ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS;

• To regenerate the LOB locator signature key for LOB locators that will be sent
to a client, use the following statement. If the database is in restricted mode,
then Oracle Database regenerates a new LOB signature key to encrypt the
regenerated signature key. If the database is in non-restricted mode, then a
new signature key is not regenerated but instead, Oracle Database uses a
new encryption key to encrypt the existing LOB signature key. Oracle
recommends that a database administrator or PDB administrator run this
statement in restricted mode on a periodic basis, preferably during database
down time.

ALTER DATABASE DICTIONARY REKEY CREDENTIALS;

• To delete the encrypted LOB locator signature key and then regenerate a new
LOB signature key in obfuscated form instead of encrypted form, execute the
following statement:

ALTER DATABASE DICTIONARY DELETE CREDENTIALS;

Chapter 10
Securing LOBs with LOB Locator Signatures

10-18

Related Topics

• Configuring Transparent Data Encryption

Managing Application Privileges
Most database applications involve different privileges on different schema objects.

Keeping track of the privileges that are required for each application can be complex.
In addition, authorizing users to run an application can involve many GRANT operations.

• To simplify application privilege management, create a role for each application
and grant that role all the privileges a user must run the application.

In fact, an application can have several roles, each granted a specific subset of
privileges that allow greater or lesser capabilities while running the application.

For example, suppose every administrative assistant uses the Vacation application to
record the vacation taken by members of the department. To best manage this
application, you should:

1. Create a VACATION role.

2. Grant all privileges required by the Vacation application to the VACATION role.

3. Grant the VACATION role to all administrative assistants. Better yet, create a role
that defines the privileges the administrative assistants have, and then grant the
VACATION role to that role.

See Also:

• Configuring Privilege and Role Authorization, for a complete discussion
of creating, enabling, and disabling roles, and granting and revoking
privileges

• User Privilege and Role Data Dictionary Views for more information
about the security uses of the ROLE_TAB_PRIVS, ROLE_SYS_PRIVS, and
DBA_ROLE_PRIVS data dictionary views

Advantages of Using Roles to Manage Application
Privileges

Grouping application privileges in a role aids privilege management.

Consider the following administrative options:

• You can grant the role, rather than many individual privileges, to those users who
run the application. Then, as employees change jobs, you need to grant or revoke
only one role, rather than many privileges.

• You can change the privileges associated with an application by modifying only
the privileges granted to the role, rather than the privileges held by all users of the
application.

Chapter 10
Managing Application Privileges

10-19

• You can determine the privileges that are necessary to run a particular application
by querying the ROLE_TAB_PRIVS and ROLE_SYS_PRIVS data dictionary views.

• You can determine which users have privileges on which applications by querying
the DBA_ROLE_PRIVS data dictionary view.

Creating Secure Application Roles to Control Access to
Applications

A secure application role is only enabled through its associated PL/SQL package or
procedure.

• Step 1: Create the Secure Application Role
The CREATE ROLE statement with the IDENTIFIED USING clause creates a secure
application role.

• Step 2: Create a PL/SQL Package to Define the Access Policy for the Application
You can create a PL/SQL package that defines the access policy for your
application.

Step 1: Create the Secure Application Role
The CREATE ROLE statement with the IDENTIFIED USING clause creates a secure
application role.

You must have the CREATE ROLE system privilege to execute this statement.

For example, to create a secure application role called hr_admin that is associated
with the sec_mgr.hr_admin package:

1. Create the security application role as follows:

CREATE ROLE hr_admin IDENTIFIED USING sec_mgr.hr_admin_role_check;

This statement indicates the following:

• The role hr_admin to be created is a secure application role.

• The role can only be enabled by modules defined inside the PL/SQL
procedure sec_mgr.hr_admin_role_check. At this stage, this procedure does
not need to exist; Step 2: Create a PL/SQL Package to Define the Access
Policy for the Application explains how to create the package or procedure.

2. Grant the security application role the privileges you would normally associate with
this role.

For example, to grant the hr_admin role SELECT, INSERT, UPDATE, and DELETE
privileges on the HR.EMPLOYEES table, you enter the following statement:

GRANT SELECT, INSERT, UPDATE, DELETE ON HR.EMPLOYEES TO hr_admin;

Do not grant the role directly to the user. The PL/SQL procedure or package does
that for you, assuming the user passes its security policies.

Chapter 10
Creating Secure Application Roles to Control Access to Applications

10-20

Step 2: Create a PL/SQL Package to Define the Access Policy for the
Application

You can create a PL/SQL package that defines the access policy for your application.

• About Creating a PL/SQL Package to Define the Access Policy for an Application
To enable or disable the secure application role, you must create the security
policies of the role within a PL/SQL package.

• Creating a PL/SQL Package or Procedure to Define the Access Policy for an
Application
The PL/SQL package or procedure that you create must use invoker’s rights to
define the access policy.

• Testing the Secure Application Role
As a user who has been granted the secure application role, try performing an
action that requires the privileges the role grants.

About Creating a PL/SQL Package to Define the Access Policy for an
Application

To enable or disable the secure application role, you must create the security policies
of the role within a PL/SQL package.

You also can create an individual procedure to do this, but a package lets you group a
set of procedures together. This lets you group a set of policies that, used together,
present a solid security strategy to protect your applications. For users (or potential
intruders) who fail the security policies, you can add auditing checks to the package to
record the failure. Typically, you create this package in the schema of the security
administrator.

The package or procedure must accomplish the following:

• It must use invoker's rights to enable the role.To create the package using
invoker's rights, you must set the AUTHID property to CURRENT_USER. You cannot
create the package by using definer's rights.

For more information about invoker's rights and definer's rights, see Oracle
Database PL/SQL Language Reference.

• It must include one or more security checks to validate the user. One way to
validate users is to use the SYS_CONTEXT SQL function. See Oracle Database SQL
Language Reference for more information about SYS_CONTEXT. To find session
information for a user, you can use SYS_CONTEXT with an application context. See
Using Application Contexts to Retrieve User Information, for details.

• It must issue a SET ROLE SQL statement or DBMS_SESSION.SET_ROLE
procedure when the user passes the security checks. Because you create the
package using invoker's rights, you must set the role by issuing the SET ROLE SQL
statement or the DBMS_SESSION.SET_ROLE procedure. (However, you cannot use
the SET ROLE ALL statement for this type of role enablement.) The PL/SQL
embedded SQL syntax does not support the SET ROLE statement, but you can
invoke SET ROLE by using dynamic SQL (for example, with EXECUTE IMMEDIATE).

For more information about EXECUTE IMMEDIATE, see Oracle Database PL/SQL
Language Reference.

Chapter 10
Creating Secure Application Roles to Control Access to Applications

10-21

Because of the way that you must create this package or procedure, you cannot use a
logon trigger to enable or disable a secure application role. Instead, invoke the
package directly from the application when the user logs in, before the user must use
the privileges granted by the secure application role.

Creating a PL/SQL Package or Procedure to Define the Access Policy for an
Application

The PL/SQL package or procedure that you create must use invoker’s rights to define
the access policy.

For example, suppose you wanted to restrict anyone using the hr_admin role to
employees who are on site (that is, using certain terminals) and between the hours of
8 a.m. and 5 p.m. As the system or security administrator, you can create a procedure
that defines the access policy for the application.

1. Create the procedure as follows:

CREATE OR REPLACE PROCEDURE hr_admin_role_check
 AUTHID CURRENT_USER
 AS
 BEGIN
 IF (SYS_CONTEXT ('userenv','ip_address')
 BETWEEN '192.0.2.10' and '192.0.2.20'
 AND
 TO_CHAR (SYSDATE, 'HH24') BETWEEN 8 AND 17)
 THEN
 EXECUTE IMMEDIATE 'SET ROLE hr_admin';
 END IF;
 END;
/

In this example:

• AUTHID CURRENT_USER sets the AUTHID property to CURRENT_USER so that
invoker's rights can be used.

• IF (SYS_CONTEXT ('userenv','ip_address') validates the user by using the
SYS_CONTEXT SQL function to retrieve the user session information.

• BETWEEN ... TO_CHAR creates a test to grant or deny access. The test restricts
access to users who are on site (that is, using certain terminals) and working
between the hours of 8:00 a.m. and 5:00 p.m. If the user passes this check,
the hr_admin role is granted.

• THEN... EXECUTE grants the role to the user by issuing the SET ROLE
statement using the EXECUTE IMMEDIATE command, assuming the user passes
the test.

2. Grant EXECUTE permissions for the hr_admin_role_check procedure to any user
who was assigned it.

For example:

GRANT EXECUTE ON hr_admin_role_check TO psmith;

Chapter 10
Creating Secure Application Roles to Control Access to Applications

10-22

Testing the Secure Application Role
As a user who has been granted the secure application role, try performing an action
that requires the privileges the role grants.

When you log in as a user who has been granted the secure application role, the role
is then enabled.

1. Log in to the database session as the user.

For example:

CONNECT PSMITH@hrpdb
Enter password: password

2. Perform an action that requires the privileges the secure application role grants.

For example, if the role grants the EXECUTE privilege for a procedure called
sec_admin.hr_admin_role_check:

EXECUTE sec_admin.hr_admin_role_check;

Association of Privileges with User Database Roles
Ensure that users have only the privileges associated with the current database role.

• Why Users Should Only Have the Privileges of the Current Database Role
A single user can use many applications and associated roles.

• Use of the SET ROLE Statement to Automatically Enable or Disable Roles
You can use a SET ROLE statement at the beginning of each application to
automatically enable its associated role and to disable all others.

Why Users Should Only Have the Privileges of the Current Database
Role

A single user can use many applications and associated roles.

However, you should ensure that the user has only the privileges associated with the
current database role.

Consider the following scenario:

• The ORDER role (for an application called Order) contains the UPDATE privilege for
the INVENTORY table.

• The INVENTORY role (for an application called Inventory) contains the SELECT
privilege for the INVENTORY table.

• Several order entry clerks were granted both the ORDER and INVENTORY roles.

In this scenario, an order entry clerk who was granted both roles can use the privileges
of the ORDER role when running the INVENTORY application to update the INVENTORY
table. The problem is that updating the INVENTORY table is not an authorized action for
the INVENTORY application. It is an authorized action for the ORDER application. To avoid
this problem, use the SET ROLE statement as explained in the following section.

Chapter 10
Association of Privileges with User Database Roles

10-23

Use of the SET ROLE Statement to Automatically Enable or Disable
Roles

You can use a SET ROLE statement at the beginning of each application to
automatically enable its associated role and to disable all others.

This way, each application dynamically enables particular privileges for a user only
when required. The SET ROLE statement simplifies privilege management. You control
what information users can access and when they can access it. The SET ROLE
statement also keeps users operating in a well-defined privilege domain. If a user
obtains privileges only from roles, then the user cannot combine these privileges to
perform unauthorized operations.

Related Topics

• How Grants and Revokes Work with SET ROLE and Default Role Settings
Privilege grants and the SET ROLE statement affect when and how grants and
revokes take place.

• When Grants and Revokes Take Effect
Depending on the privilege that is granted or revoked, a grant or revoke takes
effect at different times.

Protecting Database Objects by Using Schemas
A schema is a security domain that can contain database objects. Privileges granted
to users and roles control access to these database objects.

• Protecting Database Objects in a Unique Schema
Think of most schemas as user names: the accounts that enable users to connect
to a database and access the database objects.

• Protection of Database Objects in a Shared Schema
For many applications, users only need access to an application schema; they do
not need their own accounts or schemas in the database.

Protecting Database Objects in a Unique Schema
Think of most schemas as user names: the accounts that enable users to connect to a
database and access the database objects.

However, a unique schema does not allow connections to the database, but is used to
contain a related set of objects. Schemas of this sort are created as typical users, and
yet are not granted the CREATE SESSION system privilege (either explicitly or through a
role).

• To protect the objects, temporarily grant the CREATE SESSION and RESOURCE
privilege to a unique schema if you want to use the CREATE SCHEMA statement to
create multiple tables and views in a single transaction.

For example, a given schema might own the schema objects for a specific application.
If application users have the privileges to do so, then they can connect to the database
using typical database user names and use the application and the corresponding
objects. However, no user can connect to the database using the schema set up for
the application. This configuration prevents access to the associated objects through

Chapter 10
Protecting Database Objects by Using Schemas

10-24

the schema, and provides another layer of protection for schema objects. In this case,
the application could issue an ALTER SESSION SET CURRENT_SCHEMA statement to
connect the user to the correct application schema.

Protection of Database Objects in a Shared Schema
For many applications, users only need access to an application schema; they do not
need their own accounts or schemas in the database.

For example, users John, Firuzeh, and Jane are all users of the Payroll application,
and they need access to the payroll schema on the finance database. None of them
need to create their own objects in the database. They need to only access the
payroll objects. To address this issue, Oracle Database provides the enterprise
users, which are schema-independent users.

Enterprise users, users managed in a directory service, do not need to be created as
database users because they use a shared database schema. To reduce
administration costs, you can create an enterprise user once in the directory, and point
the user at a shared schema that many other enterprise users can also access.

See Also:

Oracle Database Enterprise User Security Administrator's Guide for more
information about managing enterprise users

Object Privileges in an Application
When you design an application, consider the types of users and the level access they
need.

• What Application Developers Must Know About Object Privileges
Object privileges enable end users to perform actions on objects such as tables,
views, sequences, procedures, functions, or packages.

• SQL Statements Permitted by Object Privileges
As you implement and test your application, you should create each necessary
role.

What Application Developers Must Know About Object Privileges
Object privileges enable end users to perform actions on objects such as tables,
views, sequences, procedures, functions, or packages.

Table 10-3 summarizes the object privileges available for each type of object.

Table 10-3 How Privileges Relate to Schema Objects

Object Privilege Applies to
Table?

Applies to
View?

Applies to
Sequence?

Applies to
Procedure?1

ALTER Yes No Yes No

Chapter 10
Object Privileges in an Application

10-25

Table 10-3 (Cont.) How Privileges Relate to Schema Objects

Object Privilege Applies to
Table?

Applies to
View?

Applies to
Sequence?

Applies to
Procedure?1

DELETE Yes Yes No No

EXECUTE No No No Yes

INDEX Yes2 No No No

INSERT Yes Yes No No

REFERENCES YesYes(5) No No No

SELECT Yes Yes3 Yes No

UPDATE Yes Yes No No

1 Standalone stored procedures, functions, and public package constructs
2 Privilege that cannot be granted to a role
3 Can also be granted for snapshots

Related Topics

• Auditing Object Actions
You can use the CREATE AUDIT POLICY statement to audit object actions.

SQL Statements Permitted by Object Privileges
As you implement and test your application, you should create each necessary role.

Test the usage scenario for each role to ensure that the users of your application will
have proper access to the database. After completing your tests, coordinate with the
administrator of the application to ensure that each user is assigned the proper roles.

Table 10-4 lists the SQL statements permitted by the object privileges shown in
Table 10-3.

Table 10-4 SQL Statements Permitted by Database Object Privileges

Object Privilege SQL Statements Permitted

ALTER ALTER object (table or sequence)

CREATE TRIGGER ON object (tables only)

DELETE DELETE FROM object (table, view, or synonym)

EXECUTE EXECUTE object (procedure or function)

References to public package variables

INDEX CREATE INDEX ON object (table, view, or synonym)

INSERT INSERT INTO object (table, view, or synonym)

REFERENCES CREATE or ALTER TABLE statement defining a FOREIGN KEY
integrity constraint on object (tables only)

SELECT SELECT...FROM object (table, view, synonym, or snapshot)

SQL statements using a sequence

Chapter 10
Object Privileges in an Application

10-26

Related Topics

• About Privileges and Roles
Authorization permits only certain users to access, process, or alter data; it also
creates limitations on user access or actions.

• Auditing Object Actions
You can use the CREATE AUDIT POLICY statement to audit object actions.

Parameters for Enhanced Security of Database
Communication

Parameters can be used to manage security, such as handling bad packets from
protocol errors or configuring the maximum number of authentication errors.

• Bad Packets Received on the Database from Protocol Errors
The SEC_PROTOCOL_ERROR_TRACE_ACTION initialization parameter controls how
trace files are managed when protocol errors are generated.

• Controlling Server Execution After Receiving a Bad Packet
The SEC_PROTOCOL_ERROR_FURTHER_ACTION initialization parameter controls server
execution after the server receives a bad packet.

• Configuration of the Maximum Number of Authentication Attempts
The SEC_MAX_FAILED_LOGIN_ATTEMPTS initialization parameter sets the number of
authentication attempts before the database will drop a failed connection.

• Configuring the Display of the Database Version Banner
The SEC_RETURN_SERVER_RELEASE_BANNER initialization parameter can be used to
prevent the display of detailed product information during authentication.

• Configuring Banners for Unauthorized Access and Auditing User Actions
The SEC_USER_UNAUTHORIZED_ACCESS_BANNER and
SEC_USER_AUDIT_ACTION_BANNER initialization parameters control the display of
banners for unauthorized access and for auditing users.

Bad Packets Received on the Database from Protocol Errors
The SEC_PROTOCOL_ERROR_TRACE_ACTION initialization parameter controls how trace
files are managed when protocol errors are generated.

Networking communication utilities such as Oracle Call Interface (OCI) or Two-Task
Common (TTC) can generate a large disk file containing the stack trace and heap
dump when the server receives a bad packet, out-of-sequence packet, or a private or
an unused remote procedure call.

Typically, this disk file can grow quite large. An intruder can potentially cripple a
system by repeatedly sending bad packets to the server, which can result in disk
flooding and Denial of Service (DOS) attacks. An unauthenticated client can also
mount this type of attack.

You can prevent these attacks by setting the SEC_PROTOCOL_ERROR_TRACE_ACTION
initialization parameter to one of the following values:

• None: Configures the server to ignore the bad packets and does not generate any
trace files or log messages. Use this setting if the server availability is
overwhelmingly more important than knowing that bad packets are being received.

Chapter 10
Parameters for Enhanced Security of Database Communication

10-27

For example:

SEC_PROTOCOL_ERROR_TRACE_ACTION = None

• Trace (default setting): Creates the trace files, but it is useful for debugging
purposes, for example, when a network client is sending bad packets as a result of
a bug.

For example:

SEC_PROTOCOL_ERROR_TRACE_ACTION = Trace

• Log: Writes a short, one-line message to the server trace file. This choice balances
some level of auditing with system availability.

For example:

SEC_PROTOCOL_ERROR_TRACE_ACTION = Log

• Alert: Sends an alert message to a database administrator or monitoring console.

For example:

SEC_PROTOCOL_ERROR_TRACE_ACTION = Alert

Controlling Server Execution After Receiving a Bad Packet
The SEC_PROTOCOL_ERROR_FURTHER_ACTION initialization parameter controls server
execution after the server receives a bad packet.

After Oracle Database detects a client or server protocol error, it must continue
execution. However, this could subject the server to further bad packets, which could
lead to disk flooding or denial-of-service attacks.

• To control the further execution of a server process when it is receiving bad
packets from a potentially malicious client, set the
SEC_PROTOCOL_ERROR_FURTHER_ACTION initialization parameter to one of the
following values:

– Continue: Continues the server execution. However, be aware that the server
may be subject to further attacks.

For example:

SEC_PROTOCOL_ERROR_FURTHER_ACTION = Continue

– (Delay,m): Delays the client m seconds before the server can accept the next
request from the same client connection. This setting prevents malicious
clients from excessively using server resources while legitimate clients
experience a degradation in performance but can continue to function. When
you enter this setting, enclose it in parentheses.

For example:

SEC_PROTOCOL_ERROR_FURTHER_ACTION = (Delay,3)

If you are setting SEC_PROTOCOL_ERROR_FURTHER_ACTION by using the ALTER
SYSTEM or ALTER SESSION SQL statement, then you must enclose the Delay
setting in either single or double quotation marks.

ALTER SYSTEM SEC_PROTOCOL_ERROR_FURTHER_ACTION = '(Delay,3)';

– (Drop,n): Forcefully terminates the client connection after n bad packets. This
setting enables the server to protect itself at the expense of the client, for

Chapter 10
Parameters for Enhanced Security of Database Communication

10-28

example, loss of a transaction. However, the client can still reconnect, and
attempt the same operation again. Enclose this setting in parentheses. The
default value of SEC_PROTOCOL_ERROR_FURTHER_ACTION is (Drop,3).

For example:

SEC_PROTOCOL_ERROR_FURTHER_ACTION = (Drop,10)

Similar to the Delay setting, you must enclose the Drop setting in single or
double quotation marks if you are using ALTER SYSTEM or ALTER SESSION to
change this setting.

Configuration of the Maximum Number of Authentication Attempts
The SEC_MAX_FAILED_LOGIN_ATTEMPTS initialization parameter sets the number of
authentication attempts before the database will drop a failed connection.

As part of connection creation, the listener starts the server process and attaches it to
the client. Using this physical connection, the client is this able to authenticate the
connection. After a server process starts, client authenticates with this server process.
An intruder could start a server process, and then issue an unlimited number of
authenticated requests with different user names and passwords in an attempt to gain
access to the database.

You can limit the number of failed login attempts for application connections by setting
the SEC_MAX_FAILED_LOGIN_ATTEMPTS initialization parameter to restrict the number of
authentication attempts on a connection. After the specified number of authentication
attempts fail, the database process drops the connection and the server process is
terminated. By default, SEC_MAX_FAILED_LOGIN_ATTEMPTS is set to 3.

Remember that the SEC_MAX_FAILED_LOGIN_ATTEMPTS initialization parameter is
designed to prevent potential intruders from attacking your applications, as well as
valid users who have forgotten their passwords. The sqlnet.ora
INBOUND_CONNECT_TIMEOUT parameter and the FAILED_LOGIN_ATTEMPTS profile
parameter also restrict failed logins, but the difference is that these two parameters
only apply to valid user accounts.

For example, to limit the maximum attempts to 5, set
SEC_MAX_FAILED_LOGIN_ATTEMPTS as follows in the initsid.ora initialization
parameter file:

SEC_MAX_FAILED_LOGIN_ATTEMPTS = 5

Configuring the Display of the Database Version Banner
The SEC_RETURN_SERVER_RELEASE_BANNER initialization parameter can be used to
prevent the display of detailed product information during authentication.

Detailed product version information should not be accessible before a client
connection (including an Oracle Call Interface client) is authenticated. An intruder
could use the database version to find information about security vulnerabilities that
may be present in the database software.

• To restrict the display of the database version banner to unauthenticated clients,
set the SEC_RETURN_SERVER_RELEASE_BANNER initialization parameter in the
initsid.ora initialization parameter file to either TRUE or FALSE.

By default, SEC_RETURN_SERVER_RELEASE_BANNER is set to FALSE.

Chapter 10
Parameters for Enhanced Security of Database Communication

10-29

For example, if you set it to TRUE, then Oracle Database displays the full correct
database version. For example, for Release 19.1.0.0:

Oracle Database 19c Enterprise Edition Release 19.1.0.0 - Production

If a release number uses point release notation (for example, Oracle Database
Release 19.1.0.1), then the banner displays as follows:

Oracle Database 19c Enterprise Edition Release 19.1.0.1 - Production

However, if in that same release, you set it to NO, then Oracle Database restricts the
banner to display the following fixed text starting with Release 19.1, which instead of
19.1.0.1 is 19.1.0.0.0:

Oracle Database 19c Release 19.1.0.0.0 - Production

Configuring Banners for Unauthorized Access and Auditing User
Actions

The SEC_USER_UNAUTHORIZED_ACCESS_BANNER and SEC_USER_AUDIT_ACTION_BANNER
initialization parameters control the display of banners for unauthorized access and for
auditing users.

You should create and configure banners to warn users against unauthorized access
and possible auditing of user actions. The notices are available to the client application
when it logs into the database.

• To configure these banners to display, set the following sqlnet.ora parameters on
the database server side to point to a text file that contains the banner information:

– SEC_USER_UNAUTHORIZED_ACCESS_BANNER. For example:

SEC_USER_UNAUTHORIZED_ACCESS_BANNER = /opt/Oracle/12c/dbs/unauthaccess.txt

– SEC_USER_AUDIT_ACTION_BANNER. For example:

SEC_USER_AUDIT_ACTION_BANNER = /opt/Oracle/12c/dbs/auditactions.txt

By default, these parameters are not set. In addition, be aware that there is a 512-byte
limitation for the number of characters used for the banner text.

After you set these parameters, the Oracle Call Interface application must use the
appropriate OCI APIs to retrieve these banners and present them to the end user.

Chapter 10
Parameters for Enhanced Security of Database Communication

10-30

Part III
Controlling Access to Data

Part III describes how to control access to data.

• Using Application Contexts to Retrieve User Information
An application context stores user identification that can enable or prevent a user
from accessing data in the database.

• Using Oracle Virtual Private Database to Control Data Access
Oracle Virtual Private Database (VPD) enables you to filter users who access
data.

• Using Transparent Sensitive Data Protection

• Encryption of Sensitive Credential Data in the Data Dictionary
You can encrypt sensitive credential information, such as passwords that are
stored in the data dictionary.

• Manually Encrypting Data
You can use the DBMS_CRYPTO PL/SQL package to manually encrypt data.

11
Using Application Contexts
to Retrieve User Information

An application context stores user identification that can enable or prevent a user from
accessing data in the database.

• About Application Contexts
An application context provides many benefits in controlling the access that a user
has to data.

• Types of Application Contexts
There are three general categories of application contexts.

• Using Database Session-Based Application Contexts
A database session-based application context enables you to retrieve session-
based information about a user.

• Global Application Contexts
You can use a global application context to access application values across
database sessions, including an Oracle Real Application Clusters environment.

• Using Client Session-Based Application Contexts
A client session-based application context is stored in the User Global Area
(UGA).

• Application Context Data Dictionary Views
Oracle Database provides data dictionary views that provide information about
application contexts.

About Application Contexts
An application context provides many benefits in controlling the access that a user has
to data.

• What Is an Application Context?
An application context is a set of name-value pairs that Oracle Database stores
in memory.

• Components of the Application Context
An application context has two components, comprising a name-value pair.

• Where Are the Application Context Values Stored?
Oracle Database stores the application context values in a secure data cache.

• Benefits of Using Application Contexts
Most applications contain the kind of information that can be used for application
contexts.

• How Editions Affects Application Context Values
Oracle Database sets the application context in all editions that are affected by the
application context package.

11-1

• Application Contexts in a Multitenant Environment
Where you create an application in a multitenant environment determines where
you must create the application context.

What Is an Application Context?
An application context is a set of name-value pairs that Oracle Database stores in
memory.

The context has a label called a namespace (for example, empno_ctx for an
application context that retrieves employee IDs). This context enables Oracle
Database to find information about both database and nondatabase users during
authentication.

Inside the context are the name-value pairs (an associative array): the name points to
a location in memory that holds the value. An application can use the application
context to access session information about a user, such as the user ID or other user-
specific information, or a client ID, and then securely pass this data to the database.

You can then use this information to either permit or prevent the user from accessing
data through the application. You can use application contexts to authenticate both
database and non-database users.

Related Topics

• Auditing Application Context Values
You can use the AUDIT statement to audit application context values.

Components of the Application Context
An application context has two components, comprising a name-value pair.

These components are as follows:

• Name. Refers to the name of the attribute set that is associated with the value. For
example, if the empno_ctx application context retrieves an employee ID from the
HR.EMPLOYEES table, it could have a name such as employee_id.

• Value. Refers to a value set by the attribute. For example, for the empno_ctx
application context, if you wanted to retrieve an employee ID from the
HR.EMPLOYEES table, you could create a value called emp_id that sets the value for
this ID.

Think of an application context as a global variable that holds information that is
accessed during a database session. To set the values for a secure application
context, you must create a PL/SQL package procedure that uses the
DBMS_SESSION.SET_CONTEXT procedure. In fact, this is the only way that you can set
application context values if the context is not marked INITIALIZED EXTERNALLY or
INITIALIZED GLOBALLY. You can assign the values to the application context attributes
at run time, not when you create the application context. Because the trusted
procedure, and not the user, assigns the values, it is a called secure application
context. For client-session based application contexts, another way to set the
application context is to use Oracle Call Interface (OCI) calls.

Where Are the Application Context Values Stored?
Oracle Database stores the application context values in a secure data cache.

Chapter 11
About Application Contexts

11-2

This cache is available in the User Global Area (UGA) or the System (sometimes
called "Shared") Global Area (SGA). This way, the application context values are
retrieved during the session. Because the application context stores the values in this
data cache, it increases performance for your applications. You can use an application
context by itself, with Oracle Virtual Private Databases policies, or with other fine-
grained access control policies.

Related Topics

• Oracle Virtual Private Database Use with an Application Context
You can use application contexts with Oracle Virtual Private Database policies.

Benefits of Using Application Contexts
Most applications contain the kind of information that can be used for application
contexts.

For example, in an order entry application that uses a table containing the columns
ORDER_NUMBER and CUSTOMER_NUMBER, you can use the values in these columns as
security attributes to restrict access by a customer to his or her own orders, based on
the ID of that customer.

Application contexts are useful for the following purposes:

• Enforcing fine-grained access control (for example, in Oracle Virtual Private
Database polices)

• Preserving user identity across multitier environments

• Enforcing stronger security for your applications, because the application context
is controlled by a trusted procedure, not the user

• Increasing performance by serving as a secure data cache for attributes needed
by an application for fine-grained auditing or for use in PL/SQL conditional
statements or loops

This cache saves the repeated overhead of querying the database each time
these attributes are needed. Because the application context stores session data
in cache rather than forcing your applications to retrieve this data repeatedly from
a table, it greatly improves the performance of your applications.

• Serving as a holding area for name-value pairs that an application can define,
modify, and access

How Editions Affects Application Context Values
Oracle Database sets the application context in all editions that are affected by the
application context package.

The values the application context sets are visible in all editions the application context
affects. To find all editions in your database, and whether they are usable, you can
query the ALL_EDITIONS data dictionary view.

Chapter 11
About Application Contexts

11-3

See Also:

Oracle Database Development Guide for detailed information about editions

Application Contexts in a Multitenant Environment
Where you create an application in a multitenant environment determines where you
must create the application context.

If an application is installed in the application root or CDB root, then it becomes
accessible across the application container or system container and associated
application PDBs. You will need to create a common application context in this root.

When you create a common application context for use with an application container,
note the following:

• You can create application contexts in a multitenant environment by setting the
CONTAINER clause in the CREATE CONTEXT SQL statement. For example, to create a
common application context in the application root, you must execute CREATE
CONTEXT with CONTAINER set to ALL. To create the application context in a PDB, set
CONTAINER to CURRENT.

• You cannot use the same name for a local application context for a common
application context. You can find the names of existing application contexts by
running the following query:

SELECT OBJECT_NAME FROM DBA_OBJECTS WHERE OBJECT_TYPE ='CONTEXT';

• The PL/SQL package that you create to manage a common application context
must be a common PL/SQL package. That is, it must exist in the application root
or CDB root. If you create the application context for a specific PDB, then you
must store the associated PL/SQL package in that PDB.

• The name-value pairs that you set under a common session application context
from an application container or a system container for a common application
context are not accessible from other application containers or system containers
when a common user accesses a different container.

• The name-value pairs that you set under a common global application context
from an application container or a system container, are accessible only within the
same container in the same user session.

• An application can retrieve the value of an application context whether it resides in
the application root, the CDB root, or a PDB.

• During a plug-in operation of a PDB into a CDB or an application container, if the
name of the common application context conflicts with a PDB’s local application
context, then the PDB must open in restricted mode. A database administrator
would then need to correct the conflict before opening the PDB in normal mode.

• During an unplug operation, a common application context retains its common
semantics, so that later on, if the PDB is plugged into another CDB where a
common application context with the same name exists, it would continue to
behave like a common object. If a PDB is plugged into an application container or
a system container, where the same common application context does not exist,
then it behaves like a local object.

Chapter 11
About Application Contexts

11-4

To find if an application context is a local application context or an application common
application context, query the SCOPE column of the DBA_CONTEXT or ALL_CONTEXT data
dictionary view.

Types of Application Contexts
There are three general categories of application contexts.

These categories are as follows:

• Database session-based application contexts. This type retrieves data that is
stored in the database user session (that is, the UGA) cache. There are three
categories of database session-based application contexts:

– Initialized locally. Initializes the application context locally, to the session of
the user.

– Initialized externally. Initializes the application context from an Oracle Call
Interface (OCI) application, a job queue process, or a connected user
database link.

– Initialized globally. Uses attributes and values from a centralized location,
such as an LDAP directory.

Using Database Session-Based Application Contexts describes this type of
application context.

• Global application contexts. This type retrieves data that is stored in the System
Global Area (SGA) so that it can be used for applications that use a sessionless
model, such as middle-tier applications in a three-tiered architecture. A global
application context is useful if the session context must be shared across
sessions, for example, through connection pool implementations.

Global Application Contexts describes this type.

• Client session-based application contexts. This type uses Oracle Call Interface
functions on the client side to set the user session data, and then to perform the
necessary security checks to restrict user access.

Using Client Session-Based Application Contexts describes this type.

Table 11-1 summarizes the different types of application contexts.

Table 11-1 Types of Application Contexts

Application Context
Type

Stored
in
UGA

Stored
in
SGA

Supports
Connected User
Database Links

Supports Centralized
Storage of Users'
Application Context

Supports
Sessionless
Multitier
Applications

Database session-based
application context
initialized locally

Yes No No No No

Database session-based
application context
initialized externally

Yes No Yes No No

Database session-based
application context
initialized globally

Yes No No Yes No

Chapter 11
Types of Application Contexts

11-5

Table 11-1 (Cont.) Types of Application Contexts

Application Context
Type

Stored
in
UGA

Stored
in
SGA

Supports
Connected User
Database Links

Supports Centralized
Storage of Users'
Application Context

Supports
Sessionless
Multitier
Applications

Global application context No Yes No No Yes

Client session-based
application context

Yes No Yes No Yes

Using Database Session-Based Application Contexts
A database session-based application context enables you to retrieve session-based
information about a user.

• About Database Session-Based Application Contexts
A database session-based application context retrieves session information for
database users.

• Components of a Database Session-Based Application Context
A database session-based application context retrieves and sets data for the
context and then sets this context when a user logs in.

• Creating Database Session-Based Application Contexts
A database session-based application context is a named object that stores the
user's session information.

• Creating a Package to Set a Database Session-Based Application Context
A PL/SQL package can be used to retrieve the session information and set the
name-value attributes of the application context.

• Logon Triggers to Run a Database Session Application Context Package
Users must run database session application context package after when they log
in to the database instance.

• Example: Creating a Simple Logon Trigger
The CREATE TRIGGER statement can create a simple logon trigger.

• Example: Creating a Logon Trigger for a Production Environment
The CREATE TRIGGER statement can create a logon trigger for a production
environment.

• Example: Creating a Logon Trigger for a Development Environment
The CREATE TRIGGER statement can create a logon trigger for a development
environment.

• Tutorial: Creating and Using a Database Session-Based Application Context
This tutorial demonstrates how to create an application context that checks the ID
of users who try to log in to the database.

• Initializing Database Session-Based Application Contexts Externally
Initializing database session-based application contexts externally increases
performance because the application context is stored in the user global area
(UGA).

Chapter 11
Using Database Session-Based Application Contexts

11-6

• Initializing Database Session-Based Application Contexts Globally
When a database session-based application is stored in a centralized location, it
can be used globally from an LDAP directory.

• Externalized Database Session-Based Application Contexts
Many applications store attributes used for fine-grained access control within a
database metadata table.

About Database Session-Based Application Contexts
A database session-based application context retrieves session information for
database users.

This type of application context uses a PL/SQL procedure within Oracle Database to
retrieve, set, and secure the data it manages.

The database session-based application context is managed entirely within Oracle
Database. Oracle Database sets the values, and then when the user exits the session,
automatically clears the application context values stored in cache. If the user
connection ends abnormally, for example, during a power failure, then the PMON
background process cleans up the application context data.You do not need to
explicitly clear the application context from cache.

The advantage of having Oracle Database manage the application context is that you
can centralize the application context management. Any application that accesses this
database will need to use this application context to permit or prevent user access to
that application. This provides benefits both in improved performance and stronger
security.

Note:

If your users are application users, that is, users who are not in your
database, consider using a global application context instead.

Related Topics

• Global Application Contexts
You can use a global application context to access application values across
database sessions, including an Oracle Real Application Clusters environment.

Components of a Database Session-Based Application Context
A database session-based application context retrieves and sets data for the context
and then sets this context when a user logs in.

You must use three components to create and use a database session-based
application context: the application context, a procedure to retrieve the data and set
the context, and a way to set the context when the user logs in.

• The application context. You use the CREATE CONTEXT SQL statement to create
an application context. This statement names the application context (namespace)
and associates it with a PL/SQL procedure that is designed to retrieve session
data and set the application context.

Chapter 11
Using Database Session-Based Application Contexts

11-7

• A PL/SQL procedure to perform the data retrieval and set the context. About
the Package That Manages the Database Session-Based Application Context
describes the tasks this procedure must perform. Ideally, create this procedure
within a package, so that you can include other procedures if you want (for
example, to perform error checking tasks).

• A way to set the application context when the user logs on. Users who log on
to applications that use the application context must run a PL/SQL package that
sets the application context. You can achieve this with either a logon trigger that
fires each time the user logs on, or you can embed this functionality in your
applications.

Tutorial: Creating and Using a Database Session-Based Application Context shows
how to create and use a database session-based application context that is initialized
locally.

In addition, you can initialize session-based application contexts either externally or
globally. Either method stores the context information in the user session.

• External initialization. This type can come from an OCI interface, a job queue
process, or a connected user database link. See Initializing Database Session-
Based Application Contexts Externally for detailed information.

• Global initialization. This type uses attributes and values from a centralized
location, such as an LDAP directory. Initializing Database Session-Based
Application Contexts Globally provides more information.

Creating Database Session-Based Application Contexts
A database session-based application context is a named object that stores the user's
session information.

• About Creating Database Session-Based Application Contexts
A database user session (UGA) stores session-based application context, using a
user-created namespace.

• Creating a Database Session-Based Application Context
The CREATE CONTEXT SQL statement can be used to create a database session-
based application context.

• Database Session-Based Application Contexts for Multiple Applications
For each application, you can create an application context that has its own
attributes.

About Creating Database Session-Based Application Contexts
A database user session (UGA) stores session-based application context, using a
user-created namespace.

Each application context must have a unique attribute and belong to a namespace.
That is, context names must be unique within the database, not just within a schema.

You must have the CREATE ANY CONTEXT system privilege to create an application
context, and the DROP ANY CONTEXT privilege to use the DROP CONTEXT statement if you
want to drop the application context.

The ownership of the application context is as follows: Even though a user who has
been granted the CREATE ANY CONTEXT and DROP ANY CONTEXT privileges can create
and drop the application context, it is owned by the SYS schema. Oracle Database

Chapter 11
Using Database Session-Based Application Contexts

11-8

associates the context with the schema account that created it, but if you drop this
user, the context still exists in the SYS schema. As user SYS, you can drop the
application context.

You can find the names of existing application contexts by running the following query:

SELECT OBJECT_NAME FROM DBA_OBJECTS WHERE OBJECT_TYPE ='CONTEXT';

Creating a Database Session-Based Application Context
The CREATE CONTEXT SQL statement can be used to create a database session-based
application context.

When you create a database session-based application context, you must create a
namespace for the application context and then associate it with a PL/SQL package
that manages the name-value pair that holds the session information of the user. At
the time that you create the context, the PL/SQL package does not need to exist, but it
must exist at run time.

• To create a database session-based application context, use the CREATE CONTEXT
SQL statement.

For example:

CREATE CONTEXT empno_ctx USING set_empno_ctx_pkg CONTAINER = CURRENT;

In this example:

• empno_ctx is the context namespace.

• set_empno_ctx_pkg is the package (which does not need to exist when you create
the context) that sets attributes for the empno_ctx namespace. Step 3: Create a
Package to Retrieve Session Data and Set the Application Context shows an
example of how to create a package that can be used with this application context.

• CONTAINER creates the application context in the current PDB. To create the
application context in the application or CDB root, you must set CONTAINER to ALL.

Notice that when you create the context, you do not set its name-value attributes in the
CREATE CONTEXT statement. Instead, you set these in the PL/SQL package that you
associate with the application context. The reason you must do this is to prevent a
malicious user from changing the context attributes without proper attribute validation.
Ensure that this package is in the same container as the application context. For
example, if you created the application context in a PDB, then the PL/SQL package
must reside in that PDB.

Note:

You cannot create a context called CLIENTCONTEXT. This word is reserved for
use with client session-based application contexts. See Using Client
Session-Based Application Contexts for more information about this type of
application context.

Chapter 11
Using Database Session-Based Application Contexts

11-9

Database Session-Based Application Contexts for Multiple Applications
For each application, you can create an application context that has its own attributes.

Suppose, for example, you have three applications: General Ledger, Order Entry, and
Human Resources.

You can specify different attributes for each application:

• For the order entry application context, you could specify the attribute
CUSTOMER_NUMBER.

• For the general ledger application context, you could specify the attributes
SET_OF_BOOKS and TITLE.

• For the human resources application context, you could specify the attributes
ORGANIZATION_ID, POSITION, and COUNTRY.

The data the attributes access is stored in the tables behind the applications. For
example, the order entry application uses a table called OE.CUSTOMERS, which contains
the CUSTOMER_NUMBER column, which provides data for the CUSTOMER_NUMBER attribute.
In each case, you can adapt the application context to your precise security needs.

Creating a Package to Set a Database Session-Based Application
Context

A PL/SQL package can be used to retrieve the session information and set the name-
value attributes of the application context.

• About the Package That Manages the Database Session-Based Application
Context
This defines procedures that manage the session data represented by the
application context.

• Using the SYS_CONTEXT Function to Retrieve Session Information
You can retrieve session information for the application context by using the
SYS_CONTEXT function.

• Checking the SYS_CONTEXT Settings
You can check the SYS_CONTEXT settings, which are stored in the DUAL table.

• Dynamic SQL with SYS_CONTEXT
During a session in which you expect a change in policy between executions of a
given query, the query must use dynamic SQL.

• SYS_CONTEXT in a Parallel Query
If you use SYS_CONTEXT inside a SQL function that is embedded in a parallel query,
then the function includes the application context.

• SYS_CONTEXT with Database Links
The SYS_CONTEXT function is compatible with the use of database links.

• DBMS_SESSION.SET_CONTEXT for Setting Session Information
After SYS_CONTEXT retrieves the session data of a user, you can set the application
context values from the user session.

• Example: Simple Procedure to Create an Application Context Value
You can use the DBMS_SESSION.SET_CONTEXT statement in a procedure to set
an application context value.

Chapter 11
Using Database Session-Based Application Contexts

11-10

About the Package That Manages the Database Session-Based Application
Context

This defines procedures that manage the session data represented by the application
context.

This package is usually created in the security administrator schema. The package
must perform the following tasks:

• Retrieve session information. To retrieve the user session information, you can
use the SYS_CONTEXT SQL function. The SYS_CONTEXT function returns the value of
the parameter associated with the context namespace. You can use this function
in both SQL and PL/SQL statements. Typically, you will use the built-in USERENV
namespace to retrieve the session information of a user. You also can use the
SYS_SESSION_ROLES namespace to indicate whether the specified role is currently
enabled for the session.

• Set the name-value attributes of the application context you created with
CREATE CONTEXT. You can use the DBMS_SESSION.SET_CONTEXT procedure to
set the name-value attributes of the application context. The name-value attributes
can hold information such as the user ID, IP address, authentication mode, the
name of the application, and so on. The values of the attributes you set remain
either until you reset them, or until the user ends the session. Note the following:

– If the value of the parameter in the namespace already has been set, then
SET_CONTEXT overwrites this value.

– Be aware that any changes in the context value are reflected immediately and
subsequent calls to access the value through the SYS_CONTEXT function will
return the most recent value.

• Be executed by users. After you create the package, the user will need to
execute the package when he or she logs on. You can create a logon trigger to
execute the package automatically when the user logs on, or you can embed this
functionality in your applications. Remember that the application context session
values are cleared automatically when the user ends the session, so you do not
need to manually remove the session data.

It is important to remember that the procedure is a trusted procedure: It is designed to
prevent the user from setting his or her own application context attribute values. The
user runs the procedure, but the procedure sets the application context values, not the
user.

See Also:

• Oracle Database SQL Language Reference for detailed information
about the SYS_CONTEXT function

• Tutorial: Creating and Using a Database Session-Based Application
Context shows how to create a database session-based application
context

Chapter 11
Using Database Session-Based Application Contexts

11-11

Using the SYS_CONTEXT Function to Retrieve Session Information
You can retrieve session information for the application context by using the
SYS_CONTEXT function.

The SYS_CONTEXT function provides a default namespace, USERENV, which describes
the current session of the user logged on. SYS_CONTEXT enables you to retrieve
different types of session-based information about a user, such as the user host
computer ID, host IP address, operating system user name, and so on. Remember
that you only use USERENV to retrieve session data, not set it. The predefined attributes
are listed in the description for the PL/SQL function in the Oracle Database SQL
Language Reference.

• To use retrieve session information, set the namespace, parameter, and
optionally, the length values of the SYS_CONTEXT function.

For example:

SYS_CONTEXT ('USERENV','HOST')

The syntax for the PL/SQL function SYS_CONTEXT is as follows:

SYS_CONTEXT ('namespace','parameter'[,length])

In this specification:

• namespace is the name of the application context. You can specify either a string or
an expression that evaluates to a string. The SYS_CONTEXT function returns the
value of parameter associated with the context namespace at the current instant. If
the value of the parameter in the namespace already has been set, then
SET_CONTEXT overwrites this value.

• parameter is a parameter within the namespace application context. This value can
be a string or an expression.

• length is the default maximum size of the return type, which is 256 bytes, but you
can override the length by specifying a value up to 4000 bytes. Enter a value that
is a NUMBER data type, or a value that can be can be implicitly converted to NUMBER.
The data type of the SYS_CONTEXT return type is a VARCHAR2. This setting is
optional.

Note:

The USERENV application context namespace replaces the USERENV function
provided in earlier Oracle Database releases.

Checking the SYS_CONTEXT Settings
You can check the SYS_CONTEXT settings, which are stored in the DUAL table.

The DUAL table is a small table in the data dictionary that Oracle Database and user-
written programs can reference to guarantee a known result. This table has one
column called DUMMY and one row that contains the value X.

Chapter 11
Using Database Session-Based Application Contexts

11-12

• To check the SYS_CONTEXT settings, issue a SELECT SQL statement on the DUAL
table.

For example, to find the host computer on which you are logged, assuming that you
are logged on to the SHOBEEN_PC host computer under EMP_USERS:

SELECT SYS_CONTEXT ('USERENV', 'HOST') FROM DUAL;

SYS_CONTEXT(USERENV,HOST)

EMP_USERS\SHOBEEEN_PC

Dynamic SQL with SYS_CONTEXT
During a session in which you expect a change in policy between executions of a
given query, the query must use dynamic SQL.

You must use dynamic SQL because static SQL and dynamic SQL parse statements
differently:

• Static SQL statements are parsed at compile time. They are not parsed again at
execution time for performance reasons.

• Dynamic SQL statements are parsed every time they are executed.

Consider a situation in which Policy A is in force when you compile a SQL statement,
and then you switch to Policy B and run the statement. With static SQL, Policy A
remains in force. Oracle Database parses the statement at compile time, but does not
parse it again upon execution. With dynamic SQL, Oracle Database parses the
statement upon execution, then the switch to Policy B takes effect.

For example, consider the following policy:

EMPLOYEE_NAME = SYS_CONTEXT ('USERENV', 'SESSION_USER')

The policy EMPLOYEE_NAME matches the database user name. It is represented in the
form of a SQL predicate in Oracle Virtual Private Database: the predicate is
considered a policy. If the predicate changes, then the statement must be parsed
again to produce the correct result.

Related Topics

• Automatic Reparsing for Fine-Grained Access Control Policies Functions
Queries against objects enabled with fine-grained access control run the policy
function so that the most current predicate is used for each policy.

SYS_CONTEXT in a Parallel Query
If you use SYS_CONTEXT inside a SQL function that is embedded in a parallel query,
then the function includes the application context.

Consider a user-defined function within a SQL statement, which sets the user ID to 5:

CREATE FUNCTION set_id
 RETURN NUMBER IS
BEGIN
 IF SYS_CONTEXT ('hr', 'id') = 5
 THEN RETURN 1; ELSE RETURN 2;
 END IF;
END;

Chapter 11
Using Database Session-Based Application Contexts

11-13

Now consider the following statement:

SELECT * FROM emp WHERE set_id() = 1;

When this statement is run as a parallel query, the user session, which contains the
application context information, is propagated to the parallel execution servers (query
child processes).

SYS_CONTEXT with Database Links
The SYS_CONTEXT function is compatible with the use of database links.

When SQL statements within a user session involve database links, Oracle Database
runs the SYS_CONTEXT function at the host computer of the database link, and then
captures the context information in the host computer.

If remote PL/SQL procedure calls are run on a database link, then Oracle Database
runs any SYS_CONTEXT function inside such a procedure at the destination database of
the link.

In this case, only externally initialized application contexts are available at the
database link destination site. For security reasons, Oracle Database propagates only
the externally initialized application context information to the destination site from the
initiating database link site.

DBMS_SESSION.SET_CONTEXT for Setting Session Information
After SYS_CONTEXT retrieves the session data of a user, you can set the application
context values from the user session.

To set the context values, you can use the DBMS_SESSION.SET_CONTEXT procedure.
You must have the EXECUTE privilege for the DBMS_SESSION PL/SQL package.

The syntax for DBMS_SESSION.SET_CONTEXT is as follows:

DBMS_SESSION.SET_CONTEXT (
 namespace VARCHAR2,
 attribute VARCHAR2,
 value VARCHAR2,
 username VARCHAR2,
 client_id VARCHAR2);

In this specification:

• namespace is the namespace of the application context to be set, limited to 30
bytes. For example, if you were using a namespace called custno_ctx, you would
specify it as follows:

namespace => 'custno_ctx',

• attribute is the attribute of the application context to be set, limited to 30 bytes.
For example, to create the ctx_attrib attribute for the custno_ctx namespace:

attribute => 'ctx_attrib',

• value is the value of the application context to be set, limited to 4000 bytes.
Typically, this is the value retrieved by the SYS_CONTEXT function and stored in a
variable. For example:

value => ctx_value,

Chapter 11
Using Database Session-Based Application Contexts

11-14

• username is the database user name attribute of the application context. The
default is NULL, which permits any user to access the session. For database
session-based application contexts, omit this setting so that it uses the NULL
default. This setting is optional.

The username and client_id parameters are used for globally accessed
application contexts. See DBMS_SESSION.SET_CONTEXT username and
client_id Parameters for more information.

• client_id is the application-specific client_id attribute of the application context
(64-byte maximum). The default is NULL, which means that no client ID is
specified. For database session-based application contexts, omit this setting so
that it uses the NULL default.

See Also:

• Tutorial: Creating and Using a Database Session-Based Application
Context for how to create a package that retrieves the user session
information and then sets the application context based on this
information

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_SESSION.SET_CONTEXT procedure

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_SESSION package

Example: Simple Procedure to Create an Application Context Value
You can use the DBMS_SESSION.SET_CONTEXT statement in a procedure to set an
application context value.

Example 11-1 shows how to create a simple procedure that creates an attribute for the
empno_ctx application context.

Example 11-1 Simple Procedure to Create an Application Context Value

CREATE OR REPLACE PROCEDURE set_empno_ctx_proc(
 emp_value IN VARCHAR2)
 IS
 BEGIN
 DBMS_SESSION.SET_CONTEXT('empno_ctx', 'empno_attrib', emp_value);
 END;
/

In this example:

• emp_value IN VARCHAR2 takes emp_value as the input parameter. This parameter
specifies the value associated with the application context attribute empno_attrib.
The limit is 4000 bytes.

• DBMS_SESSION.SET_CONTEXT('empno_ctx', 'empno_attrib', emp_value) sets
the value of the application context by using the DBMS_SESSION.SET_CONTEXT
procedure as follows:

Chapter 11
Using Database Session-Based Application Contexts

11-15

– 'empno_ctx' refers to the application context namespace. Enclose its name in
single quotation marks.

– 'empno_attrib' creates the attribute associated with the application context
namespace.

– emp_value specifies the value for the empno_attrib attribute. Here, it refers to
the emp_value parameter.

At this stage, you can run the set_empno_ctx_proc procedure to set the application
context:

EXECUTE set_empno_ctx_proc ('42783');

(In a real world scenario, you would set the application context values in the procedure
itself, so that it becomes a trusted procedure. This example is only used to show how
data can be set for demonstration purposes.)

To check the application context setting, run the following SELECT statement:

SELECT SYS_CONTEXT ('empno_ctx', 'empno_attrib') empno_attrib FROM DUAL;

EMPNO_ATTRIB

42783

You can also query the SESSION_CONTEXT data dictionary view to find all the application
context settings in the current session of the database instance. For example:

SELECT * FROM SESSION_CONTEXT;

NAMESPACE ATTRIBUTE VALUE
--
EMPNO_CTX EMP_ID 42783

Logon Triggers to Run a Database Session Application Context
Package

Users must run database session application context package after when they log in to
the database instance.

You can create a logon trigger that handles this automatically. You do not need to
grant the user EXECUTE permissions to run the package.

Note the following:

• If the PL/SQL package procedure called by the logon trigger has any
unhandled exceptions or raises any exceptions (because, for example, a
security check failed), then the logon trigger fails. When the logon trigger fails,
the logon fails, that is, the user is denied permission to log in to the database.

• Logon triggers may affect performance. In addition, test the logon trigger on a
sample schema user first before creating it for the database. That way, if there is
an error, you can easily correct it.

• Be aware of situations in which if you have a changing set of books, or if
positions change constantly. In these cases, the new attribute values may not
be picked up right away, and you must force a cursor reparse to pick them up.

Chapter 11
Using Database Session-Based Application Contexts

11-16

Note:

A logon trigger can be used because the user context (information such as
EMPNO, GROUP, MANAGER) should be set before the user accesses any data.

Example: Creating a Simple Logon Trigger
The CREATE TRIGGER statement can create a simple logon trigger.

Example 11-2 shows a simple logon trigger that executes a PL/SQL procedure.

Example 11-2 Creating a Simple Logon Trigger

CREATE OR REPLACE TRIGGER set_empno_ctx_trig AFTER LOGON ON DATABASE
 BEGIN
 sec_mgr.set_empno_ctx_proc;
 END;

Example: Creating a Logon Trigger for a Production Environment
The CREATE TRIGGER statement can create a logon trigger for a production
environment.

Example 11-3 shows how to create a logon trigger that uses a WHEN OTHERS exception.
Otherwise, if there is an error in the PL/SQL logic that creates an unhandled
exception, then all connections to the database are blocked.

This example shows a WHEN OTHERS exception that writes errors to a table in the
security administrator's schema. In a production environment, this is safer than
sending the output to the user session, where it could be vulnerable to security
attacks.

Example 11-3 Creating a Logon Trigger for a Production Environment

CREATE OR REPLACE TRIGGER set_empno_ctx_trig AFTER LOGON ON DATABASE
 BEGIN
 sec_mgr.set_empno_ctx_proc;
 EXCEPTION
 WHEN OTHERS THEN
 v_code := SQLCODE;
 v_errm := SUBSTR(SQLERRM, 1 , 64);
 -- Invoke another procedure,
 -- declared with PRAGMA AUTONOMOUS_TRANSACTION,
 -- to insert information about errors.
 INSERT INTO sec_mgr.errors VALUES (v_code, v_errm, SYSTIMESTAMP);
 END;
/

Example: Creating a Logon Trigger for a Development Environment
The CREATE TRIGGER statement can create a logon trigger for a development
environment.

Chapter 11
Using Database Session-Based Application Contexts

11-17

Example 11-4 shows how to create the same logon trigger for a development
environment, in which you may want to output errors the user session for debugging
purposes.

Example 11-4 Creating a Logon Trigger for a Development Environment

CREATE TRIGGER set_empno_ctx_trig
 AFTER LOGON ON DATABASE
 BEGIN
 sysadmin_ctx.set_empno_ctx_pkg.set_empno;
 EXCEPTION
 WHEN OTHERS THEN
 RAISE_APPLICATION_ERROR(
 -20000, 'Trigger sysadmin_ctx.set_empno_ctx_trig violation. Login denied.');
 END;
/

Tutorial: Creating and Using a Database Session-Based Application
Context

This tutorial demonstrates how to create an application context that checks the ID of
users who try to log in to the database.

• Step 1: Create User Accounts and Ensure the User SCOTT Is Active
To begin this tutorial, you must create the necessary database accounts and
endure that the SCOTT user account is active.

• Step 2: Create the Database Session-Based Application Context
As the sysadmin_ctx user, you are ready to create the database session-based
application context.

• Step 3: Create a Package to Retrieve Session Data and Set the Application
Context
Next, you must create a PL/SQL package that retrieves the session data and then
sets the application context.

• Step 4: Create a Logon Trigger for the Package
The logon trigger will execute when the user logs in.

• Step 5: Test the Application Context
Now that the components are all in place, you are ready to test the application
context.

• Step 6: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

Step 1: Create User Accounts and Ensure the User SCOTT Is Active
To begin this tutorial, you must create the necessary database accounts and endure
that the SCOTT user account is active.

1. Log on as user SYS and connect using the SYSDBA administrative privilege.

sqlplus sys as sysdba
Enter password: password

2. In a multitenant environment, connect to the appropriate PDB.

For example:

Chapter 11
Using Database Session-Based Application Contexts

11-18

CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

To find the available PDBs, run the show pdbs command. To check the current
PDB, run the show con_name command.

3. Create the local user account sysadmin_ctx, who will administer the database
session-based application context.

CREATE USER sysadmin_ctx IDENTIFIED BY password;
GRANT CREATE SESSION, CREATE ANY CONTEXT, CREATE PROCEDURE, CREATE TRIGGER,
ADMINISTER DATABASE TRIGGER TO sysadmin_ctx;
GRANT READ ON HR.EMPLOYEES TO sysadmin_ctx;
GRANT EXECUTE ON DBMS_SESSION TO sysadmin_ctx;

Follow the guidelines in Minimum Requirements for Passwords to replace
password with a password that is secure.

4. Create the following user account for Lisa Ozer, who is listed as having lozer for
her email account in the HR.EMPLOYEES table.

GRANT CREATE SESSION TO LOZER IDENTIFIED BY password;

Replace password with a password that is secure.

5. The sample user SCOTT will also be used in this tutorial, so query the DBA_USERS
data dictionary view to ensure that the account status for SCOTT is OPEN.

SELECT USERNAME, ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = 'SCOTT';

If the DBA_USERS view lists user SCOTT as locked and expired, then enter the
following statement to unlock the SCOTT account and create a new password for
him:

ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY password;

Enter a password that is secure. For greater security, do not give the SCOTT
account the same password from previous releases of Oracle Database. See
Minimum Requirements for Passwords for the minimum requirements for creating
passwords.

Step 2: Create the Database Session-Based Application Context
As the sysadmin_ctx user, you are ready to create the database session-based
application context.

1. Log on to SQL*Plus as sysadmin_ctx.

CONNECT sysadmin_ctx -- Or, CONNECT sysadmin_ctx@hrpdb
Enter password: password

2. Create the application context using the following statement:

CREATE CONTEXT empno_ctx USING set_empno_ctx_pkg;

Remember that even though user sysadmin_ctx has created this application
context, the SYS schema owns the context.

Chapter 11
Using Database Session-Based Application Contexts

11-19

Step 3: Create a Package to Retrieve Session Data and Set the Application
Context

Next, you must create a PL/SQL package that retrieves the session data and then sets
the application context.

• To create the package, use the CREATE OR REPLACE PACKAGE statement.

Example 11-5 shows how to create the package you need to retrieve the session data
and set the application context. Before creating the package, ensure that you are still
logged on as user sysadmin_ctx. (You can copy and paste this text by positioning the
cursor at the start of CREATE OR REPLACE in the first line.)

Example 11-5 Package to Retrieve Session Data and Set a Database Session
Context

CREATE OR REPLACE PACKAGE set_empno_ctx_pkg IS
 PROCEDURE set_empno;
 END;
 /
 CREATE OR REPLACE PACKAGE BODY set_empno_ctx_pkg IS
 PROCEDURE set_empno
 IS
 emp_id HR.EMPLOYEES.EMPLOYEE_ID%TYPE;
 BEGIN
 SELECT EMPLOYEE_ID INTO emp_id FROM HR.EMPLOYEES
 WHERE email = SYS_CONTEXT('USERENV', 'SESSION_USER');
 DBMS_SESSION.SET_CONTEXT('empno_ctx', 'employee_id', emp_id);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN NULL;
 END;
 END;
/

This package creates a procedure called set_empno that performs the following
actions:

• emp_id HR.EMPLOYEES.EMPLOYEE_ID%TYPE declares a variable, emp_id, to store the
employee ID for the user who logs on. It uses the same data type as the
EMPLOYEE_ID column in HR.EMPLOYEES.

• SELECT EMPLOYEE_ID INTO emp_id FROM HR.EMPLOYEES performs a SELECT
statement to copy the employee ID that is stored in the employee_id column data
from the HR.EMPLOYEES table into the emp_id variable.

• WHERE email = SYS_CONTEXT('USERENV', 'SESSION_USER') uses a WHERE clause
to find all employee IDs that match the email account for the session user. The
SYS_CONTEXT function uses the predefined USERENV context to retrieve the user
session ID, which is the same as the email column data. For example, the user ID
and email address for Lisa Ozer are both the same: lozer.

• DBMS_SESSION.SET_CONTEXT('empno_ctx', 'employee_id', emp_id) uses the
DBMS_SESSION.SET_CONTEXT procedure to set the application context:

Chapter 11
Using Database Session-Based Application Contexts

11-20

– 'empno_ctx': Calls the application context empno_ctx. Enclose empno_ctx in
single quotes.

– 'employee_id': Creates the attribute value of the empno_ctx application
context name-value pair, by naming it employee_id. Enclose employee_id in
single quotes.

– emp_id: Sets the value for the employee_id attribute to the value stored in the
emp_id variable.

To summarize, the set_empno_ctx_pkg.set_empno procedure says, "Get the
session ID of the user and then match it with the employee ID and email address
of any user listed in the HR.EMPLOYEES table."

• EXCEPTION ... WHEN_NO_DATA_FOUND adds a WHEN NO_DATA_FOUND system
exception to catch any no data found errors that may result from the SELECT
statement. Without this exception, the package and logon trigger will work fine and
set the application context as needed, but then any non-system administrator
users other than the users listed in the HR.EMPLOYEES table will not be able to log in
to the database. Other users should be able to log in to the database, assuming
they are valid database users. Once the application context information is set, then
you can use this session information as a way to control user access to a
particular application.

Step 4: Create a Logon Trigger for the Package
The logon trigger will execute when the user logs in.

• As user sysadmin_ctx, create a logon trigger for set_empno_ctx_pkg.set_empno
package procedure.

CREATE TRIGGER set_empno_ctx_trig AFTER LOGON ON DATABASE
 BEGIN
 sysadmin_ctx.set_empno_ctx_pkg.set_empno;
 END;
/

Step 5: Test the Application Context
Now that the components are all in place, you are ready to test the application context.

1. Log on as user lozer.

CONNECT lozer -- Or, CONNECT lozer@hrpdb
Enter password: password

When user lozer logs on, the empno_ctx application context collects her employee
ID. You can check it as follows:

SELECT SYS_CONTEXT('empno_ctx', 'employee_id') emp_id FROM DUAL;

The following output should appear:

EMP_ID
--
168

2. Log on as user SCOTT.

CONNECT SCOTT -- Or, CONNECT SCOTT@hrpdb
Enter password: password

Chapter 11
Using Database Session-Based Application Contexts

11-21

User SCOTT is not listed as an employee in the HR.EMPLOYEES table, so the
empno_ctx application context cannot collect an employee ID for him.

SELECT SYS_CONTEXT('empno_ctx', 'employee_id') emp_id FROM DUAL;

The following output should appear:

EMP_ID
--

From here, the application can use the user session information to determine how
much access the user can have in the database. You can use Oracle Virtual Private
Database to accomplish this. .

Related Topics

• Using Oracle Virtual Private Database to Control Data Access
Oracle Virtual Private Database (VPD) enables you to filter users who access
data.

Step 6: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

1. Connect as SYS with the SYSDBA administrative privilege.

CONNECT SYS AS SYSDBA -- Or, CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

2. Drop the users sysadmin_ctx and lozer:

DROP USER sysadmin_ctx CASCADE;
DROP USER lozer;

3. Drop the application context.

DROP CONTEXT empno_ctx;

Remember that even though sysadmin_ctx created the application context, it is
owned by the SYS schema.

4. If you want, lock and expire SCOTT, unless other users want to use this account:

ALTER USER SCOTT PASSWORD EXPIRE ACCOUNT LOCK;

Initializing Database Session-Based Application Contexts Externally
Initializing database session-based application contexts externally increases
performance because the application context is stored in the user global area (UGA).

• About Initializing Database Session-Based Application Contexts Externally
You must use a special type of namespace to initialize session-based application
context externally.

• Default Values from Users
Oracle Database enables you to capture and use default values from users for
your applications.

• Values from Other External Resources
An application context can accept the initialization of attributes and values through
external resources.

Chapter 11
Using Database Session-Based Application Contexts

11-22

• Example: Creating an Externalized Database Session-based Application Context
The CREATE CONTEXT SQL statement can create an externalized database session-
based application context.

• Initialization of Application Context Values from a Middle-Tier Server
Middle-tier servers can initialize application context values on behalf of database
users.

About Initializing Database Session-Based Application Contexts Externally
You must use a special type of namespace to initialize session-based application
context externally.

This namespace must accept the initialization of attribute values from external
resources and then stores them in the local user session.

Initializing an application context externally enhances performance because it is stored
in the UGA and enables the automatic propagation of attributes from one session to
another. Connected user database links are supported only by application contexts
initialized from OCI-based external sources.

Default Values from Users
Oracle Database enables you to capture and use default values from users for your
applications.

Sometimes you need the default values from users. Initially, these default values may
be hints or preferences, and then after validation, they become trusted contexts.
Similarly, it may be more convenient for clients to initialize some default values, and
then rely on a login event trigger or applications to validate the values.

For job queues, the job submission routine records the context being set at the time
the job is submitted, and restores it when executing the batched job. To maintain the
integrity of the context, job queues cannot bypass the designated PL/SQL package to
set the context. Rather, the externally initialized application context accepts
initialization of context values from the job queue process.

Automatic propagation of context to a remote session may create security problems.
Developers or administrators can effectively handle the context that takes default
values from resources other than the designated PL/SQL procedure by using logon
triggers to reset the context when users log in.

Values from Other External Resources
An application context can accept the initialization of attributes and values through
external resources.

Examples include an Oracle Call Interface (OCI) interface, a job queue process, or a
database link.

Externally initialized application contexts provide the following features:

• For remote sessions, automatic propagation of context values that are in the
externally initialized application context namespace

• For job queues, restoration of context values that are in the externally initialized
application context namespace

Chapter 11
Using Database Session-Based Application Contexts

11-23

• For OCI interfaces, a mechanism to initialize context values that are in the
externally initialized application context namespace

Although any client program that is using Oracle Call Interface can initialize this type of
namespace, you can use login event triggers to verify the values. It is up to the
application to interpret and trust the values of the attributes.

Example: Creating an Externalized Database Session-based Application
Context

The CREATE CONTEXT SQL statement can create an externalized database session-
based application context.

Example 11-6 shows how to create a database session-based application context that
obtains values from an external source.

Example 11-6 Creating an Externalized Database Session-based Application
Context

CREATE CONTEXT ext_ctx USING ext_ctx_pkg INITIALIZED EXTERNALLY;

Initialization of Application Context Values from a Middle-Tier Server
Middle-tier servers can initialize application context values on behalf of database
users.

In this process, context attributes are propagated for the remote session at
initialization time, and the remote database accepts the values if the namespace is
externally initialized.

For example, a three-tier application creating lightweight user sessions through OCI or
JDBC/OCI can access the PROXY_USER attribute in USERENV. This attribute enables you
to determine if the user session was created by a middle-tier application. You could
allow a user to access data only for connections where the user is proxied. If users
connect directly to the database, then they would not be able to access any data.

You can use the PROXY_USER attribute from the USERENV namespace within Oracle
Virtual Private Database to ensure that users only access data through a particular
middle-tier application. For a different approach, you can develop a secure application
role to enforce your policy that users access the database only through a specific
proxy.

See Also:

• Preserving User Identity in Multitiered Environments for information
about proxy authentication and about using the USERENV attribute
CLIENT_IDENTIFIER to preserve user identity across multiple tiers

• Middle Tier Server Use for Proxy Authentication for information about
using a secure application role to enforce a policy through a specific
proxy

• Oracle Call Interface Programmer's Guide

Chapter 11
Using Database Session-Based Application Contexts

11-24

Initializing Database Session-Based Application Contexts Globally
When a database session-based application is stored in a centralized location, it can
be used globally from an LDAP directory.

• About Initializing Database Session-Based Application Contexts Globally
You can use a centralized location to store the database session-based
application context of the user.

• Database Session-Based Application Contexts with LDAP
An application context that is initialized globally uses LDAP, a standard,
extensible, and efficient directory access protocol.

• How Globally Initialized Database Session-Based Application Contexts Work
To use a globally initialized secure application, you must first configure Enterprise
User Security.

• Initializing a Database Session-Based Application Context Globally
You can configure and store the initial application context for a user, such as the
department name and title, in the LDAP directory.

About Initializing Database Session-Based Application Contexts Globally
You can use a centralized location to store the database session-based application
context of the user.

A centralized location enables applications to set up a user context during initialization
based upon user identity.

In particular, this feature supports Oracle Label Security labels and privileges.
Initializing an application context globally makes it easier to manage contexts for large
numbers of users and databases.

For example, many organizations want to manage user information centrally, in an
LDAP-based directory. Enterprise User Security supports centralized user and
authorization management in Oracle Internet Directory. However, there may be
additional attributes an application must retrieve from Lightweight Directory Access
Protocol (LDAP) to use for Oracle Virtual Private Database enforcement, such as the
user title, organization, or physical location. Initializing an application context globally
enables you to retrieve these types of attributes.

Database Session-Based Application Contexts with LDAP
An application context that is initialized globally uses LDAP, a standard, extensible,
and efficient directory access protocol.

The LDAP directory stores a list of users to which this application is assigned. Oracle
Database uses a directory service, typically Oracle Internet Directory, to authenticate
and authorize enterprise users.

Note:

You can use third-party directories such as Microsoft Active Directory and
Sun Microsystems SunONE as the directory service.

Chapter 11
Using Database Session-Based Application Contexts

11-25

The orclDBApplicationContext LDAP object (a subclass of groupOfUniqueNames)
stores the application context values in the directory. The location of the application
context object is described in Figure 11-1, which is based on the Human Resources
example.

The LDAP object inetOrgPerson enables multiple entries to exist for some attributes.
However, be aware that when these entries are loaded into the database and
accessed with the SYS_LDAP_USER_DEFAULT context namespace, then only the first of
these entries is returned. For example, the inetOrgPerson object for a user allows
multiple entries for telephoneNumber (thus allowing a user to have multiple telephone
numbers stored). When you use the SYS_LDAP_USER_DEFAULT context namespace, only
the first telephone number is retrieved. If the list of attributes and values that are
provided are not sufficient for your needs, then you can use the DBMS_LDAP PL/SQL
package to fetch additional values from the directory.

On the LDAP side, an internal C function is required to retrieve the
orclDBApplicationContext value, which returns a list of application context values to
the database. In this example, HR is the namespace; Title and Project are the
attributes; and Manager and Promotion are the values.

Figure 11-1 Location of Application Context in LDAP Directory Information
Tree

How Globally Initialized Database Session-Based Application Contexts Work
To use a globally initialized secure application, you must first configure Enterprise
User Security.

Then, you configure the application context values for the user in the database and the
directory.

Chapter 11
Using Database Session-Based Application Contexts

11-26

When a global user (enterprise user) connects to the database, Enterprise User
Security verifies the identity of the user connecting to the database. After
authentication, the global user roles and application context are retrieved from the
directory. When the user logs on to the database, the global roles and initial
application context are already set.

See Also:

Oracle Database Enterprise User Security Administrator's Guide for
information about configuring Enterprise User Security

Initializing a Database Session-Based Application Context Globally
You can configure and store the initial application context for a user, such as the
department name and title, in the LDAP directory.

The values are retrieved during user login so that the context is set properly. In
addition, any information related to the user is retrieved and stored in the
SYS_USER_DEFAULTS application context namespace.

1. Create the application context in the database.

CREATE CONTEXT hr USING hrapps.hr_manage_pkg INITIALIZED GLOBALLY;

2. Create and add new entries in the LDAP directory.

An example of the entries added to the LDAP directory follows. These entries
create an attribute named Title with the attribute value Manager for the application
(namespace) HR, and assign user names user1 and user2. In the following,
cn=example refers to the name of the domain.

dn:
cn=OracleDBAppContext,cn=example,cn=OracleDBSecurity,cn=Products,cn=OracleContext
,ou=Americas,o=oracle,c=US
changetype: add
cn: OracleDBAppContext
objectclass: top
objectclass: orclContainer

dn:
cn=hr,cn=OracleDBAppContext,cn=example,cn=OracleDBSecurity,cn=Products,cn=OracleC
ontext,ou=Americas,o=oracle,c=US
changetype: add
cn: hr
objectclass: top
objectclass: orclContainer

dn: cn=Title,cn=hr,
cn=OracleDBAppContext,cn=example,cn=OracleDBSecurity,cn=Products,cn=OracleContext
,ou=Americas,o=oracle,c=US
changetype: add
cn: Title
objectclass: top
objectclass: orclContainer

dn: cn=Manager,cn=Title,cn=hr,

Chapter 11
Using Database Session-Based Application Contexts

11-27

cn=OracleDBAppContext,cn=example,cn=OracleDBSecurity,cn=Products,cn=OracleContext
,ou=Americas,o=oracle,c=US
cn: Manager
objectclass: top
objectclass: groupofuniquenames
objectclass: orclDBApplicationContext
uniquemember: CN=user1,OU=Americas,O=Oracle,L=Redwoodshores,ST=CA,C=US
uniquemember: CN=user2,OU=Americas,O=Oracle,L=Redwoodshores,ST=CA,C=US

3. If an LDAP inetOrgPerson object entry exists for the user, then the connection
retrieves the attributes from inetOrgPerson, and assigns them to the namespace
SYS_LDAP_USER_DEFAULT. Note that the context is only populated with non-NULL
values that are part of the inetOrgPerson object class. No other attributes will be
populated.

The following is an example of an inetOrgPerson entry:

dn: cn=user1,ou=Americas,O=oracle,L=redwoodshores,ST=CA,C=US
changetype: add
objectClass: top
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: user1
sn: One
givenName: User
initials: UO
title: manager, product development
uid: uone
mail: uone@us.example.com
telephoneNumber: +1 650 555 0105
employeeNumber: 00001
employeeType: full time

4. Connect to the database.

When user1 connects to a database that belongs to the example domain, user1
will have his Title set to Manager. Any information related to user1 will be
retrieved from the LDAP directory. The value can be obtained using the following
syntax:

SYS_CONTEXT('namespace','attribute name')

For example:

DECLARE
 tmpstr1 VARCHAR2(30);
 tmpstr2 VARCHAR2(30);
BEGIN
 tmpstr1 = SYS_CONTEXT('HR','TITLE);
 tmpstr2 = SYS_CONTEXT('SYS_LDAP_USER_DEFAULT','telephoneNumber');
 DBMS_OUTPUT.PUT_LINE('Title is ' || tmpstr1);
 DBMS_OUTPUT.PUT_LINE('Telephone Number is ' || tmpstr2);
END;

The output of this example is:

Title is Manager
Telephone Number is +1 650 555 0105

Chapter 11
Using Database Session-Based Application Contexts

11-28

Externalized Database Session-Based Application Contexts
Many applications store attributes used for fine-grained access control within a
database metadata table.

For example, an employees table could include cost center, title, signing authority, and
other information useful for fine-grained access control. Organizations also centralize
user information for user management and access control in LDAP-based directories,
such as Oracle Internet Directory. Application context attributes can be stored in
Oracle Internet Directory, and assigned to one or more enterprise users. They can
also be retrieved automatically upon login for an enterprise user, and then used to
initialize an application context.

See Also:

• Initializing Database Session-Based Application Contexts Externally for
information about initializing local application context through external
resources such as an OCI interface, a job queue process, or a database
link

• Initializing Database Session-Based Application Contexts Globally for
information about initializing local application context through a
centralized resource, such as Oracle Internet Directory

• Oracle Database Enterprise User Security Administrator's Guide for
information about enterprise users

Global Application Contexts
You can use a global application context to access application values across database
sessions, including an Oracle Real Application Clusters environment.

• About Global Application Contexts
A global application context enables application context values to be accessible
across database sessions, including Oracle RAC instances.

• Uses for Global Application Contexts
There are three general uses for global application contexts.

• Components of a Global Application Context
A global application context uses a package to manage its attributes and middle-
tier application to manage the client session ID.

• Global Application Contexts in an Oracle Real Application Clusters Environment
In an Oracle RAC environment, whenever a global application context is loaded or
changed, it is visible only to the existing active instances.

• Creating Global Application Contexts
The CREATE CONTEXT SQL statement creates the global application context, which
is then located in the SYS schema.

• PL/SQL Package to Manage a Global Application Context
The DBMS_SESSION PL/SQL package to manages global application contexts.

Chapter 11
Global Application Contexts

11-29

• Embedding Calls in Middle-Tier Applications to Manage the Client Session ID
You can embed calls in middle-tier applications to manage client session IDs.

• Tutorial: Creating a Global Application Context That Uses a Client Session ID
This tutorial demonstrates how you can create a global application context that
uses a client session ID.

• Global Application Context Processes
A simple global application context uses a database user account create the user
session; a global application context is for lightweight users.

About Global Application Contexts
A global application context enables application context values to be accessible across
database sessions, including Oracle RAC instances.

Oracle Database stores the global application context information in the System
(sometimes called "Shared") Global Area (SGA) so that it can be used for applications
that use a sessionless model, such as middle-tier applications in a three-tiered
architecture.

These applications cannot use a session-based application context because users
authenticate to the application, and then it typically connects to the database as a
single identity. Oracle Database initializes the global application context once, rather
than for each user session. This improves performance, because connections are
reused from a connection pool.

You can clear a global application context value by running the ALTER SYSTEM FLUSH
GLOBAL_CONTEXT SQL statement.

Uses for Global Application Contexts
There are three general uses for global application contexts.

These uses are as follows:

• You must share application values globally for all database users. For
example, you may need to disable access to an application based on a specific
situation. In this case, the values the application context sets are not user-specific,
nor are they based on the private data of a user. The application context defines a
situation, for example, to indicate the version of application module that is running.

• You have database users who must move from one application to another. In
this case, the second application the user is moving to has different access
requirements from the first application.

• You must authenticate nondatabase users, that is, users who are not known
to the database. This type of user, who does not have a database account,
typically connects through a Web application by using a connection pool. These
types of applications connect users to the database as single user, using the One
Big Application User authentication model. To authenticate this type of user, you
use the client session ID of the user.

Components of a Global Application Context
A global application context uses a package to manage its attributes and middle-tier
application to manage the client session ID.

Chapter 11
Global Application Contexts

11-30

• The global application context. You use the CREATE CONTEXT SQL statement to
create the global application context, and include the ACCESSED GLOBALLY clause in
the statement. This statement names the application context and associates it with
a PL/SQL procedure that is designed to set the application data context data. The
global application context is created and stored in the database schema of the
security administrator who creates it.

• A PL/SQL package to set the attributes. The package must contain a procedure
that uses the DBMS_SESSION.SET_CONTEXT procedure to set the global application
context. The SET_CONTEXT procedure provides parameters that enable you to
create a global application context that fits any of the three user situations
described in this section. You create, store, and run the PL/SQL package on the
database server. Typically, it belongs in the schema of the security administrator
who created it.

• A middle-tier application to get and set the client session ID. For nondatabase
users, which require a client session ID to be authenticated, you can use the
Oracle Call Interface (OCI) calls in the middle-tier application to retrieve and set
their session data. You can also use the DBMS_SESSION.SET_IDENTIFIER
procedure to set the client session ID. An advantage of creating a client session ID
to store the nondatabase user's name is that you can query the CLIENT_ID column
of DBA_AUDIT_TRAIL, DBA_FGA_AUDIT_TRAIL, and DBA_COMMON_AUDIT_TRAIL data
dictionary views to audit this user's activity.

Note:

Be aware that the DBMS_APPLICATION_INFO.SET_CLIENT_INFO setting can
overwrite the value.

Related Topics

• Use of the DBMS_SESSION PL/SQL Package to Set and Clear the Client
Identifier
The DBMS_SESSION PL/SQL package manages client identifiers on both the middle
tier and the database itself.

Global Application Contexts in an Oracle Real Application Clusters
Environment

In an Oracle RAC environment, whenever a global application context is loaded or
changed, it is visible only to the existing active instances.

Be aware that setting a global application context value in an Oracle RAC environment
has performance overhead of propagating the context value consistently to all Oracle
RAC instances.

If you flush the global application context (using the ALTER SYSTEM FLUSH
GLOBAL_CONTEXT SQL statement) in one Oracle RAC instance, then all the global
application context is flushed in all other Oracle RAC instances as well.

Chapter 11
Global Application Contexts

11-31

Creating Global Application Contexts
The CREATE CONTEXT SQL statement creates the global application context, which is
then located in the SYS schema.

• Ownership of the Global Application Context
A global application context is owned by the SYS schema.

• Creating a Global Application Context
As with local application contexts, the global application context is created and
stored in the security administrator’s database schema.

Ownership of the Global Application Context
A global application context is owned by the SYS schema.

The ownership of the global application context is as follows: Even though a user who
has been granted the CREATE ANY CONTEXT and DROP ANY CONTEXT privileges can
create and drop the global application context, it is owned by the SYS schema.

Oracle Database associates the context with the schema account that created it, but if
you drop this user, the context still exists in the SYS schema. As user SYS, you can drop
the application context.

Creating a Global Application Context
As with local application contexts, the global application context is created and stored
in the security administrator’s database schema.

You must have the CREATE ANY CONTEXT system privilege before you can create a
global application context, and the DROP ANY CONTEXT privilege before you can drop
the context with the DROP CONTEXT statement.

• To create a global application context, use the CREATE CONTEXT SQL statement to
create the application context and include the ACCESSED GLOBALLY clause in the
statement.

For example:

CREATE OR REPLACE CONTEXT global_hr_ctx USING hr_ctx_pkg ACCESSED GLOBALLY CONTAINER
= ALL;

PL/SQL Package to Manage a Global Application Context
The DBMS_SESSION PL/SQL package to manages global application contexts.

• About the Package That Manages the Global Application Context
The package that is associated with a global application context uses the
DBMS_SESSION package to set and clear the global application context values.

• How Editions Affects the Results of a Global Application Context PL/SQL Package
Global application context packages, Oracle Virtual Private Database packages,
and fine-grained audit policies can be used across multiple editions.

• DBMS_SESSION.SET_CONTEXT username and client_id Parameters
The DBMS_SESSION.SYS_CONTEXT procedure provides the client_id and username
parameters, to be used for global application contexts.

Chapter 11
Global Application Contexts

11-32

• Sharing Global Application Context Values for All Database Users
You can share global application values for all database users to give them access
to data in the database.

• Example: Package to Manage Global Application Values for All Database Users
The CREATE PACKAGE statement can manage global application values for all
database users.

• Global Contexts for Database Users Who Move Between Applications
A global application context can be used for database users who move between
application, even when the applications have different access requirements.

• Global Application Context for Nondatabase Users
When a nondatabase user starts a client session, the application server generates
a client session ID.

• Example: Package to Manage Global Application Context Values for Nondatabase
Users
The CREATE PACKAGE statement can manage global application context values for
nondatabase users.

• Clearing Session Data When the Session Closes
The application context exists within memory, so when the user exits a session,
you must clear the client_identifier context value.

About the Package That Manages the Global Application Context
The package that is associated with a global application context uses the
DBMS_SESSION package to set and clear the global application context values.

You must have the EXECUTE privilege for the DBMS_SESSION package before you use its
procedures. Typically, you create and store this package in the database schema of a
security administrator. The SYS schema owns the DBMS_SESSION package.

Unlike PL/SQL packages used to set a local application context, you do not include a
SYS_CONTEXT function to get the user session data. You do not need to include this
function because the owner of the session, recorded in the USERENV context, is the
same for every user who is connecting.

You can run the procedures within the PL/SQL package for a global application
context at any time. You do not need to create logon and logoff triggers to execute the
package procedures associated with the global application context. A common
practice is to run the package procedures from within the database application.
Additionally, for nondatabase users, you use middle-tier applications to get and set
client session IDs.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_SESSION package

Chapter 11
Global Application Contexts

11-33

How Editions Affects the Results of a Global Application Context PL/SQL
Package

Global application context packages, Oracle Virtual Private Database packages, and
fine-grained audit policies can be used across multiple editions.

Follow these guidelines:

• If you want to have the PL/SQL package results be the same across all
editions. To do so, create the package in the schema of a user who has not been
editions enabled. To find users who are not editions enabled, you can query the
DBA_USERS and USER_USERS data dictionary views. Remember that SYS, SYSTEM,
and other default Oracle Database administrative accounts that are listed in the
DBA_REGISTRY data dictionary view are not and cannot be editions enabled.

• If you want to have the PL/SQL package results depend on the current state
of the edition in which the package is run. Here, the results may be different
across all editions to which the package applies. In this case, create the package
in the schema of a user who has been editions enabled. If the schema is editions
enabled, then it is likely that there will be different actual copies of the package in
different editions, where each copy has different behavior. This is useful for the
following types of scenarios:

– The package must use a new application context.

– The package must encode input values using a different scheme.

– The package must apply different validation rules for users logging in to the
database.

For PL/SQL packages that set a global application context, use a single getter
function to wrap the primitive SYS_CONTEXT calls that will read the key-value
application context pairs. You can put this getter function in the same package as
the application context setter procedure. This approach lets you tag the value for
the application context key to reflect a relevant concept. For example, the tag can
be the edition in which the setter function is actual. Or, it can be the current edition
of the session that set the context, which you can find by using
SYS_CONTEXT('USERENV', 'CURRENT_EDITION_NAME'). This tag can be any
specific notion to which the setter function applies.

See Also:

Oracle Database Development Guide for detailed information about
editions

DBMS_SESSION.SET_CONTEXT username and client_id Parameters
The DBMS_SESSION.SYS_CONTEXT procedure provides the client_id and username
parameters, to be used for global application contexts.

Table 11-2 explains how the combination of these settings controls the type of global
application context you can create.

Chapter 11
Global Application Contexts

11-34

Table 11-2 Setting the DBMS_SESSION.SET_CONTEXT username and client_id Parameters

Combination Settings Result

username set to NULL

client_id set to NULL

This combination enables all users to access the application context. See
Sharing Global Application Context Values for All Database Users for more
information.

These settings are also used for database session-based application contexts.
See Using Database Session-Based Application Contexts for more
information.

username set to a value

client_id set to NULL

This combination enables an application context to be accessed by multiple
sessions, as long as the username setting is the same throughout. Ensure that
the user name specified is a valid database user. See Global Contexts for
Database Users Who Move Between Applications for more information.

username set to NULL

client_id set to a value

This combination enables an application to be accessed by multiple user
sessions, as long as the client_id parameter is set to the same value
throughout. This enables sessions of all users to see the application context
values.

username set to a value

client_id set to a value

This combination enables the following two scenarios:

• Lightweight users. If the user does not have a database account, the
username specified is a connection pool owner. The client_id setting is
then associated with the nondatabase user who is logging in.

• Database users. If the user is a database user, this combination can be
used for stateless Web sessions.

Setting the username parameter in the SET_CONTEXT procedure to USER calls
the Oracle Database-supplied USER function. The USER function specifies the
session owner from the application context retrieval process and ensures that
only the user who set the application context can access the context. See
Oracle Database SQL Language Reference for more information about the
USER function.

See Global Application Context for Nondatabase Users for more information.

Sharing Global Application Context Values for All Database Users
You can share global application values for all database users to give them access to
data in the database.

• To share global application values for all database users, set the namespace,
attribute, and value parameters in the SET_CONTEXT procedure.

Related Topics

• Example: Package to Manage Global Application Values for All Database Users
The CREATE PACKAGE statement can manage global application values for all
database users.

Example: Package to Manage Global Application Values for All Database
Users

The CREATE PACKAGE statement can manage global application values for all database
users.

Example 11-7 shows how to create a package that sets and clears a global application
context for all database users.

Chapter 11
Global Application Contexts

11-35

Example 11-7 Package to Manage Global Application Values for All Database
Users

CREATE OR REPLACE PACKAGE hr_ctx_pkg
 AS
 PROCEDURE set_hr_ctx(sec_level IN VARCHAR2);
 PROCEDURE clear_hr_context;
 END;
 /
 CREATE OR REPLACE PACKAGE BODY hr_ctx_pkg
 AS
 PROCEDURE set_hr_ctx(sec_level IN VARCHAR2)
 AS
 BEGIN
 DBMS_SESSION.SET_CONTEXT(
 namespace => 'global_hr_ctx',
 attribute => 'job_role',
 value => sec_level);
 END set_hr_ctx;

 PROCEDURE clear_hr_context
 AS
 BEGIN
 DBMS_SESSION.CLEAR_CONTEXT('global_hr_ctx', 'job_role');
 END clear_context;
 END;
 /

In this example:

• DBMS_SESSION.SET_CONTEXT ... END set_hr_ctx uses the
DBMS_SESSION.SET_CONTEXT procedure to set values for the namespace, attribute,
and value parameters. The sec_level value is specified when the database
application runs the hr_ctx_pkg.set_hr_ctx procedure.

The username and client_id values are not set, hence, they are NULL. This
enables all users (database users) to have access to the values, which is
appropriate for server-wide settings.

• namespace => 'global_hr_ctx' sets the namespace to global_hr_ctx, in the
SET_CONTEXT procedure.

• attribute => 'job_role' creates the job_role attribute.

• value => sec_level sets the value for the job_role attribute to sec_level.

• PROCEDURE clear_hr_context creates the clear_hr_context procedure to clear
the context values. See Clearing Session Data When the Session Closes for more
information.

Typically, you execute this procedure within a database application. For example, if all
users logging in are clerks, and you want to use "clerk" as a security level, you would
embed a call within a database application similar to the following:

BEGIN
 hr_ctx_pkg.set_hr_ctx('clerk');
END;
/

If the procedure successfully completes, then you can check the application context
values as follows:

Chapter 11
Global Application Contexts

11-36

SELECT SYS_CONTEXT('global_hr_ctx', 'job_role') job_role FROM DUAL;

JOB_ROLE

clerk

You can clear the global application context values for all database users by running
the following procedure:

BEGIN
 hr_ctx_pkg.clear_hr_context;
END;
/

To check that the global context value is really cleared, the following SELECT statement
should return no values:

SELECT SYS_CONTEXT('global_hr_ctx', 'job_role') job_role FROM DUAL;

JOB_ROLE

If Oracle Database returns error messages saying that you have insufficient privileges,
then ensure that you have correctly created the global application context. You should
also query the DBA_CONTEXT database view to ensure that your settings are correct, for
example, that you are calling the procedure from the schema in which you created it.

If NULL is returned, then you may have inadvertently set a client identifier. To clear the
client identifier, run the following procedure:

EXEC DBMS_SESSION.CLEAR_IDENTIFIER;

Global Contexts for Database Users Who Move Between Applications
A global application context can be used for database users who move between
application, even when the applications have different access requirements.

To do so, you must include the username parameter in the DBMS_SESSION.SET_CONTEXT
procedure.

This parameter specifies that the same schema be used for all sessions.

You can use the following DBMS_SESSION.SET_CONTEXT parameters:

• namespace

• attribute

• value

• username

Oracle Database matches the username value so that the other application can
recognize the application context. This enables the user to move between
applications.

By omitting the client_id setting, its value is NULL, the default. This means that values
can be seen by multiple sessions if the username setting is the same for a database
user who maintains the same context in different applications. For example, you can
have a suite of applications that control user access with Oracle Virtual Private
Database policies, with each user restricted to a job role.

Chapter 11
Global Application Contexts

11-37

Example 11-8 demonstrates how to set the username parameter so that a specific user
can move between applications. The use of the username parameter is indicated in
bold typeface.

Example 11-8 Package for Global Application Context Values for Moving
Between Applications

CREATE OR REPLACE PACKAGE hr_ctx_pkg
 AS
 PROCEDURE set_hr_ctx(sec_level IN VARCHAR2, user_name IN VARCHAR2);
 PROCEDURE clear_hr_context;
 END;
 /
 CREATE OR REPLACE PACKAGE BODY hr_ctx_pkg
 AS
 PROCEDURE set_hr_ctx(sec_level IN VARCHAR2, user_name IN VARCHAR2)
 AS
 BEGIN
 DBMS_SESSION.SET_CONTEXT(
 namespace => 'global_hr_ctx',
 attribute => 'job_role',
 value => sec_level,
 username => user_name);
 END set_hr_ctx;

 PROCEDURE clear_hr_context
 AS
 BEGIN
 DBMS_SESSION.CLEAR_CONTEXT('global_hr_ctx');
 END clear_context;
 END;
 /

Typically, you execute this procedure within a database application by embedding a
call similar to the following example. Ensure that the value for the user_name
parameter (scott in this case) is a valid database user name.

BEGIN
 hr_ctx_pkg.set_hr_ctx('clerk', 'scott');
END;

A secure way to manage this type of global application context is within your
applications, embed code to grant a secure application role to the user. This code
should include EXECUTE permissions on the trusted PL/SQL package that sets the
application context. In other words, the application, not the user, will set the context for
the user.

Global Application Context for Nondatabase Users
When a nondatabase user starts a client session, the application server generates a
client session ID.

A nondatabase user is a user who is not known to the database, such as a Web
application user.

Once this ID is set on the application server, it must be passed to the database server
side. You can do this by using the DBMS_SESSION.SET_IDENTIFIER procedure to set the
client session ID.

Chapter 11
Global Application Contexts

11-38

To set the context, you can set the client_id parameter in the
DBMS_SESSION.SET_CONTEXT procedure, in a PL/SQL procedure on the server side.
This enables you to manage the application context globally, yet each client sees only
his or her assigned application context.

The client_id value is the key here to getting and setting the correct attributes for the
global application context. Remember that the client identifier is controlled by the
middle-tier application, and once set, it remains open until it is cleared.

A typical way to manage this type of application context is to place the session_id
value (client_identifier) in a cookie, and send it to the end user's HTML page so
that is returned on the next request. A lookup table in the application should also keep
client identifiers so that they are prevented from being reused for other users and to
implement an end-user session time out.

For nondatabase users, configure the following SET_CONTEXT parameters:

• namespace

• attribute

• value

• username

• client_id

Related Topics

• Tutorial: Creating a Global Application Context That Uses a Client Session ID
This tutorial demonstrates how you can create a global application context that
uses a client session ID.

• Step 2: Set the Client Session ID Using a Middle-Tier Application
Next, you are ready to set the client session ID using a middle-tier application.

• Using Client Identifiers to Identify Application Users Unknown to the Database
Client identifiers preserve user identity in middle tier systems; they also can be
used independently of the global application context.

Example: Package to Manage Global Application Context Values for
Nondatabase Users

The CREATE PACKAGE statement can manage global application context values for
nondatabase users.

Example 11-9 shows how to create a package that manages this type of global
application context.

Example 11-9 Package to Manage Global Application Context Values for
Nondatabase Users

CREATE OR REPLACE PACKAGE hr_ctx_pkg
 AS
 PROCEDURE set_session_id(session_id_p IN NUMBER);
 PROCEDURE set_hr_ctx(sec_level_attr IN VARCHAR2,
 sec_level_val IN VARCHAR2);
 PROCEDURE clear_hr_session(session_id_p IN NUMBER);
 PROCEDURE clear_hr_context;
 END;
/

Chapter 11
Global Application Contexts

11-39

 CREATE OR REPLACE PACKAGE BODY hr_ctx_pkg
 AS
 session_id_global NUMBER;
 PROCEDURE set_session_id(session_id_p IN NUMBER)
 AS
 BEGIN
 session_id_global := session_id_p;
 DBMS_SESSION.SET_IDENTIFIER(session_id_p);
 END set_session_id;

 PROCEDURE set_hr_ctx(sec_level_attr IN VARCHAR2,
 sec_level_val IN VARCHAR2)
 AS
 BEGIN
 DBMS_SESSION.SET_CONTEXT(
 namespace => 'global_hr_ctx',
 attribute => sec_level_attr,
 value => sec_level_val,
 username => USER,
 client_id => session_id_global);
 END set_hr_ctx;

 PROCEDURE clear_hr_session(session_id_p IN NUMBER)
 AS
 BEGIN
 DBMS_SESSION.SET_IDENTIFIER(session_id_p);
 DBMS_SESSION.CLEAR_IDENTIFIER;
 END clear_hr_session;

 PROCEDURE clear_hr_context
 AS
 BEGIN
 DBMS_SESSION.CLEAR_CONTEXT('global_hr_ctx', session_id_global);
 END clear_hr_context;
 END;
 /

In this example:

• session_id_global NUMBER creates the session_id_global variable, which will
hold the client session ID. The session_id_global variable is referenced
throughout the package definition, including the procedure that creates the global
application context attributes and assigns them values. This means that the global
application context values will always be associated with this particular session ID.

• PROCEDURE set_session_id ... END set_session_id creates the
set_session_id procedure, which writes the client session ID to the
session_id_global variable.

• PROCEDURE set_hr_ctx ... END set_hr_ctx creates the set_hr_ctx procedure,
which creates global application context attributes and enables you to assign
values to these attributes. Within this procedure:

– username => USER specifies the username value. This example sets it by
calling the Oracle Database-supplied USER function, which adds the session
owner from the context retrieval process. The USER function ensures that only
the user who set the application context can access the context. See Oracle
Database SQL Language Reference for more information about the USER
function.

Chapter 11
Global Application Contexts

11-40

If you had specified NULL (the default for the username parameter), then any
user can access the context.

Setting both the username and client_id values enables two scenarios. For
lightweight users, set the username parameter to a connection pool owner (for
example, APPS_USER), and then set client_id to the client session ID. If you
want to use a stateless Web session, set the user_name parameter to the
same database user who has logged in, and ensure that this user keeps the
same client session ID. See DBMS_SESSION.SET_CONTEXT username and
client_id Parameters for an explanation of how different username and
client_id settings work.

– client_id => session_id_global specifies client_id value. This example
sets it to the session_id_global variable. This associates the context settings
defined here with a specific client session ID, that is, the one that is set when
you run the set_session_id procedure. If you specify the client_id
parameter default, NULL, then the global application context settings could be
used by any session.

• PROCEDURE clear_hr_session ... END clear_hr_session creates the
clear_hr_session procedure to clear the client session identifier. The AS clause
sets it to ensure that you are clearing the correct session ID, that is, the one stored
in variable session_id_p defined in the CREATE OR REPLACE PACKAGE BODY
hr_ctx_pkg procedure.

• PROCEDURE clear_hr_context ... END clear_hr_context creates the
clear_hr_context procedure, so that you can clear the context settings for the
current user session, which were defined by the global_hr_ctx variable. See
Clearing Session Data When the Session Closes for more information.

Clearing Session Data When the Session Closes
The application context exists within memory, so when the user exits a session, you
must clear the client_identifier context value.

This releases memory and prevents other users from accidentally using any left over
values.

• To clear session data when a user exits a session, use either of the following
methods in the server-side PL/SQL package:

– Clearing the client identifier when a user exits a session. Use the
DBMS_SESSION.CLEAR_IDENTIFIER procedure. For example:

DBMS_SESSION.CLEAR_IDENTIFIER;

– Continuing the session but still clearing the context. If you want the
session to continue, but you still need to clear the context, use the
DBMS_SESSION.CLEAR_CONTEXT or the DBMS_SESSION.CLEAR_ALL_CONTEXT
procedure. For example:

DBMS_SESSION.CLEAR_CONTEXT('my_ctx', 'my_attribute');

The CLEAR_CONTEXT procedure clears the context for the current user. To clear
the context values for all users, for example, when you need to shut down the
application server, use the CLEAR_ALL_CONTEXT procedure.

Global application context values are available until they are cleared, so you
should use CLEAR_CONTEXT or CLEAR_ALL_CONTEXT to ensure that other

Chapter 11
Global Application Contexts

11-41

sessions do not have access to these values. Be aware that any changes in
the context value are reflected immediately and subsequent calls to access
the value through the SYS_CONTEXT function will return the most recent value.

Embedding Calls in Middle-Tier Applications to Manage the Client
Session ID

You can embed calls in middle-tier applications to manage client session IDs.

• About Managing Client Session IDs Using a Middle-Tier Application
The application server generates the client session ID.

• Step 1: Retrieve the Client Session ID Using a Middle-Tier Application
When a user starts a client session, the application server generates a client
session ID.

• Step 2: Set the Client Session ID Using a Middle-Tier Application
Next, you are ready to set the client session ID using a middle-tier application.

• Step 3: Clear the Session Data Using a Middle-Tier Application
The application context exists entirely within memory.

About Managing Client Session IDs Using a Middle-Tier Application
The application server generates the client session ID.

From a middle-tier application, you can get, set, and clear the client session IDs. To do
so, you can embed either Oracle Call Interface (OCI) calls or DBMS_SESSION PL/SQL
package procedures into the middle-tier application code.

The application authenticates the user, sets the client identifier, and sets it in the
current session. The PL/SQL package SET_CONTEXT sets the client_identifier value
in the application context.

Related Topics

• Global Application Context for Nondatabase Users
When a nondatabase user starts a client session, the application server generates
a client session ID.

Step 1: Retrieve the Client Session ID Using a Middle-Tier Application
When a user starts a client session, the application server generates a client session
ID.

You can retrieve this ID for use in authenticating the user's access.

• To retrieve this client ID, use the OCIStmtExecute call with any of the following
statements:

– SELECT SYS_CONTEXT('userenv', 'client_identifier') FROM DUAL;

– SELECT CLIENT_IDENTIFIER from V$SESSION;

– SELECT value FROM session_context WHERE
attribute='CLIENT_IDENTIFIER';

Chapter 11
Global Application Contexts

11-42

For example, to use the OCIStmtExecute call to retrieve a client session ID value:

oratext clientid[31];
 OCIDefine *defnp1 = (OCIDefine *) 0;
 OCIStmt *statementhndle;
 oratext *selcid = (oratext *)"SELECT SYS_CONTEXT('userenv',
 'client_identifier') FROM DUAL";

OCIStmtPrepare(statementhndle, errhp, selcid,
 (ub4) strlen((char *) selcid), (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

OCIDefineByPos(statementhndle, &defnp1, errhp, 1, (dvoid *)clientid, 31,
 SQLT_STR, (dvoid *) 0, (ub2 *) 0, (ub2 *) 0, OCI_DEFAULT);

OCIStmtExecute(servhndle, statementhndle, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT);

 printf("CLIENT_IDENTIFIER = %s \n", clientid);

In this example:

• oratext, OCIDefine, OCIStmt, and oratext create variables to store the client
session ID, reference call for OCIDefine, the statement handle, and the SELECT
statement to use.

• OCIStmtPrepar prepares the statement selcid for execution.

• OCIDefineByPos defines the output variable clientid for client session ID.

• OCIStmtExecute executes the statement in the selcid variable.

• printf prints the formatted output for the retrieved client session ID.

Step 2: Set the Client Session ID Using a Middle-Tier Application
Next, you are ready to set the client session ID using a middle-tier application.

• About Setting the Client Session ID Using a Middle-Tier Application
After you use the OCIStmtExecute call to retrieve the client session ID, you are
ready to set this ID.

• Setting the Client Session ID Using a Middle-Tier Application
Oracle Call Interface or the DBMS_SESSION PL/SQL package can set the client
session ID using a middle-tier application.

• Checking the Value of the Client Identifier
For both OCIAttrSet and DBMS_SESSION.SET_IDENTIFIER, you can check the
value of the client identifier.

About Setting the Client Session ID Using a Middle-Tier Application
After you use the OCIStmtExecute call to retrieve the client session ID, you are ready
to set this ID.

The DBMS_SESSION.SET_CONTEXT procedure in the server-side PL/SQL package then
sets this session ID and optionally, overwrites the application context values.

Chapter 11
Global Application Contexts

11-43

You must ensure that the middle-tier application code checks that the client session ID
value (for example, the value written to user_id in the previous examples) matches
the client_id setting defined in the server-side DBMS_SESSION.SET_CONTEXT
procedure. The sequence of calls on the application server side should be as follows:

1. Get the current client session ID. The session should already have this ID, but it is
safer to ensure that it truly has the correct value.

2. Clear the current client session ID. This prepares the application to service a
request from a different end user.

3. Set the new client session ID or the client session ID that has been assigned to
the end user. This ensures that the session is using a different set of global
application context values.

Setting the Client Session ID Using a Middle-Tier Application
Oracle Call Interface or the DBMS_SESSION PL/SQL package can set the client session
ID using a middle-tier application.

• Use either of the following methods to set the client session ID on the application
server side:

– Oracle Call Interface. Set the OCI_ATTR_CLIENT_IDENTIFIER attribute in an
OCIAttrSet OCI call. This attribute sets the client identifier in the session
handle to track the end user identity.

The following example shows how to use OCIAttrSet with the
ATTR_CLIENT_IDENTIFIER parameter. The user_id setting refers to a variable
that stores the ID of the user who is logging on.

OCIAttrSet((void *)session_handle, (ub4) OCI_HTYPE_SESSION,
 (void *) user_id, (ub4)strlen(user_id),
 OCI_ATTR_CLIENT_IDENTIFIER, error_handle);

– DBMS_SESSION package. Use the DBMS_SESSION.SET_IDENTIFIER
procedure to set the client identifier for the global application context. For
example, assuming you are storing the ID of the user logging on in a variable
called user_id, you would enter the following line into the middle-tier
application code:

DBMS_SESSION.SET_IDENTIFIER(user_id);

Note:

When the application generates a session ID for use as a
CLIENT_IDENTIFIER, then the session ID must be suitably random and
protected over the network by encryption. If the session ID is not random,
then a malicious user could guess the session ID and access the data of
another user. If the session ID is not encrypted over the network, then a
malicious user could retrieve the session ID and access the connection.

You can encrypt the session ID by using network data encryption. See
Configuring Oracle Database Native Network Encryption and Data Integrity
for more information.

Chapter 11
Global Application Contexts

11-44

Checking the Value of the Client Identifier
For both OCIAttrSet and DBMS_SESSION.SET_IDENTIFIER, you can check the value of
the client identifier.

• To check the value of the client identifier, use one of the of the following
approaches:

– To check it using the SYS_CONTEXT function:

SELECT SYS_CONTEXT('userenv', 'client_identifier') FROM DUAL;

– To check it by querying the V$SESSION view:

SELECT CLIENT_IDENTIFIER from V$SESSION;

Step 3: Clear the Session Data Using a Middle-Tier Application
The application context exists entirely within memory.

When the user exits a session, you must clear the context for the client_identifier
value. This releases memory and prevents other users from accidentally using any left
over values

• To clear session data when a user exits a session, use either of the following
methods in the middle-tier application code:

– Clearing the client identifier when a user exits a session. Use the
DBMS_SESSION.CLEAR_IDENTIFIER procedure. For example:

DBMS_SESSION.CLEAR_IDENTIFIER;

– Continuing the session but still clearing the context. If you want the
session to continue, but you still need to clear the context, use the
DBMS_SESSION.CLEAR_CONTEXT or the DBMS_SESSION.CLEAR_ALL_CONTEXT
procedure. For example:

DBMS_SESSION.CLEAR_CONTEXT(namespace, client_identifier, attribute);

The CLEAR_CONTEXT procedure clears the context for the current user. To clear
the context values for all users, for example, when you need to shut down the
application server, use the CLEAR_ALL_CONTEXT procedure.

Global application context values are available until they are cleared, so you
should use CLEAR_CONTEXT or CLEAR_ALL_CONTEXT to ensure that other
sessions do not have access to these values.

Tutorial: Creating a Global Application Context That Uses a Client
Session ID

This tutorial demonstrates how you can create a global application context that uses a
client session ID.

• About This Tutorial
This tutorial shows how to create a global application context that uses a client
session ID for a lightweight user application.

Chapter 11
Global Application Contexts

11-45

• Step 1: Create User Accounts
A security administrator will manage the application context and its package, and a
user account will own the connection pool.

• Step 2: Create the Global Application Context
Next, you are ready to create the global application context.

• Step 3: Create a Package for the Global Application Context
The PL/SQL package will manage the global application context that you created.

• Step 4: Test the Newly Created Global Application Context
At this stage, you are ready to explore how this global application context and
session ID settings work.

• Step 5: Modify the Session ID and Test the Global Application Context Again
Next, clear and then modify the session ID and test the global application context
again.

• Step 6: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

About This Tutorial
This tutorial shows how to create a global application context that uses a client session
ID for a lightweight user application.

It demonstrates how to control nondatabase user access by using a connection pool. If
you are using a multitenant environment, then this tutorial applies to the current PDB
only.

Step 1: Create User Accounts
A security administrator will manage the application context and its package, and a
user account will own the connection pool.

1. Log on to SQL*Plus as SYS with the SYSDBA administrative privilege.

sqlplus sys as sysdba
Enter password: password

2. In a multitenant environment, connect to the appropriate PDB.

For example:

CONNECT SYS@my_pdb AS SYSDBA
Enter password: password

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the
current PDB, run the show con_name command.

3. Create the local user account sysadmin_ctx, who will administer the global
application context.

CREATE USER sysadmin_ctx IDENTIFIED BY password CONTAINER = CURRENT;
GRANT CREATE SESSION, CREATE ANY CONTEXT, CREATE PROCEDURE TO sysadmin_ctx;

GRANT EXECUTE ON DBMS_SESSION TO sysadmin_ctx;

Follow the guidelines in Minimum Requirements for Passwords to replace
password with a password that is secure.

4. Create the local database account apps_user, who will own the connection pool.

Chapter 11
Global Application Contexts

11-46

CREATE USER apps_user IDENTIFIED BY password CONTAINER = CURRENT;
GRANT CREATE SESSION TO apps_user;

Replace password with a password that is secure.

Step 2: Create the Global Application Context
Next, you are ready to create the global application context.

1. Log on as the security administrator sysadmin_ctx.

CONNECT sysadmin_ctx -- Or, CONNECT sysadmin_ctx@hrpdb
Enter password: password

2. Create the cust_ctx global application context.

CREATE CONTEXT global_cust_ctx USING cust_ctx_pkg ACCESSED GLOBALLY;

The cust_ctx context is created and associated with the schema of the security
administrator sysadmin_ctx. However, the SYS schema owns the application
context.

Step 3: Create a Package for the Global Application Context
The PL/SQL package will manage the global application context that you created.

1. As sysadmin_ctx, create the following PL/SQL package:

CREATE OR REPLACE PACKAGE cust_ctx_pkg
 AS
 PROCEDURE set_session_id(session_id_p IN NUMBER);
 PROCEDURE set_cust_ctx(sec_level_attr IN VARCHAR2,
 sec_level_val IN VARCHAR2);
 PROCEDURE clear_hr_session(session_id_p IN NUMBER);
 PROCEDURE clear_hr_context;
 END;
 /
CREATE OR REPLACE PACKAGE BODY cust_ctx_pkg
 AS
 session_id_global NUMBER;

 PROCEDURE set_session_id(session_id_p IN NUMBER)
 AS
 BEGIN
 session_id_global := session_id_p;
 DBMS_SESSION.SET_IDENTIFIER(session_id_p);
 END set_session_id;

 PROCEDURE set_cust_ctx(sec_level_attr IN VARCHAR2, sec_level_val IN VARCHAR2)
 AS
 BEGIN
 DBMS_SESSION.SET_CONTEXT(
 namespace => 'global_cust_ctx',
 attribute => sec_level_attr,
 value => sec_level_val,
 username => USER, -- Retrieves the session user, in this case, apps_user
 client_id => session_id_global);
 END set_cust_ctx;

 PROCEDURE clear_hr_session(session_id_p IN NUMBER)
 AS

Chapter 11
Global Application Contexts

11-47

 BEGIN
 DBMS_SESSION.SET_IDENTIFIER(session_id_p);
 DBMS_SESSION.CLEAR_IDENTIFIER;
 END clear_hr_session;

 PROCEDURE clear_hr_context
 AS
 BEGIN
 DBMS_SESSION.CLEAR_CONTEXT('global_cust_ctx', session_id_global);
 END clear_hr_context;
 END;
/

For a detailed explanation of how this type of package works, see Example 11-9.

2. Grant EXECUTE privileges on the cust_ctx_pkg package to the connection pool
owner, apps_user.

GRANT EXECUTE ON cust_ctx_pkg TO apps_user;

Step 4: Test the Newly Created Global Application Context
At this stage, you are ready to explore how this global application context and session
ID settings work.

1. Log on to SQL*Plus as the connection pool owner, user apps_user.

CONNECT apps_user -- Or, CONNECT apps_user@hrpdb
Enter password: password

2. When the connection pool user logs on, the application sets the client session
identifier as follows:

BEGIN
 sysadmin_ctx.cust_ctx_pkg.set_session_id(34256);
END;
/

3. Test the value of the client session identifier.

a. Set the session ID:

EXEC sysadmin_ctx.cust_ctx_pkg.set_session_id(34256);

b. Check the session ID:

SELECT SYS_CONTEXT('userenv', 'client_identifier') FROM DUAL;

The following output should appear:

SYS_CONTEXT('USERENV','CLIENT_IDENTIFIER')
--
34256

4. Set the global application context as follows:

EXEC sysadmin_ctx.cust_ctx_pkg.set_cust_ctx('Category', 'Gold Partner');
EXEC sysadmin_ctx.cust_ctx_pkg.set_cust_ctx('Benefit Level', 'Highest');

(In a real-world scenario, the middle-tier application would set the global
application context values, similar to how the client session identifier was set in
Step 2.)

Chapter 11
Global Application Contexts

11-48

5. Enter the following SELECT SYS_CONTEXT statement to check that the settings were
successful:

col category format a13
col benefit_level format a14

SELECT SYS_CONTEXT('global_cust_ctx', 'Category') category,
SYS_CONTEXT('global_cust_ctx', 'Benefit Level') benefit_level FROM DUAL;

The following output should appear:

CATEGORY BENEFIT_LEVEL
------------- --------------
Gold Partner Highest

What apps_user has done here, within the client session 34256, is set a global
application context on behalf of a nondatabase user. This context sets the Category
and Benefit Level DBMS_SESSION.SET_CONTEXT attributes to be Gold Partner and
Highest, respectively. The context exists only for user apps_user with client ID 34256.
When a nondatabase user logs in, behind the scenes, he or she is really logging on as
the connection pool user apps_user. Hence, the Gold Partner and Highest context
values are available to the nondatabase user.

Suppose the user had been a database user and could log in without using the
intended application. (For example, the user logs in using SQL*Plus.) Because the
user has not logged in through the connection pool user apps_user, the global
application context appears empty to our errant user. This is because the context was
created and set under the apps_user session. If the user runs the SELECT
SYS_CONTEXT statement, then the following output appears:

CATEGORY BENEFIT_LEVEL
------------- --------------

Step 5: Modify the Session ID and Test the Global Application Context Again
Next, clear and then modify the session ID and test the global application context
again.

1. As user apps_user, clear the session ID.

EXEC sysadmin_ctx.cust_ctx_pkg.clear_hr_session(34256);

2. Check the global application context settings again.

SELECT SYS_CONTEXT('global_cust_ctx', 'Category') category,
SYS_CONTEXT('global_cust_ctx', 'Benefit Level') benefit_level FROM DUAL;

CATEGORY BENEFIT_LEVEL
------------- --------------

Because apps_user has cleared the session ID, the global application context
settings are no longer available.

3. Restore the session ID to 34256, and then check the context values.

EXEC sysadmin_ctx.cust_ctx_pkg.set_session_id(34256);

SELECT SYS_CONTEXT('global_cust_ctx', 'Category') category,
SYS_CONTEXT('global_cust_ctx', 'Benefit Level') benefit_level FROM DUAL;

The following output should appear:

Chapter 11
Global Application Contexts

11-49

CATEGORY BENEFIT_LEVEL
------------- --------------
Gold Partner Highest

As you can see, resetting the session ID to 34256 brings the application context
values back again. To summarize, the global application context must be set only
once for this user, but the client session ID must be set each time the user logs on.

4. Now try clearing and then checking the global application context values.

EXEC sysadmin_ctx.cust_ctx_pkg.clear_hr_context;

SELECT SYS_CONTEXT('global_cust_ctx', 'Category') category,
SYS_CONTEXT('global_cust_ctx', 'Benefit Level') benefit_level FROM DUAL;

The following output should appear:

CATEGORY BENEFIT_LEVEL
------------- --------------

At this stage, the client session ID, 34256 is still in place, but the application
context settings no longer exist. This enables you to continue the session for this
user but without using the previously set application context values.

Step 6: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

1. Connect as SYS with the SYSDBA administrative privilege.

CONNECT SYS AS SYSDBA -- Or, CONNECT SYS@mypdb AS SYSDBA
Enter password: password

2. Drop the global application context.

DROP CONTEXT global_cust_ctx;

Remember that even though sysadmin_ctx created the global application context,
it is owned by the SYS schema.

3. Drop the two sample users.

DROP USER sysadmin_ctx CASCADE;
DROP USER apps_user;

Global Application Context Processes
A simple global application context uses a database user account create the user
session; a global application context is for lightweight users.

• Simple Global Application Context Process
In a simple global application context process, the application uses a database
user to create a user session.

• Global Application Context Process for Lightweight Users
You can set a global application contexts for lightweight users.

Chapter 11
Global Application Contexts

11-50

Simple Global Application Context Process
In a simple global application context process, the application uses a database user to
create a user session.

The value for the context attribute of a simple global application context process can
be retrieved from a SELECT statement.

Consider the application server, AppSvr, which has assigned the client identifier 12345
to client SCOTT. The AppSvr application uses the SCOTT user to create a session. (In
other words, it is not a connection pool.) The value assigned to the context attribute
can come from anywhere, for example, from running a SELECT statement on a table
that holds the responsibility codes for users. When the application context is
populated, it is stored in memory. As a result, any action that needs the responsibility
code can access it quickly with a SYS_CONTEXT call, without the overhead of accessing
a table. The only advantage of a global context over a local context in this case is if
SCOTT were changing applications frequently and used the same context in each
application.

The following steps show how the global application context process sets the client
identifier for SCOTT:

1. The administrator creates a global context namespace by using the following
statement:

CREATE OR REPLACE CONTEXT hr_ctx USING hr.init ACCESSED GLOBALLY;

2. The administrator creates a PL/SQL package for the hr_ctx application context to
indicate that, for this client identifier, there is an application context called
responsibility with a value of 13 in the HR namespace.:

CREATE OR REPLACE PROCEDURE hr.init
 AS
 BEGIN
 DBMS_SESSION.SET_CONTEXT(
 namespace => 'hr_ctx',
 attribute => 'responsibility',
 value => '13',
 username => 'SCOTT',
 client_id => '12345');
 END;
/

This PL/SQL procedure is stored in the HR database schema, but typically it is
stored in the schema of the security administrator.

3. The AppSvr application issues the following command to indicate the connecting
client identity each time scott uses AppSvr to connect to the database:

EXEC DBMS_SESSION.SET_IDENTIFIER('12345');

4. When there is a SYS_CONTEXT('hr_ctx','responsibility') call within the
database session, the database matches the client identifier, 12345, to the global
context, and then returns the value 13.

5. When exiting this database session, AppSvr clears the client identifier by issuing
the following procedure:

EXEC DBMS_SESSION.CLEAR_IDENTIFIER();

Chapter 11
Global Application Contexts

11-51

6. To release the memory used by the application context, AppSvr issues the
following procedure:

DBMS_SESSION.CLEAR_CONTEXT('hr_ctx', '12345');

CLEAR_CONTEXT is needed when the user session is no longer active, either on an
explicit logout, timeout, or other conditions determined by the AppSvr application.

Note:

After a client identifier in a session is cleared, it becomes a NULL value. This
implies that subsequent SYS_CONTEXT calls only retrieve application contexts
with NULL client identifiers, until the client identifier is set again using the
SET_IDENTIFIER interface.

Global Application Context Process for Lightweight Users
You can set a global application contexts for lightweight users.

You can configure this access so that when other users log in, they cannot access the
global application context.

The following steps show the global application context process for a lightweight user
application. The lightweight user, robert, is not known to the database through the
application.

1. The administrator creates the global context namespace by using the following
statement:

CREATE CONTEXT hr_ctx USING hr.init ACCESSED GLOBALLY;

2. The HR application server, AppSvr, starts and then establishes multiple connections
to the HR database as the appsmgr user.

3. User robert logs in to the HR application server.

4. AppSvr authenticates robert to the application.

5. AppSvr assigns a temporary session ID (or uses the application user ID), 12345,
for this connection.

6. The session ID is returned to the Web browser used by robert as part of a cookie
or is maintained by AppSvr.

7. AppSvr initializes the application context for this client by calling the hr.init
package, which issues the following statements:

DBMS_SESSION.SET_CONTEXT('hr_ctx', 'id', 'robert', 'APPSMGR', 12345);
DBMS_SESSION.SET_CONTEXT('hr_ctx', 'dept', 'sales', 'APPSMGR', 12345);

8. AppSvr assigns a database connection to this session and initializes the session
by issuing the following statement:

DBMS_SESSION.SET_IDENTIFIER(12345);

9. All SYS_CONTEXT calls within this database session return application context
values that belong only to the client session.

For example, SYS_CONTEXT('hr','id') returns the value robert.

Chapter 11
Global Application Contexts

11-52

10. When finished with the session, AppSvr issues the following statement to clean up
the client identity:

DBMS_SESSION.CLEAR_IDENTIFIER ();

Even if another user logged in to the database, this user cannot access the global
context set by AppSvr, because AppSvr specified that only the application with user
APPSMGR logged in can see it. If AppSvr used the following, then any user session with
client ID set to 12345 can see the global context:

DBMS_SESSION.SET_CONTEXT('hr_ctx', 'id', 'robert', NULL , 12345);
DBMS_SESSION.SET_CONTEXT('hr_ctx', 'dept', 'sales', NULL , 12345);

Setting USERNAME to NULL enables different users to share the same context.

Note:

Be aware of the security implication of different settings of the global context.
NULL in the user name means that any user can access the global context. A
NULL client ID in the global context means that a session with an uninitialized
client ID can access the global context. To ensure that only the user who has
logged on can access the session, specify USER instead of NULL.

You can query the client identifier set in the session as follows:

SELECT SYS_CONTEXT('USERENV','CLIENT_IDENTIFIER') FROM DUAL;

The following output should appear:

SYS_CONTEXT('USERENV','CLIENT_IDENTIFIER')

12345

A security administrator can see which sessions have the client identifier set by
querying the V$SESSION view for the CLIENT_IDENTIFIER and USERNAME, for example:

COL client_identifier format a18
SELECT CLIENT_IDENTIFIER, USERNAME from V$SESSION;

The following output should appear:

CLIENT_IDENTIFIER USERNAME
------------------ --------
12345 APPSMGR

To check the amount of global context area (in bytes) being used, use the following
query:

SELECT SYS_CONTEXT('USERENV','GLOBAL_CONTEXT_MEMORY') FROM DUAL;

The following output should appear:

SYS_CONTEXT('USERENV','GLOBAL_CONTEXT_MEMORY')
--
584

Chapter 11
Global Application Contexts

11-53

See Also:

For more information about using the CLIENT_IDENTIFIER predefined
attribute of the USERENV application context:

• Use of the CLIENT_IDENTIFIER Attribute to Preserve User Identity

• Oracle Database SQL Language Reference

• Oracle Call Interface Programmer's Guide

Using Client Session-Based Application Contexts
A client session-based application context is stored in the User Global Area (UGA).

• About Client Session-Based Application Contexts
Oracle Call Interface (OCI) functions can set and clear the User Global Area
(UGA) user session information.

• Setting a Value in the CLIENTCONTEXT Namespace
Oracle Call Interface (OCI) can set the CLIENTCONTEXT namespace.

• Retrieving the CLIENTCONTEXT Namespace
You can use Oracle Call Interface to retrieve the CLIEINTCONTEXT namespace.

• Example: Retrieving a Client Session ID Value for Client Session-Based Contexts
The OCI OCIStmtExecute call can retrieve client session ID values for client
session-based contexts.

• Clearing a Setting in the CLIENTCONTEXT Namespace
You can use Oracle Call Interface to clear the CLIENTCONTEXT namespace.

• Clearing All Settings in the CLIENTCONTEXT Namespace
You can use Oracle Call Interface (OCI) to clear the CLIENTCONTEXT namespace.

About Client Session-Based Application Contexts
Oracle Call Interface (OCI) functions can set and clear the User Global Area (UGA)
user session information.

The advantage of this type of application context in a session-based application
context is that an individual application can check for specific nondatabase user
session data, rather than having the database perform this task. Another advantage is
that the calls to set the application context value are included in the next call to the
server, which improves performance.

However, be aware that application context security is compromised with a client
session-based application context: any application user can set the client application
context, and no check is performed in the database.

You configure the client session-based application context for the client application
only. You do not configure any settings on the database server to which the client
connects. Any application context settings in the database server do not affect the
client session-based application context.

To configure a client session-based application context, use the OCIAppCtxSet OCI
function. A client session-based application context uses the CLIENTCONTEXT

Chapter 11
Using Client Session-Based Application Contexts

11-54

namespace, updatable by any OCI client or by the existing DBMS_SESSION package for
application context. Oracle Database performs no privilege or package security checks
for this type.

The CLIENTCONTEXT namespace enables a single application transaction to both
change the user context information and use the same user session handle to service
the new user request. You can set or clear individual values for attributes in the
CLIENTCONTEXT namespace, or clear all their values.

• An OCI client uses the OCIAppCtx function to set variable length data for the
namespace, called OCISessionHandle. The OCI network single, round-trip
transport sends all the information to the server in one round-trip. On the server
side, you can query the application context information by using the SYS_CONTEXT
SQL function on the namespace. For example:

• A JDBC client uses the oracle.jdbc.internal.OracleConnection function to
achieve the same purposes.

Any user can set, clear, or collect the information in the CLIENTCONTEXT namespace,
because it is not protected by package-based security.

See Also:

Oracle Call Interface Programmer's Guide for more information about client
application contexts

Setting a Value in the CLIENTCONTEXT Namespace
Oracle Call Interface (OCI) can set the CLIENTCONTEXT namespace.

• To set a value in the CLIENTCONTEXT namespace, use the OCIAppCTXSet
command, in the following syntax:

err = OCIAppCtxSet((void *) session_handle,(dvoid *)"CLIENTCONTEXT",(ub4) 13,
 (dvoid *)attribute_name, length_of_attribute_name
 (dvoid *)attribute_value, length_of_attribute_value, errhp,
 OCI_DEFAULT);

In this specification:

• session_handle represents the OCISessionHandle namespace.

• attribute_name is the name of the attribute. For example, responsibility, with a
length of 14.

• attribute_value is the value of the attribute. For example, manager, with a length
of 7.

See Also:

Oracle Call Interface Programmer's Guide for details about the OCIAppCtx
function

Chapter 11
Using Client Session-Based Application Contexts

11-55

Retrieving the CLIENTCONTEXT Namespace
You can use Oracle Call Interface to retrieve the CLIEINTCONTEXT namespace.

• To retrieve the CLIENTCONTEXT namespace, use the OCIStmtExecute call with
either of the following statements:

– SELECT SYS_CONTEXT('CLIENTCONTEXT', 'attribute-1') FROM DUAL;

– SELECT VALUE FROM SESSION_CONTEXT WHERE NAMESPACE='CLIENTCONTEXT'
AND ATTRIBUTE='attribute-1';

The attribute-1 value can be any attribute value that has already been set in the
CLIENTCONTEXT namespace. Oracle Database only retrieves the set attribute;
otherwise, it returns NULL. Typically, you set the attribute by using the OCIAppCtxSet
call. In addition, you can embed a DBMS_SESSION.SET_CONTEXT call in the OCI code to
set the attribute value.

Example: Retrieving a Client Session ID Value for Client Session-
Based Contexts

The OCI OCIStmtExecute call can retrieve client session ID values for client session-
based contexts.

Example 11-10 shows how to use the OCIStmtExecute call to retrieve a client session
ID value.

Example 11-10 Retrieving a Client Session ID Value for Client Session-Based
Contexts

oratext clientid[31];
OCIDefine *defnp1 = (OCIDefine *) 0;
OCIStmt *statementhndle;
oratext *selcid = (oratext *)"SELECT SYS_CONTEXT('CLIENTCONTEXT',
 attribute) FROM DUAL";

OCIStmtPrepare(statementhndle, errhp, selcid, (ub4) strlen((char *) selcid),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

OCIDefineByPos(statementhndle, &defnp1, errhp, 1, (dvoid *)clientid, 31,
 SQLT_STR, (dvoid *) 0, (ub2 *) 0, (ub2 *) 0, OCI_DEFAULT);

OCIStmtExecute(servhndle, statementhndle, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT);

 printf("CLIENT_IDENTIFIER = %s \n", clientid);

In this example:

• oratext, OCIDefine, OCIStmt, and oratext create variables to store the client
session ID, reference call for OCIDefine, the statement handle, and the SELECT
statement to use.

• OCIStmtPrepare prepares the statement selcid for execution.

• OCIDefineByPos defines the output variable clientid for client session ID.

• OCIStmtExecute executes the statement in the selcid variable.

Chapter 11
Using Client Session-Based Application Contexts

11-56

• printf prints the formatted output for the retrieved client session ID.

Clearing a Setting in the CLIENTCONTEXT Namespace
You can use Oracle Call Interface to clear the CLIENTCONTEXT namespace.

• To clear a setting in CLIENTCONTEXT, set the value to NULL or to an empty string by
using one of the following commands:

– The following command sets the empty string to zero:

(void) OCIAppCtxSet((void *) session_handle, (dvoid *)"CLIENTCONTEXT", 13,
 (dvoid *)attribute_name, length_of_attribute_name,
 (dvoid *)0, 0,errhp
 OCI_DEFAULT);

– This following command sets the empty string to a blank value:

(void) OCIAppCtxSet((void *) session_handle, (dvoid *)"CLIENTCONTEXT", 13
 (dvoid *)attribute_name, length_of_attribute_name,
 (dvoid *)"", 0,errhp,
 OCI_DEFAULT);

Clearing All Settings in the CLIENTCONTEXT Namespace
You can use Oracle Call Interface (OCI) to clear the CLIENTCONTEXT namespace.

• To clear the namespace, use the OCIAppCtxClearAll command in the following
form:

err = OCIAppCtxClearAll((void *) session_handle,
 (dvoid *)"CLIENTCONTEXT", 13,
 errhp, OCI_DEFAULT);

Application Context Data Dictionary Views
Oracle Database provides data dictionary views that provide information about
application contexts.

Table 11-3 lists these data dictionary views.

Table 11-3 Data Dictionary Views That Display Information about Application Contexts

View Description

ALL_CONTEXT Describes all context namespaces in the current session for which attributes and
values were specified using the DBMS_SESSION.SET_CONTEXT procedure. It lists
the namespace and its associated schema and PL/SQL package.

ALL_POLICY_CONTEXTS Describes the driving contexts defined for the synonyms, tables, and views
accessible to the current user. (A driving context is a context used in a Virtual
Private Database policy.)

DBA_CONTEXT Provides all context namespace information in the database. Its columns are the
same as those in the ALL_CONTEXT view, except that it includes the TYPE column.
The TYPE column describes how the application context is accessed or initialized.

Chapter 11
Application Context Data Dictionary Views

11-57

Table 11-3 (Cont.) Data Dictionary Views That Display Information about Application Contexts

View Description

DBA_OBJECTS Provides the names of existing application contexts. Query the OBJECT_TYPE
column of the DBA_OBJECTS view, as follows:

SELECT OBJECT_NAME FROM DBA_OBJECTS WHERE OBJECT_TYPE ='CONTEXT';

DBA_POLICY_CONTEXTS Describes all driving contexts in the database that were added by the
DBMS_RLS.ADD_POLICY_CONTEXT procedure. Its columns are the same as those in
ALL_POLICY_CONTEXTS.

SESSION_CONTEXT Describes the context attributes and their values set for the current session.

USER_POLICY_CONTEXTS Describes the driving contexts defined for the synonyms, tables, and views owned
by the current user. Its columns (except for OBJECT_OWNER) are the same as those
in ALL_POLICY_CONTEXTS.

V$CONTEXT Lists set attributes in the current PDB session. Users do not have access to this view
unless you grant the user the SELECT privilege on it.

V$SESSION Lists detailed information about each current PDB session. Users do not have
access to this view unless you grant the user the SELECT privilege on it.

Tip:

In addition to these views, check the database trace file if you find errors
when running applications that use application contexts. The
USER_DUMP_DEST initialization parameter sets the directory location of the
trace files. You can find the value of this parameter by issuing SHOW
PARAMETER USER_DUMP_DEST in SQL*Plus.

See Also:

• Oracle Database SQL Tuning Guide for more information about trace
files

• Oracle Database Reference for detailed information about these views

Chapter 11
Application Context Data Dictionary Views

11-58

12
Using Oracle Virtual Private Database
to Control Data Access

Oracle Virtual Private Database (VPD) enables you to filter users who access data.

• About Oracle Virtual Private Database
Oracle Virtual Private Database (VPD) provides important benefits for filtering user
access to data.

• Components of an Oracle Virtual Private Database Policy
A VPD policy uses a function to generate the dynamic WHERE clause, and a policy
to attach the function to objects to protect.

• Configuration of Oracle Virtual Private Database Policies
The DBMS_RLS PL/SQL package can configure Oracle Virtual Private Database
(VPD) policies.

• Tutorials: Creating Oracle Virtual Private Database Policies
These tutorials show how to create a simple and a database session-based Oracle
Virtual Private policy, and how to create policy groups.

• How Oracle Virtual Private Database Works with Other Oracle Features
You should be aware of the impact of using Oracle Virtual Private Database with
other Oracle features.

• Oracle Virtual Private Database Data Dictionary Views
Oracle Database provides data dictionary views that list information about Oracle
Virtual Private Database policies.

About Oracle Virtual Private Database
Oracle Virtual Private Database (VPD) provides important benefits for filtering user
access to data.

• What Is Oracle Virtual Private Database?
Oracle Virtual Private Database (VPD) creates security policies to control
database access at the row and column level.

• Benefits of Using Oracle Virtual Private Database Policies
Oracle Virtual Private Database policies provide the important benefits.

• Who Can Create Oracle Virtual Private Database Policies?
The DBMS_RLS PL/SQL package enables you to create VPD policies.

• Privileges to Run Oracle Virtual Private Database Policy Functions
You should be aware of the correct privileges for running Oracle Virtual Private
Database (VPD) policy functions.

• Oracle Virtual Private Database Use with an Application Context
You can use application contexts with Oracle Virtual Private Database policies.

12-1

• Oracle Virtual Private Database in a Multitenant Environment
You can create Virtual Private Database policies in an application root for use
throughout any associated application PDBs.

What Is Oracle Virtual Private Database?
Oracle Virtual Private Database (VPD) creates security policies to control database
access at the row and column level.

Note:

Oracle Database release 12c introduced Real Application Security (RAS) to
supersede VPD. Oracle recommends that you use RAS for new projects that
require row and column level access controls for their applications.

Essentially, Oracle Virtual Private Database adds a dynamic WHERE clause to a SQL
statement that is issued against the table, view, or synonym to which an Oracle Virtual
Private Database security policy was applied.

Oracle Virtual Private Database enforces security, to a fine level of granularity, directly
on database tables, views, or synonyms. Because you attach security policies directly
to these database objects, and the policies are automatically applied whenever a user
accesses data, there is no way to bypass security.

When a user directly or indirectly accesses a table, view, or synonym that is protected
with an Oracle Virtual Private Database policy, Oracle Database dynamically modifies
the SQL statement of the user. This modification creates a WHERE condition (called a
predicate) returned by a function implementing the security policy. Oracle Database
modifies the statement dynamically, transparently to the user, using any condition that
can be expressed in or returned by a function. You can apply Oracle Virtual Private
Database policies to SELECT, INSERT, UPDATE, INDEX, and DELETE statements.

For example, suppose a user performs the following query:

SELECT * FROM OE.ORDERS;

The Oracle Virtual Private Database policy dynamically appends the statement with a
WHERE clause. For example:

SELECT * FROM OE.ORDERS
 WHERE SALES_REP_ID = 159;

In this example, the user can only view orders by Sales Representative 159.

If you want to filter the user based on the session information of that user, such as the
ID of the user, then you can create the WHERE clause to use an application context. For
example:

SELECT * FROM OE.ORDERS
 WHERE SALES_REP_ID = SYS_CONTEXT('USERENV','SESSION_USER');

Chapter 12
About Oracle Virtual Private Database

12-2

Note:

Oracle Virtual Private Database does not support filtering for DDLs, such as
TRUNCATE or ALTER TABLE statements.

Related Topics

• Auditing of Oracle Virtual Private Database Predicates
The unified audit trail automatically captures the predicates that are used in Oracle
Virtual Private Database (VPD) policies.

Benefits of Using Oracle Virtual Private Database Policies
Oracle Virtual Private Database policies provide the important benefits.

• Security Policies Based on Database Objects Rather Than Applications
Oracle Virtual Private Database provides benefits in security, simplicity, and
flexibility.

• Control Over How Oracle Database Evaluates Policy Functions
Running policy functions multiple times can affect performance.

Security Policies Based on Database Objects Rather Than Applications
Oracle Virtual Private Database provides benefits in security, simplicity, and flexibility.

Attaching Oracle Virtual Private Database security policies to database tables, views,
or synonyms, rather than implementing access controls in all your applications,
provides the following benefits:

• Security. Associating a policy with a database table, view, or synonym can solve
a potentially serious application security problem. Suppose a user is authorized to
use an application, and then drawing on the privileges associated with that
application, wrongfully modifies the database by using an ad hoc query tool, such
as SQL*Plus. By attaching security policies directly to tables, views, or synonyms,
fine-grained access control ensures that the same security is in force, no matter
how a user accesses the data.

• Simplicity. You add the security policy to a table, view, or synonym only once,
rather than repeatedly adding it to each of your table-based, view-based, or
synonym-based applications.

• Flexibility. You can have one security policy for SELECT statements, another for
INSERT statements, and still others for UPDATE and DELETE statements. For
example, you might want to enable Human Resources clerks to have SELECT
privileges for all employee records in their division, but to update only salaries for
those employees in their division whose last names begin with A through F.
Furthermore, you can create multiple policies for each table, view, or synonym.

Control Over How Oracle Database Evaluates Policy Functions
Running policy functions multiple times can affect performance.

You can control the performance of policy functions by configuring how Oracle
Database caches the Oracle Virtual Private Database predicates.

Chapter 12
About Oracle Virtual Private Database

12-3

The following options are available:

• Evaluate the policy once for each query (static policies).

• Evaluate the policy only when an application context within the policy function
changes (context-sensitive policies).

• Evaluate the policy each time it is run (dynamic policies).

Related Topics

• Optimizing Performance by Using Oracle Virtual Private Database Policy Types
You can optimize performance by using the Oracle Virtual Private Database (VPD)
the dynamic, static, or shared policy types.

Who Can Create Oracle Virtual Private Database Policies?
The DBMS_RLS PL/SQL package enables you to create VPD policies.

Users who have been granted the EXECUTE privilege on the DBMS_RLS PL/SQL package
can create Oracle Virtual Private Database policies. As with all privileges, only grant
this privilege to trusted users. You can find the privileges that a user has been granted
by querying the DBA_SYS_PRIVS data dictionary view.

Privileges to Run Oracle Virtual Private Database Policy Functions
You should be aware of the correct privileges for running Oracle Virtual Private
Database (VPD) policy functions.

For greater security, the Oracle Virtual Private Database policy function runs as if it
had been declared with definer's rights.

Do not declare it as invoker's rights because this can confuse yourself and other users
who maintain the code.

See Also:

Oracle Database PL/SQL Language Reference for detailed information about
definer's rights

Oracle Virtual Private Database Use with an Application Context
You can use application contexts with Oracle Virtual Private Database policies.

When you create an application context, it securely caches user information. Only the
designated application package can set the cached environment. It cannot be changed
by the user or outside the package. In addition, because the data is cached,
performance is increased.

For example, suppose you want to base access to the ORDERS_TAB table on the
customer ID number. Rather than querying the customer ID number for a logged-in
user each time you need it, you could store the number in the application context.
Then, the customer number is available in the session when you need it.

Chapter 12
About Oracle Virtual Private Database

12-4

Application contexts are especially helpful if your security policy is based on multiple
security attributes. For example, if a policy function bases a WHERE predicate on four
attributes (such as employee number, cost center, position, spending limit), then
multiple subqueries must execute to retrieve this information. Instead, if this data is
available through an application context, then performance is much faster.

You can use an application context to return the correct security policy, enforced
through a predicate. For example, consider an order entry application that enforces the
following rules: customers only see their own orders, and clerks see all orders for all
customers. These are two different policies. You could define an application context
with a position attribute, and this attribute could be accessed within the policy
function to return the correct predicate, depending on the value of the attribute. Thus,
you can enable a user in the clerk position to retrieve all orders, but a user in the
customer position can see only those records associated with that particular user.

To design a fine-grained access control policy that returns a specific predicate for an
attribute, you need to access the application context within the function that
implements the policy. For example, suppose you want to limit customers to seeing
only their own records. The user performs the following query:

SELECT * FROM orders_tab

Fine-grained access control dynamically modifies this query to include the following
WHERE predicate:

SELECT * FROM orders_tab
 WHERE custno = SYS_CONTEXT ('order_entry', 'cust_num');

Continuing with the preceding example, suppose you have 50,000 customers, and you
do not want to have a different predicate returned for each customer. Customers all
share the same WHERE predicate, which prescribes that they can only see their own
orders. It is merely their customer numbers that are different.

Using application context, you can return one WHERE predicate within a policy function
that applies to 50,000 customers. As a result, there is one shared cursor that executes
differently for each customer, because the customer number is evaluated at execution
time. This value is different for every customer. Use of application context in this case
provides optimum performance, and at row-level security.

The SYS_CONTEXT function works much like a bind variable; only the SYS_CONTEXT
arguments are constants.

Related Topics

• Using Application Contexts to Retrieve User Information
An application context stores user identification that can enable or prevent a user
from accessing data in the database.

Oracle Virtual Private Database in a Multitenant Environment
You can create Virtual Private Database policies in an application root for use
throughout any associated application PDBs.

The CDB restriction applies to shared context sensitive policies and views related to
Virtual Private Database policies as well. You cannot create a Virtual Private Database
policy for an entire multitenant environment.

Chapter 12
About Oracle Virtual Private Database

12-5

With regard to application containers, you can create Virtual Private Database policies
to protect application common objects by applying the common policy to all PDBs that
belong to the application root. In other words, when you install an application in the
application root, all the common Virtual Private Database policies that protect the
common objects will be applied to and immediately enforced for all PDBs in the
application container.

Note the following:

• You can only create the common Virtual Private Database policy and its
associated PL/SQL function in the application root and only attach it to application
common objects. If the function is not in the same location as the policy, then an
error is raised at runtime.

• A Virtual Private Database policy that is applied to common objects is considered
a common policy that will be automatically enforced in PDBs that belong to the
application container when it accesses the application common objects from
application PDBs.

• Application common Virtual Private Database policies can only protect application
common objects.

• A Virtual Private Database policy that is applied to application common objects in
the application root and is applied to all application PDBs is considered a common
Virtual Private Database policy. A policy that is applied to a local database table
and enforced in one PDB is considered a local Virtual Private Database policy.

For example, if policy VPD_P1 is applied to the application common table T1 in the
application root, then it is a considered to be a common policy. It will be enforced
in each application PDB. If a policy named VPD_P1 is applied to a local table called
T1 in PDB1, then it is considered a local policy, which means that it affects only
PDB1. If a policy called VPD_P1 is applied to a local table T1 in the application root,
then it is still considered a local policy because it affects only the application root.
This concept applies to other operations, such as enabling, disabling, and
removing Virtual Private Database policies.

• Application common Virtual Private Database policies only protect application
common objects, while local Virtual Private Database policies only protect local
objects.

• If you are using application contexts, then ensure common database session-
based application contexts and common global application context objects are
used in the common Virtual Private Database configuration.

• Application container Virtual Private Database policies are stored in the application
root. PDBs store only local policies. If you plug a PDB into the application
container, then the common policies are not converted to local policies. Instead,
Oracle Database loads them from the application root and enforces them in the
local PDB when the policies access common objects in the local PDB.

Components of an Oracle Virtual Private Database Policy
A VPD policy uses a function to generate the dynamic WHERE clause, and a policy to
attach the function to objects to protect.

• Function to Generate the Dynamic WHERE Clause
The Oracle Virtual Private Database (VPD) function defines the restrictions that
you want to enforce.

Chapter 12
Components of an Oracle Virtual Private Database Policy

12-6

• Policies to Attach the Function to the Objects You Want to Protect
The Oracle Virtual Private Database policy associates the VPD function with a
table, view, or synonym.

Function to Generate the Dynamic WHERE Clause
The Oracle Virtual Private Database (VPD) function defines the restrictions that you
want to enforce.

To generate the Oracle Virtual Private Database (VPD) dynamic WHERE clause
(predicate), you must create a function (not a procedure) that defines these
restrictions.

Usually, the security administrator creates this function in his or her own schema. For
more complex behavior, such as including calls to other functions or adding checks to
track failed logon attempts, create these functions within a package.

The function must have the following behavior:

• It must take as arguments a schema name and an object (table, view, or
synonym) name as inputs. Define input parameters to hold this information, but
do not specify the schema and object name themselves within the function. The
policy that you create with the DBMS_RLS package (described in Policies to Attach
the Function to the Objects You Want to Protect) provides the names of the
schema, and object to which the policy will apply. You must create the parameter
for the schema first, followed by the parameter for the object.

• It must provide a return value for the WHERE clause predicate that will be
generated. The return value for the WHERE clause is always a VARCHAR2 data type.

• It must generate a valid WHERE clause. This code can be as basic as the
example in Tutorial: Creating a Simple Oracle Virtual Private Database Policy, in
that its WHERE clause is the same for all users who log on.

But in most cases, you may want to design the WHERE clause to be different for
each user, each group of users, or each application that accesses the objects you
want to protect. For example, if a manager logs in, the WHERE clause can be
specific to the rights of that particular manager. You can do this by incorporating
an application context, which accesses user session information, into the WHERE
clause generation code. Tutorial: Implementing a Session-Based Application
Context Policy demonstrates how to create an Oracle Virtual Private Database
policy that uses an application context.

You can create Oracle Virtual Private Database functions that do not use an
application context, but an application context creates a much stronger Oracle
Virtual Private Database policy, by securely basing user access on the session
attributes of that user, such as the user ID. Using Application Contexts
to Retrieve User Information, discusses different types of application contexts in
detail.

In addition, you can embed C or Java calls to access operating system information
or to return WHERE clauses from an operating system file or other source.

• It must not select from a table within the associated policy function. Although
you can define a policy against a table, you cannot select that table from within the
policy that was defined against the table.

Chapter 12
Components of an Oracle Virtual Private Database Policy

12-7

• It must be a pure function. The VPD function must rely only on the application
context and the arguments that are passed to the function to generate the WHERE
clause. This function must not depend on the package variables.

Note:

If you plan to run the function across different editions, you can control the
results of the function: whether the results are uniform across all editions, or
specific to the edition in which the function is run. See How Editions Affects
the Results of a Global Application Context PL/SQL Package for more
information.

Policies to Attach the Function to the Objects You Want to Protect
The Oracle Virtual Private Database policy associates the VPD function with a table,
view, or synonym.

You create the policy by using the DBMS_RLS package. If you are not SYS, then you
must be granted EXECUTE privileges to use the DBMS_RLS package. This package
contains procedures that enable you to manage the policy and set fine-grained access
control. For example, to attach the policy to a table, you use the DBMS_RLS.ADD_POLICY
procedure. Within this setting, you set fine-grained access control, such as setting the
policy to go into effect when a user issues a SELECT or UPDATE statement on the table
or view.

The combination of creating the function and then applying it to a table or view is
referred to as creating the Oracle Virtual Private Database policy.

Related Topics

• Configuration of Oracle Virtual Private Database Policies
The DBMS_RLS PL/SQL package can configure Oracle Virtual Private Database
(VPD) policies.

• Tutorials: Creating Oracle Virtual Private Database Policies
These tutorials show how to create a simple and a database session-based Oracle
Virtual Private policy, and how to create policy groups.

Configuration of Oracle Virtual Private Database Policies
The DBMS_RLS PL/SQL package can configure Oracle Virtual Private Database (VPD)
policies.

• About Oracle Virtual Private Database Policies
The Oracle Virtual Private Database policy associates the VPD function with a
database table, view, or synonym.

• Attaching a Policy to a Database Table, View, or Synonym
The DBMS_RLS PL/SQL package can attach a policy to a table, view, or synonym.

• Example: Attaching a Simple Oracle Virtual Private Database Policy to a Table
The DBMS_RLS.ADD_POLICY procedure can attach an Oracle Virtual Private
Database (VPD) policy to a table, view, or synomym.

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-8

• Enforcing Policies on Specific SQL Statement Types
You can enforce Oracle Virtual Private Database policies for SELECT, INSERT,
UPDATE, INDEX, and DELETE statements.

• Example: Specifying SQL Statement Types with DBMS_RLS.ADD_POLICY
The DBMS_RLS.ADD_POLICY procedure statement_types parameter can specify the
SELECT and INDEX statements for a policy.

• Control of the Display of Column Data with Policies
You can create policies that enforce row-level security when a security-relevant
column is referenced in a query.

• Oracle Virtual Private Database Policy Groups
An Oracle Virtual Private Database policy group is a named collection of VPD
policies that can be applied to an application.

• Optimizing Performance by Using Oracle Virtual Private Database Policy Types
You can optimize performance by using the Oracle Virtual Private Database (VPD)
the dynamic, static, or shared policy types.

About Oracle Virtual Private Database Policies
The Oracle Virtual Private Database policy associates the VPD function with a
database table, view, or synonym.

This function defines the actions of the Oracle Virtual Private Database WHERE clause.
You must then associate this function with the database table to which the Oracle
Virtual Private Database (VPD) action applies.

You can do this by configuring an Oracle Virtual Private Database policy. The policy
itself is a mechanism for managing the Virtual Private Database function. The policy
also enables you to add fine-grained access control, such as specifying the types of
SQL statements or particular table columns the policy affects. When a user tries to
access the data in this database object, the policy goes into effect automatically.

Table 12-1 lists the procedures in the DBMS_RLS package.

Table 12-1 DBMS_RLS Procedures

Procedure Description

For Handling Individual Policies -

DBMS_RLS.ADD_POLICY Adds a policy to a table, view, or
synonym

DBMS_RLS.ENABLE_POLICY Enables (or disables) a policy you
previously added to a table, view, or
synonym

DBMS_RLS.ALTER_POLICY Alters an existing policy to associate or
disassociate attributes with the policy

DBMS_RLS.REFRESH_POLICY Invalidates cursors associated with
nonstatic policies

DBMS_RLS.DROP_POLICY To drop a policy from a table, view, or
synonym

For Handling Grouped Policies -

DBMS_RLS.CREATE_POLICY_GROUP Creates a policy group

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-9

Table 12-1 (Cont.) DBMS_RLS Procedures

Procedure Description

DBMS_RLS.ALTER_GROUPED_POLICY Alters a policy group

DBMS_RLS.DELETE_POLICY_GROUP Drops a policy group

DBMS_RLS.ADD_GROUPED_POLICY Adds a policy to the specified policy
group

DBMS_RLS.ENABLE_GROUPED_POLICY Enables a policy within a group

DBMS_RLS.REFRESH_GROUPED_POLICY Parses again the SQL statements
associated with a refreshed policy

DBMS_RLS.DISABLE_GROUPED_POLICY Disables a policy within a group

DBMS_RLS.DROP_GROUPED_POLICY Drops a policy that is a member of the
specified group

For Handling Application Contexts -

DBMS_RLS.ADD_POLICY_CONTEXT Adds the context for the active
application

DBMS_RLS.DROP_POLICY_CONTEXT Drops the context for the application

Related Topics

• Components of an Oracle Virtual Private Database Policy
A VPD policy uses a function to generate the dynamic WHERE clause, and a policy
to attach the function to objects to protect.

• Using Application Contexts to Retrieve User Information
An application context stores user identification that can enable or prevent a user
from accessing data in the database.

Attaching a Policy to a Database Table, View, or Synonym
The DBMS_RLS PL/SQL package can attach a policy to a table, view, or synonym.

• To attach a policy to a database table, view, or synonym, use the
DBMS_RLS.ADD_POLICY procedure.

You must specify the table, view, or synonym to which you are adding a policy, and a
name for the policy. You can also specify other information, such as the types of
statements the policy controls (SELECT, INSERT, UPDATE, DELETE, CREATE INDEX, or
ALTER INDEX).

Follow these guidelines:

• If a view has been created as an extended data-linked object, then Oracle
recommends that you apply the same VPD policy on this type of view as you
would on the underlying objects of the view.

• Determine if the base object to which you want to add the VPD policy has
dependent objects. If it does have dependent objects, then these objects will
become invalid when the VPD policy is added to the base object, and these
objects will be recompiled automatically when they are used.

Alternatively, you can proactively recompile them yourself by using an ALTER ...
COMPILE statement. Be aware that invalidating dependent objects (by adding a

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-10

VPD policy on their base object) and causing them to need to be recompiled can
decrease performance in the overall system. Oracle recommends that you only
add a VPD policy to an object that has dependent objects during off-peak hours or
during a scheduled downtime.

• Be aware that the maximum number of policies that can be created for a single
object is 255.

Example: Attaching a Simple Oracle Virtual Private Database Policy to
a Table

The DBMS_RLS.ADD_POLICY procedure can attach an Oracle Virtual Private Database
(VPD) policy to a table, view, or synomym.

Example 12-1 shows how to use DBMS_RLS.ADD_POLICY to attach an Oracle Virtual
Private Database policy called secure_update to the HR.EMPLOYEES table. The function
attached to the policy is check_updates.

Example 12-1 Attaching a Simple Oracle Virtual Private Database Policy to a
Table

BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'secure_update',
 policy_function => 'check_updates',
...

If the function was created inside a package, include the package name. For example:

 policy_function => 'pkg.check_updates',
...

Although you can define a policy against a table, you cannot select that table from
within the policy that was defined against the table.

Enforcing Policies on Specific SQL Statement Types
You can enforce Oracle Virtual Private Database policies for SELECT, INSERT, UPDATE,
INDEX, and DELETE statements.

• To specify a SQL statement type for the policy, use the statement_types
parameter in the DBMS_RLS.ADD_POLICY procedure. If you want to specify more
than one, separate each with a comma. Enclose the list in a pair of single
quotation marks.

If you do not specify a statement type, then by default, Oracle Database specifies
SELECT, INSERT, UPDATE, and DELETE, but not INDEX. You can enter any combination of
these statement types.

When you specify the statement_types parameter, be aware of the following
functionality:

• The application code affected by the Virtual Private Database policy can
include the MERGE INTO statement. However, in the Virtual Private Database
policy, you must ensure that the statement_types parameter includes all three of

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-11

the INSERT, UPDATE, and DELETE statements for the policy to succeed. Alternatively,
you can omit the statement_types parameter.

• Be aware that a user who has privileges to maintain an index can see all the
row data, even if the user does not have full table access under a regular
query such as SELECT. For example, a user can create a function-based index
that contains a user-defined function with column values as its arguments. During
index creation, Oracle Database passes column values of every row into the user
function, making the row data available to the user who creates the index. You can
enforce Oracle Virtual Private Database policies on index maintenance operations
by specifying INDEX with the statement_types parameter.

Example: Specifying SQL Statement Types with
DBMS_RLS.ADD_POLICY

The DBMS_RLS.ADD_POLICY procedure statement_types parameter can specify the
SELECT and INDEX statements for a policy.

Example 12-2 shows an how this works.

Example 12-2 Specifying SQL Statement Types with DBMS_RLS.ADD_POLICY

BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'secure_update',
 policy_function => 'check_updates',
 statement_types => 'SELECT,INDEX');
END;
/

Control of the Display of Column Data with Policies
You can create policies that enforce row-level security when a security-relevant
column is referenced in a query.

• Policies for Column-Level Oracle Virtual Private Database
Column-level policies enforce row-level security when a query references a
security-relevant column.

• Example: Creating a Column-Level Oracle Virtual Private Database Policy
The CREATE FUNCTION statement and the DBMS_RLS.ADD_POLICY procedure
can configure a column-level Oracle Virtual Private Database policy.

• Display of Only the Column Rows Relevant to the Query
Be default, column-level Oracle Virtual Private Database restricts the number of
rows a query returns that references columns containing sensitive information.

• Column Masking to Display Sensitive Columns as NULL Values
If a query references a sensitive column, then by default column-level Oracle
Virtual Private Database restricts the number of rows returned.

• Example: Adding Column Masking to an Oracle Virtual Private Database Policy
The DBMS_RLS.ADD_POLICY procedure can configure column-level Oracle
Virtual Private Database column masking.

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-12

Policies for Column-Level Oracle Virtual Private Database
Column-level policies enforce row-level security when a query references a security-
relevant column.

You can apply a column-level Oracle Virtual Private Database policy to tables and
views, but not to synonyms. To apply the policy to a column, specify the security-
relevant column by using the SEC_RELEVANT_COLS parameter of the
DBMS_RLS.ADD_POLICY procedure. This parameter applies the security policy whenever
the column is referenced, explicitly or implicitly, in a query.

For example, users who are not in a Human Resources department typically are
allowed to view only their own Social Security numbers. A sales clerk initiates the
following query:

SELECT fname, lname, ssn FROM emp;

The function implementing the security policy returns the predicate ssn='my_ssn'.
Oracle Database rewrites the query and executes the following:

SELECT fname, lname, ssn FROM emp
 WHERE ssn = 'my_ssn';

Example: Creating a Column-Level Oracle Virtual Private Database Policy
The CREATE FUNCTION statement and the DBMS_RLS.ADD_POLICY procedure can
configure a column-level Oracle Virtual Private Database policy.

Example 12-3 shows an Oracle Virtual Private Database policy in which sales
department users cannot see the salaries of people outside the department
(department number 30) of the sales department users. The relevant columns for this
policy are sal and comm. First, the Oracle Virtual Private Database policy function is
created, and then it is added by using the DBMS_RLS PL/SQL package.

Example 12-3 Creating a Column-Level Oracle Virtual Private Database Policy

CREATE OR REPLACE FUNCTION hide_sal_comm (
 v_schema IN VARCHAR2,
 v_objname IN VARCHAR2)

RETURN VARCHAR2 AS
con VARCHAR2 (200);

BEGIN
 con := 'deptno=30';
 RETURN (con);
END hide_sal_comm;

Then you configure the policy with the DBMS_RLS.ADD_POLICY procedure as follows:

BEGIN
 DBMS_RLS.ADD_POLICY (
 object_schema => 'scott',
 object_name => 'emp',
 policy_name => 'hide_sal_policy',
 policy_function => 'hide_sal_comm',
 sec_relevant_cols => 'sal,comm');
END;

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-13

Display of Only the Column Rows Relevant to the Query
Be default, column-level Oracle Virtual Private Database restricts the number of rows
a query returns that references columns containing sensitive information.

You specify these security-relevant columns by using the SEC_RELEVANT_COLUMNS
parameter of the DBMS_RLS.ADD_POLICY procedure, as shown in Example 12-3.

For example, consider sales department users with the SELECT privilege on the emp
table, which is protected with the column-level Oracle Virtual Private Database policy
created in Example 12-3. The user (for example, user SCOTT) runs the following query:

SELECT ENAME, d.dname, JOB, SAL, COMM
 FROM emp e, dept d
 WHERE d.deptno = e.deptno;

The database returns the following rows:

ENAME DNAME JOB SAL COMM
---------- -------------- --------- ---------- ----------
ALLEN SALES SALESMAN 1600 300
WARD SALES SALESMAN 1250 500
MARTIN SALES SALESMAN 1250 1400
BLAKE SALES MANAGER 2850
TURNER SALES SALESMAN 1500 0
JAMES SALES CLERK 950

6 rows selected.

The only rows that are displayed are those that the user has privileges to access all
columns in the row.

Column Masking to Display Sensitive Columns as NULL Values
If a query references a sensitive column, then by default column-level Oracle Virtual
Private Database restricts the number of rows returned.

With column-masking behavior, all rows display, even those that reference sensitive
columns. However, the sensitive columns display as NULL values. To enable column-
masking, set the SEC_RELEVANT_COLS_opt parameter of the DBMS_RLS.ADD_POLICY
procedure.

For example, consider the results of the sales clerk query, described in the previous
example. If column-masking is used, then instead of seeing only the row containing
the details and Social Security number of the sales clerk, the clerk would see all rows
from the emp table, but the ssn column values would be returned as NULL. Note that
this behavior is fundamentally different from all other types of Oracle Virtual Private
Database policies, which return only a subset of rows.

In contrast to the default action of column-level Oracle Virtual Private Database,
column-masking displays all rows, but returns sensitive column values as NULL. To
include column-masking in your policy, set the SEC_RELEVANT_COLS_OPT parameter of
the DBMS_RLS.ADD_POLICY procedure to DBMS_RLS.ALL_ROWS.

The following considerations apply to column masking:

• Column-masking applies only to SELECT statements.

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-14

• Column-masking conditions generated by the policy function must be simple
Boolean expressions, unlike regular Oracle Virtual Private Database predicates.

• For applications that perform calculations, or do not expect NULL values, use
standard column-level Oracle Virtual Private Database, specifying
SEC_RELEVANT_COLS rather than the SEC_RELEVANT_COLS_OPT column-masking
option.

• Do not include columns of the object data type (including the XMLtype) in the
sec_relevant_cols setting. This column type is not supported for the
sec_relevant_cols setting.

• Column-masking used with UPDATE AS SELECT updates only the columns that
users are allowed to see.

• For some queries, column-masking may prevent some rows from displaying. For
example:

SELECT * FROM emp
 WHERE sal = 10;

Because the column-masking option was set, this query may not return rows if the
salary column returns a NULL value.

Example: Adding Column Masking to an Oracle Virtual Private Database Policy
The DBMS_RLS.ADD_POLICY procedure can configure column-level Oracle Virtual
Private Database column masking.

Example 12-4 shows column-level Oracle Virtual Private Database column masking. It
uses the same VPD policy as Example: Creating a Column-Level Oracle Virtual
Private Database Policy, but with sec_relevant_cols_opt specified as
DBMS_RLS.ALL_ROWS.

Example 12-4 Adding Column Masking to an Oracle Virtual Private Database
Policy

BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'scott',
 object_name => 'emp',
 policy_name => 'hide_sal_policy',
 policy_function => 'hide_sal_comm',
 sec_relevant_cols =>' sal,comm',
 sec_relevant_cols_opt => dbms_rls.ALL_ROWS);
END;

Assume that a sales department user with SELECT privilege on the emp table (such as
user SCOTT) runs the following query:

SELECT ENAME, d.dname, job, sal, comm
 FROM emp e, dept d
 WHERE d.deptno = e.deptno;

The database returns all rows specified in the query, but with certain values masked
because of the Oracle Virtual Private Database policy:

ENAME DNAME JOB SAL COMM
---------- -------------- --------- ---------- ----------
CLARK ACCOUNTING MANAGER
KING ACCOUNTING PRESIDENT

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-15

MILLER ACCOUNTING CLERK
JONES RESEARCH MANAGER
FORD RESEARCH ANALYST
ADAMS RESEARCH CLERK
SMITH RESEARCH CLERK
SCOTT RESEARCH ANALYST
WARD SALES SALESMAN 1250 500
TURNER SALES SALESMAN 1500 0
ALLEN SALES SALESMAN 1600 300
JAMES SALES CLERK 950
BLAKE SALES MANAGER 2850
MARTIN SALES SALESMAN 1250 1400

14 rows selected.

The column-masking returned all rows requested by the sales user query, but made
the sal and comm columns NULL for employees outside the sales department.

Oracle Virtual Private Database Policy Groups
An Oracle Virtual Private Database policy group is a named collection of VPD policies
that can be applied to an application.

• About Oracle Virtual Private Database Policy Groups
You can group multiple security policies together, and apply them to an
application.

• Creation of a New Oracle Virtual Private Database Policy Group
The DBMS_RLS.ADD_GROUPED_POLICY procedure adds a VPD policy to a VPD policy
group.

• Default Policy Group with the SYS_DEFAULT Policy Group
Within a group of security policies, you can designate one security policy to be the
default security policy.

• Multiple Policies for Each Table, View, or Synonym
You can establish several policies for the same table, view, or synonym.

• Validation of the Application Used to Connect to the Database
The package implementing the driving context must correctly validate the
application that is being used to connect to the database.

About Oracle Virtual Private Database Policy Groups
You can group multiple security policies together, and apply them to an application.

A policy group is a set of security policies that belong to an application. You can
designate an application context (known as a driving context or policy context) to
indicate the policy group in effect. Then, when a user accesses the table, view, or
synonym column, Oracle Database looks up the driving context to determine the policy
group in effect. It enforces all the associated policies that belong to the policy group.

Policy groups are useful for situations where multiple applications with multiple
security policies share the same table, view, or synonym. This enables you to identify
those policies that should be in effect when the table, view, or synonym is accessed.

For example, in a hosting environment, Company A can host the BENEFIT table for
Company B and Company C. The table is accessed by two different applications,
Human Resources and Finance, with two different security policies. The Human

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-16

Resources application authorizes users based on ranking in the company, and the
Finance application authorizes users based on department. Integrating these two
policies into the BENEFIT table requires joint development of policies between the two
companies, which is not a feasible option. By defining an application context to drive
the enforcement of a particular set of policies to the base objects, each application can
implement a private set of security policies.

To do this, you organize security policies into groups. By referring to the application
context, Oracle Database determines which group of policies should be in effect at run
time. The server enforces all the policies that belong to that policy group.

Creation of a New Oracle Virtual Private Database Policy Group
The DBMS_RLS.ADD_GROUPED_POLICY procedure adds a VPD policy to a VPD policy
group.

To specify which policies will be effective, you can add a driving context using the
DBMS_RLS.ADD_POLICY_CONTEXT procedure. If the driving context returns an unknown
policy group, then an error is returned.

If the driving context is not defined, then Oracle Database runs all policies. Likewise, if
the driving context is NULL, then policies from all policy groups are enforced. An
application accessing the data cannot bypass the security setup module (which sets
up application context) to avoid any applicable policies.

You can apply multiple driving contexts to the same table, view, or synonym, and each
of them will be processed individually. This enables you to configure multiple active
sets of policies to be enforced.

Consider, for example, a hosting company that hosts Benefits and Financial
applications, which share some database objects. Both applications are striped for
hosting using a SUBSCRIBER policy in the SYS_DEFAULT policy group. Data access is
partitioned first by subscriber ID, then by whether the user is accessing the Benefits or
Financial applications (determined by a driving context). Suppose that Company A,
which uses the hosting services, wants to apply a custom policy that relates only to its
own data access. You could add an additional driving context (such as COMPANY A
SPECIAL) to ensure that the additional, special policy group is applied for data access
for Company A only. You would not apply this under the SUBSCRIBER policy, because
the policy relates only to Company A, and it is more efficient to segregate the basic
hosting policy from other policies.

Default Policy Group with the SYS_DEFAULT Policy Group
Within a group of security policies, you can designate one security policy to be the
default security policy.

This is useful in situations where you partition security policies by application, so that
they will be always be in effect. Default security policies enable developers to base
security enforcement under all conditions, while partitioning security policies by
application (using security groups) enables layering of additional, application-specific
security on top of default security policies. To implement default security policies, you
add the policy to the SYS_DEFAULT policy group.

Policies defined in this group for a particular table, view, or synonym are run with the
policy group specified by the driving context. As described earlier, a driving context is
an application context that indicates the policy group in effect. The SYS_DEFAULT policy

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-17

group may or may not contain policies. You cannot to drop the SYS_DEFAULT policy
group. If you do, then Oracle Database displays an error.

If, to the SYS_DEFAULT policy group, you add policies associated with two or more
objects, then each object will have a separate SYS_DEFAULT policy group associated
with it. For example, the emp table in the scott schema has one SYS_DEFAULT policy
group, and the dept table in the scott schema has a different SYS_DEFAULT policy
group associated with it. Think of them as being organized in the tree structure as
follows:

SYS_DEFAULT
 - policy1 (scott/emp)
 - policy3 (scott/emp)
SYS_DEFAULT
 - policy2 (scott/dept)

You can create policy groups with identical names. When you select a particular policy
group, its associated schema and object name are displayed in the property sheet on
the right side of the screen.

Multiple Policies for Each Table, View, or Synonym
You can establish several policies for the same table, view, or synonym.

Suppose, for example, you have a base application for Order Entry, and each division
of your company has its own rules for data access. You can add a division-specific
policy function to a table without having to rewrite the policy function of the base
application.

All policies applied to a table are enforced with AND syntax. If you have three policies
applied to the CUSTOMERS table, then each policy is applied to the table. You can use
policy groups and an application context to partition fine-grained access control
enforcement so that different policies apply, depending upon which application is
accessing data. This eliminates the requirement for development groups to collaborate
on policies, and simplifies application development. You can also have a default policy
group that is always applicable (for example, to enforce data separated by subscriber
in a hosting environment).

Validation of the Application Used to Connect to the Database
The package implementing the driving context must correctly validate the application
that is being used to connect to the database.

Although Oracle Database checks the call stack to ensure that the package
implementing the driving context sets context attributes, inadequate validation can still
occur within the package. For example, in applications where database users or
enterprise users are known to the database, the user needs the EXECUTE privilege on
the package that sets the driving context. Consider a user who knows that the
BENEFITS application enables more liberal access than the HR application. The setctx
procedure (which sets the correct policy group within the driving context) does not
perform any validation to determine which application is actually connecting. That is,
the procedure does not check either the IP address of the incoming connection (for a
three-tier system) or the proxy_user attribute of the user session.

This user could pass to the driving context package an argument setting the context to
the more liberal BENEFITS policy group, and then access the HR application instead.

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-18

Because the setctx does no further validation of the application, this user bypasses
the more restrictive HR security policy.

By contrast, if you implement proxy authentication with Oracle Virtual Private
Database, then you can determine the identity of the middle tier (and the application)
that is connecting to the database on behalf of a user. The correct policy will be
applied for each application to mediate data access.

For example, a developer using the proxy authentication feature could determine that
the application (the middle tier) connecting to the database is HRAPPSERVER. The
package that implements the driving context can thus verify whether the proxy_user
in the user session is HRAPPSERVER. If so, then it can set the driving context to use the
HR policy group. If proxy_user is not HRAPPSERVER, then it can deny access.

In this case, the following query is executed:

SELECT * FROM apps.benefit;

Oracle Database picks up policies from the default policy group (SYS_DEFAULT) and
active namespace HR. The query is internally rewritten as follows:

SELECT * FROM apps.benefit
 WHERE company = SYS_CONTEXT('ID','MY_COMPANY')
 AND SYS_CONTEXT('ID','TITLE') = 'MANAGER';

Optimizing Performance by Using Oracle Virtual Private Database
Policy Types

You can optimize performance by using the Oracle Virtual Private Database (VPD) the
dynamic, static, or shared policy types.

• About Oracle Virtual Private Database Policy Types
Specifying a policy type for your policies can optimize performance each the
Oracle Virtual Private Database policy runs.

• Dynamic Policy Type to Automatically Rerun Policy Functions
The DYNAMIC policy type runs the policy function each time a user accesses the
Virtual Private Database-protected database objects.

• Example: Creating a DYNAMIC Policy with DBMS_RLS.ADD_POLICY
The DBMS_RLS.ADD_POLICY procedure can create a dynamic Oracle Virtual Private
Database policy.

• Static Policy to Prevent Policy Functions from Rerunning for Each Query
The static policy type enforces the same predicate for all users in the instance.

• Example: Creating a Static Policy with DBMS_RLS.ADD_POLICY
The DBMS_RLS.ADD_POLICY procedure can create a static Oracle Virtual Private
Database (VPD) policy.

• Example: Shared Static Policy to Share a Policy with Multiple Objects
The DBMS_RLS.ADD_POLICY procedure can create a shared static Oracle Virtual
Private Database policy to share the policy with multiple objects.

• When to Use Static and Shared Static Policies
Static policies are ideal when every query requires the same predicate and fast
performance is essential, such as hosting environments.

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-19

• Context-Sensitive Policy for Application Context Attributes That Change
Context-sensitive policies are useful when different predicates must be applied
depending on which executes the query.

• Example: Creating a Context-Sensitive Policy with DBMS_RLS.ADD_POLICY
The DBMS_RLS.ADD_POLICY procedure can create an Oracle Virtual Private
Database context-sensitive policy.

• Example: Refreshing Cached Statements for a VPD Context-Sensitive Policy
The DBMS_RLS.REFRESH_POLICY statement can refresh cached statements for
Oracle Virtual Private Database context-sensitive policies.

• Example: Altering an Existing Context-Sensitive Policy
The DBMS_RLS.ALTER_POLICY procedure can modify an Oracle Virtual Private
Database policy.

• Example: Using a Shared Context Sensitive Policy to Share a Policy with Multiple
Objects
The DBMS_RLS.ADD_POLICY procedure can create a shared context-sensitive
Oracle Virtual Private Database to share a policy that has multiple objects.

• When to Use Context-Sensitive and Shared Context-Sensitive Policies
Use context-sensitive policies when a predicate does not need to change for a
user session, but the policy must enforce multiple predicates for different users or
groups.

• Summary of the Five Oracle Virtual Private Database Policy Types
Oracle Virtual Private Database provides five policy types, based on user needs
such as hosting environments.

About Oracle Virtual Private Database Policy Types
Specifying a policy type for your policies can optimize performance each the Oracle
Virtual Private Database policy runs.

Policy types control how Oracle Database caches Oracle Virtual Private Database
policy predicates. Consider setting a policy type for your policies, because the
execution of policy functions can use a significant amount of system resources.
Minimizing the number of times that a policy function can run optimizes database
performance.

You can choose from five policy types: DYNAMIC, STATIC, SHARED_STATIC,
CONTEXT_SENSITIVE, and SHARED_CONTEXT_SENSITIVE. These enable you to precisely
specify how often a policy predicate should change. To specify the policy type, set the
policy_type parameter of the DBMS_RLS.ADD POLICY procedure.

Dynamic Policy Type to Automatically Rerun Policy Functions
The DYNAMIC policy type runs the policy function each time a user accesses the Virtual
Private Database-protected database objects.

If you do not specify a policy type in the DBMS_RLS.ADD_POLICY procedure, then, by
default, your policy will be dynamic. You can specifically configure a policy to be
dynamic by setting the policy_type parameter of the DBMS_RLS.ADD_POLICY procedure
to DYNAMIC.

This policy type does not optimize database performance as the static and context
sensitive policy types do. However, Oracle recommends that before you set policies as

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-20

either static or context-sensitive, you should first test them as DYNAMIC policy types,
which run every time. Testing policy functions as DYNAMIC policies first enables you to
observe how the policy function affects each query, because nothing is cached. This
ensures that the functions work properly before you enable them as static or context-
sensitive policy types to optimize performance.

You can use the DBMS_UTILITY.GET_TIME function to measure the start and end times
for a statement to execute. For example:

-- 1. Get the start time:
SELECT DBMS_UTILITY.GET_TIME FROM DUAL;

 GET_TIME

 2312721

-- 2. Run the statement:
SELECT COUNT(*) FROM HR.EMPLOYEES;

 COUNT(*)

 107

-- 3. Get the end time:
SELECT DBMS_UTILITY.GET_TIME FROM DUAL;

 GET_TIME

 2314319

Related Topics

• Auditing Functions, Procedures, Packages, and Triggers
You can audit functions, procedures, PL/SQL packages, and triggers.

Example: Creating a DYNAMIC Policy with DBMS_RLS.ADD_POLICY
The DBMS_RLS.ADD_POLICY procedure can create a dynamic Oracle Virtual Private
Database policy.

Example 12-5 shows how to create the DYNAMIC policy type.

Example 12-5 Creating a DYNAMIC Policy with DBMS_RLS.ADD_POLICY

BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'secure_update',
 policy_function => 'hide_fin',
 policy_type => dbms_rls.DYNAMIC);
END;
/

Static Policy to Prevent Policy Functions from Rerunning for Each Query
The static policy type enforces the same predicate for all users in the instance.

Oracle Database stores static policy predicates in SGA, so policy functions do not
rerun for each query. This results in faster performance.

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-21

You can enable static policies by setting the policy_type parameter of the
DBMS_RLS.ADD_POLICY procedure to either STATIC or SHARED_STATIC, depending on
whether or not you want the policy to be shared across multiple objects.

Each execution of the same cursor could produce a different row set for the same
predicate, because the predicate may filter the data differently based on attributes
such as SYS_CONTEXT or SYSDATE.

For example, suppose you enable a policy as either a STATIC or SHARED_STATIC policy
type, which appends the following predicate to all queries made against policy
protected database objects:

WHERE dept = SYS_CONTEXT ('hr_app','deptno')

Although the predicate does not change for each query, it applies to the query based
on session attributes of the SYS_CONTEXT. In the case of the preceding example, the
predicate returns only those rows where the department number matches the deptno
attribute of the SYS_CONTEXT, which is the department number of the user who is
querying the policy-protected database object.

Note:

When using shared static policies, ensure that the policy predicate does not
contain attributes that are specific to a particular database object, such as a
column name.

Related Topics

• Auditing Functions, Procedures, Packages, and Triggers
You can audit functions, procedures, PL/SQL packages, and triggers.

Example: Creating a Static Policy with DBMS_RLS.ADD_POLICY
The DBMS_RLS.ADD_POLICY procedure can create a static Oracle Virtual Private
Database (VPD) policy.

Example 12-6 shows how to create the STATIC policy type.

Example 12-6 Creating a Static Policy with DBMS_RLS.ADD_POLICY

BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'secure_update',
 policy_function => 'hide_fin',
 policy_type => DBMS_RLS.STATIC);
END;
/

Example: Shared Static Policy to Share a Policy with Multiple Objects
The DBMS_RLS.ADD_POLICY procedure can create a shared static Oracle Virtual Private
Database policy to share the policy with multiple objects.

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-22

If, for example, you wanted to apply the policy in Example 12-6 to a second table in
the HR schema that may contain financial data that you want to side, you could use the
SHARED_STATIC setting for both tables.

Example 12-7 shows how to set the SHARED_STATIC policy type for two tables that
share the same policy.

Example 12-7 Creating a Shared Static Policy to Share a Policy with Multiple
Objects

-- 1. Create a policy for the first table, employees:
BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'secure_update',
 policy_function => 'hide_fin',
 policy_type => dbms_rls.SHARED_STATIC);
END;
/
-- 2. Create a policy for the second table, fin_data:
BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'fin_data',
 policy_name => 'secure_update',
 policy_function => 'hide_fin',
 policy_type => dbms_rls.SHARED_STATIC);
END;
/

When to Use Static and Shared Static Policies
Static policies are ideal when every query requires the same predicate and fast
performance is essential, such as hosting environments.

For these situations when the policy function appends the same predicate to every
query, rerunning the policy function each time adds unnecessary overhead to the
system. For example, consider a data warehouse that contains market research data
for customer organizations that are competitors. The warehouse must enforce the
policy that each organization can see only their own market research, which is
expressed by the following predicate:

WHERE subscriber_id = SYS_CONTEXT('customer', 'cust_num')

Using SYS_CONTEXT for the application context enables the database to dynamically
change the rows that are returned. You do not need to rerun the function, so the
predicate can be cached in the SGA, thus conserving system resources and improving
performance.

Context-Sensitive Policy for Application Context Attributes That Change
Context-sensitive policies are useful when different predicates must be applied
depending on which executes the query.

For example, consider the case where managers should have the predicate WHERE
group set to managers, and employees should have the predicate WHERE empno_ctx
set to emp_id. A context-sensitive policy will enable you to present only the information
that the managers must see when the managers log in, and only the information that

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-23

the employees must see when they log in. The policy uses application contexts to
determine which predicate to use.

In contrast to static policies, context-sensitive policies do not always cache the
predicate. With context-sensitive policies, the database assumes that the predicate will
change after statement parse time. But if there is no change in the local application
context, then Oracle Database does not rerun the policy function within the user
session. If there is a change in any attribute of any application context during the user
session, then by default the database re-executes the policy function to ensure that it
captures all changes to the predicate since the initial parsing. This results in
unnecessary re-executions of the policy function if none of the associated attributes
have changed. You can restrict the evaluation to a specific application context by
including both the namespace and attribute parameters.

If you plan to use the namespace and attribute parameters in your policy, then follow
these guidelines:

• Ensure that you specify both namespace and attribute parameters, not just one.

• Ensure that your policy has the policy_type argument set to
DBMS_RLS.CONTEXT_SENSITIVE or SHARED_CONTEXT_SENSITIVE. You cannot use the
namespace and attribute parameters in static or dynamic policies.

If there are no attributes associated with the Virtual Private Database policy function,
then Oracle Database evaluates the context-sensitive function for any application
context changes.

Shared context-sensitive policies operate in the same way as regular context-sensitive
policies, except they can be shared across multiple database objects. For this policy
type, all objects can share the policy function from the UGA, where the predicate is
cached until the local session context changes.

Related Topics

• Example: Using a Shared Context Sensitive Policy to Share a Policy with Multiple
Objects
The DBMS_RLS.ADD_POLICY procedure can create a shared context-sensitive
Oracle Virtual Private Database to share a policy that has multiple objects.

• Tutorial: Implementing a Session-Based Application Context Policy
This tutorial demonstrates how to create an Oracle Virtual Private Database policy
that uses a database session-based application context.

• Tutorial: Implementing an Oracle Virtual Private Database Policy Group
This tutorial demonstrates how to create an Oracle Virtual Private Database policy
group.

Example: Creating a Context-Sensitive Policy with DBMS_RLS.ADD_POLICY
The DBMS_RLS.ADD_POLICY procedure can create an Oracle Virtual Private Database
context-sensitive policy.

Example 12-8shows how to create a CONTEXT_SENSITIVE policy in which the policy is
evaluated only for changes to the empno_ctx namespace and emp_id attribute.

Example 12-8 Creating a Context-Sensitive Policy with
DBMS_RLS.ADD_POLICY

BEGIN
 DBMS_RLS.ADD_POLICY(

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-24

 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'secure_update',
 policy_function => 'hide_fin',
 policy_type => dbms_rls.CONTEXT_SENSITIVE,
 namespace => 'empno_ctx',
 attribute => 'emp_id');
END;
/

Example: Refreshing Cached Statements for a VPD Context-Sensitive Policy
The DBMS_RLS.REFRESH_POLICY statement can refresh cached statements for
Oracle Virtual Private Database context-sensitive policies.

Example 12-9 shows you can manually refresh all the cached statements that are
associated with a Virtual Private Database context-sensitive policy by running the
DBMS_RLS.REFRESH_POLICY procedure.

Example 12-9 Refreshing Cached Statements for a VPD Context-Sensitive
Policy

BEGIN
 DBMS_RLS.REFRESH_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'secure_update');
END;
/

Example: Altering an Existing Context-Sensitive Policy
The DBMS_RLS.ALTER_POLICY procedure can modify an Oracle Virtual Private
Database policy.

Example 12-10 shows how you can use the DBMS_RLS.ALTER_POLICY statement to
alter an existing context-sensitive policy so that the order_update_pol policy function
is executed only if the relevant context attributes change.

Example 12-10 Altering an Existing Context-Sensitive Policy

BEGIN
 DBMS_RLS.ALTER_POLICY(
 object_schema => 'oe',
 object_name => 'orders',
 policy_name => 'order_update_pol',
 alter_option => DBMS_RLS.ADD_ATTRIBUTE_ASSOCIATION,
 namespace => 'empno_ctx',
 attribute => 'emp_role');
END;
/

Example: Using a Shared Context Sensitive Policy to Share a Policy with
Multiple Objects

The DBMS_RLS.ADD_POLICY procedure can create a shared context-sensitive Oracle
Virtual Private Database to share a policy that has multiple objects.

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-25

Example 12-11 shows how to create two shared context sensitive policies that share a
policy with multiple tables, and how to restrict the evaluation only for changes to the
empno_ctx namespace and emp_id attribute.

Example 12-11 Shared Context-Sensitive Policy with DBMS_RLS.ADD_POLICY

-- 1. Create a policy for the first table, employees:
BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'secure_update',
 policy_function => 'hide_fin',
 policy_type => dbms_rls.SHARED_CONTEXT_SENSITIVE,
 namespace => 'empno_ctx',
 attribute => 'emp_id');
END;
/
--2. Create a policy for the second table, fin_data:
BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'fin_data',
 policy_name => 'secure_update',
 policy_function => 'hide_fin',
 policy_type => dbms_rls.SHARED_CONTEXT_SENSITIVE,
 namespace => 'empno_ctx',
 attribute => 'emp_id');
END;
/

Note the following:

• When using shared context-sensitive policies, ensure that the policy predicate
does not contain attributes that are specific to a particular database object, such
as a column name.

• To manually refresh all the cached statements that are associated with a Virtual
Private Database shared context-sensitive policy, run the
DBMS_RLS.REFRESH_GROUPED_POLICY procedure.

When to Use Context-Sensitive and Shared Context-Sensitive Policies
Use context-sensitive policies when a predicate does not need to change for a user
session, but the policy must enforce multiple predicates for different users or groups.

For example, consider a sales_history table with a single policy. This policy states
that analysts can see only their own products and regional employees can see only
their own region. In this case, the database must rerun the policy function each time
the type of user changes. The performance gain is realized when a user can log in and
issue several DML statements against the protected object without causing the server
to rerun the policy function.

Note:

For session pooling where multiple clients share a database session, the
middle tier must reset the context during client switches.

Chapter 12
Configuration of Oracle Virtual Private Database Policies

12-26

Summary of the Five Oracle Virtual Private Database Policy Types
Oracle Virtual Private Database provides five policy types, based on user needs such
as hosting environments.

Table 12-2 summarizes the types of policy types available.

Table 12-2 DBMS_RLS.ADD_POLICY Policy Types

Policy
Types

When the Policy Function Executes Usage Example Shared
Across
Multiple
Objects
?

DYNAMIC Policy function re-executes every time
a policy-protected database object is
accessed.

Applications where policy predicates must be
generated for each query, such as time-
dependent policies where users are denied
access to database objects at certain times during
the day

No

STATIC Once, then the predicate is cached in
the SGA1

View replacement No

SHARED_STA
TIC

Same as STATIC Hosting environments, such as data warehouses
where the same predicate must be applied to
multiple database objects

Yes

CONTEXT_SE
NSITIVE

• At statement parse time
• At statement execution time when

the local application context
changed since the last use of the
cursor

Three-tier, session pooling applications where
policies enforce two or more predicates for
different users or groups

No

SHARED_CON
TEXT_SENSI
TIVE

First time the object is reference in a
database session.

Predicates are cached in the private
session memory UGA so policy
functions can be shared among
objects.

Same as CONTEXT_SENSITIVE, but multiple
objects can share the policy function from the
session UGA

Yes

1 Each execution of the same cursor could produce a different row set for the same predicate because the predicate may filter
the data differently based on attributes such as SYS_CONTEXT or SYSDATE.

Tutorials: Creating Oracle Virtual Private Database Policies
These tutorials show how to create a simple and a database session-based Oracle
Virtual Private policy, and how to create policy groups.

• Tutorial: Creating a Simple Oracle Virtual Private Database Policy
This tutorial shows how to create a simple Oracle Virtual Private Database policy
using the OE user account.

• Tutorial: Implementing a Session-Based Application Context Policy
This tutorial demonstrates how to create an Oracle Virtual Private Database policy
that uses a database session-based application context.

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-27

• Tutorial: Implementing an Oracle Virtual Private Database Policy Group
This tutorial demonstrates how to create an Oracle Virtual Private Database policy
group.

Tutorial: Creating a Simple Oracle Virtual Private Database Policy
This tutorial shows how to create a simple Oracle Virtual Private Database policy using
the OE user account.

• About This Tutorial
This tutorial shows how to create a VPD policy that limits access to orders created
by Sales Representative 159 in the OE.ORDERS table.

• Step 1: Ensure That the OE User Account Is Active
First, you must ensure that OE user account is active.

• Step 2: Create a Policy Function
Next, you are ready to create a policy function.

• Step 3: Create the Oracle Virtual Private Database Policy
After you create the policy function, you are ready to associate it with a VPD
policy.

• Step 4: Test the Policy
After you create the Oracle Virtual Private Database policy, it goes into effect
immediately.

• Step 5: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

About This Tutorial
This tutorial shows how to create a VPD policy that limits access to orders created by
Sales Representative 159 in the OE.ORDERS table.

In essence, the policy translates the following statement:

SELECT * FROM OE.ORDERS;

To the following statement:

SELECT * FROM OE.ORDERS WHERE SALES_REP_ID = 159;

Note:

If you are using a multitenant environment, then this tutorial applies to the
current PDB only.

Step 1: Ensure That the OE User Account Is Active
First, you must ensure that OE user account is active.

1. Log on to SQL*Plus as user SYS with the SYSDBA administrative privilege.

sqlplus sys as sysdba
Enter password: password

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-28

2. In a multitenant environment, connect to the appropriate PDB.

For example:

CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

To find the available PDBs, run the show pdbs command. To check the current
PDB, run the show con_name command.

3. Query the DBA_USERS data dictionary view to find the account status of OE.

SELECT USERNAME, ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = 'OE';

The status should be OPEN. If the DBA_USERS view lists user OE as locked and
expired, then enter the following statement to unlock the OE account and create a
new password:

ALTER USER OE ACCOUNT UNLOCK IDENTIFIED BY password;

Follow the guidelines in Minimum Requirements for Passwords to replace
password with a password that is secure. For greater security, do not reuse the
same password that was used in previous releases of Oracle Database.

Step 2: Create a Policy Function
Next, you are ready to create a policy function.

As user SYS, create the following function, which will append the WHERE SALES_REP_ID
= 159 clause to any SELECT statement on the OE.ORDERS table. (You can copy and
paste this text by positioning the cursor at the start of CREATE OR REPLACE in the first
line.)

CREATE OR REPLACE FUNCTION auth_orders(
 schema_var IN VARCHAR2,
 table_var IN VARCHAR2
)
 RETURN VARCHAR2
 IS
 return_val VARCHAR2 (400);
 BEGIN
 return_val := 'SALES_REP_ID = 159';
 RETURN return_val;
 END auth_orders;
/

In this example:

• schema_var and table_var create input parameters to specify to store the schema
name, OE, and table name, ORDERS. First, define the parameter for the schema, and
then define the parameter for the object, in this case, a table. Always create them
in this order. The Virtual Private Database policy you create will need these
parameters to specify the OE.ORDERS table.

• RETURN VARCHAR2 returns the string that will be used for the WHERE predicate
clause. Remember that return value is always a VARCHAR2 data type.

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-29

• IS ... RETURN return_val encompasses the creation of the WHERE
SALES_REP_ID = 159 predicate.

Step 3: Create the Oracle Virtual Private Database Policy
After you create the policy function, you are ready to associate it with a VPD policy.

• Create the following policy by using the ADD_POLICY procedure in the DBMS_RLS
package.

BEGIN
 DBMS_RLS.ADD_POLICY (
 object_schema => 'oe',
 object_name => 'orders',
 policy_name => 'orders_policy',
 function_schema => 'sys',
 policy_function => 'auth_orders',
 statement_types => 'select'
);
 END;
/

In this example:

– object_schema => 'oe' specifies the schema that you want to protect, that is,
OE.

– object_name => 'orders' specifies the object within the schema to protect,
that is, the ORDERS table.

– policy_name => 'orders_policy' names this policy orders_policy.

– function_schema => 'sys' specifies the schema in which the auth_orders
function was created. In this example, auth_orders was created in the SYS
schema. But typically, it should be created in the schema of a security
administrator.

– policy_function => 'auth_orders' specifies a function to enforce the policy.
Here, you specify the auth_orders function that you created in Step 2: Create
a Policy Function.

– statement_types => 'select' specifies the operations to which the policy
applies. In this example, the policy applies to all SELECT statements that the
user may perform.

Step 4: Test the Policy
After you create the Oracle Virtual Private Database policy, it goes into effect
immediately.

The next time a user, including the owner of the schema, performs a SELECT on
OE.ORDERS, only the orders by Sales Representative 159 will be accessed.

1. Connect as user OE.

CONNECT oe -- Or, CONNECT OE@hrpdb
Enter password: password

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-30

2. Enter the following SELECT statement:

SELECT COUNT(*) FROM ORDERS;

The following output should appear:

 COUNT(*)

 7

The policy is in effect for user OE: As you can see, only 7 of the 105 rows in the
orders table are returned.

But users with administrative privileges still have access to all the rows in the
table.

3. Connect as user SYS with the SYSDBA administrative privilege.

CONNECT SYS AS SYSDBA -- Or, CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

4. Enter the following SELECT statement:

SELECT COUNT(*) FROM OE.ORDERS;

The following output should appear:

 COUNT(*)

 105

Step 5: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

1. As user SYS, remove the function and policy as follows:

DROP FUNCTION auth_orders;
EXEC DBMS_RLS.DROP_POLICY('OE','ORDERS','ORDERS_POLICY');

2. If you need to lock and expire the OE account, then enter the following statement:

ALTER USER OE ACCOUNT LOCK PASSWORD EXPIRE;

Tutorial: Implementing a Session-Based Application Context Policy
This tutorial demonstrates how to create an Oracle Virtual Private Database policy that
uses a database session-based application context.

• About This Tutorial
This tutorial shows how to use a database session-based application context to
implement a policy in which customers see only their own orders.

• Step 1: Create User Accounts and Sample Tables
First, create user accounts and the sample tables.

• Step 2: Create a Database Session-Based Application Context
Next, you are ready to create the database session-based application context.

• Step 3: Create a PL/SQL Package to Set the Application Context
After you create the application context, you are ready to create a package to set
the context.

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-31

• Step 4: Create a Logon Trigger to Run the Application Context PL/SQL Package
The logon trigger runs the PL/SQL package procedure so that the next time a user
logs on, the application context is set.

• Step 5: Test the Logon Trigger
The logon trigger sets the application context for the user when the trigger runs the
sysadmin_vpd.orders_ctx_pkg.set_custnum procedure.

• Step 6: Create a PL/SQL Policy Function to Limit User Access to Their Orders
The next step is to create a PL/SQL function to control the display of the user’s
query.

• Step 7: Create the New Security Policy
Finally, you are ready to create the VPD security policy.

• Step 8: Test the New Policy
Now that you have created all the components, you are ready to test the policy.

• Step 9: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

About This Tutorial
This tutorial shows how to use a database session-based application context to
implement a policy in which customers see only their own orders.

If you are using a multitenant environment, then this tutorial applies to the current PDB
only.

In this tutorial, you create the following layers of security:

1. When a user logs on, a database session-based application context checks
whether the user is a customer. If a user is not a customer, the user still can log
on, but this user cannot access the orders entry table you will create for this
example.

2. If the user is a customer, he or she can log on. After the customer has logged on,
an Oracle Virtual Private Database policy restricts this user to see only his or her
orders.

3. As a further restriction, the Oracle Virtual Private Database policy prevents users
from adding, modifying, or removing orders.

Step 1: Create User Accounts and Sample Tables
First, create user accounts and the sample tables.

1. Start SQL*Plus and log on as a user who has administrative privileges.

sqlplus sys as sysdba
Enter password: password

2. In a multitenant environment, connect to the appropriate PDB.

For example:

CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

To find the available PDBs, query the DBA_PDBS data dictionary view. To check the
current PDB, run the show con_name command.

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-32

3. Create the following administrative user, who will administer the Oracle Virtual
Private Database policy.

The following SQL statements create this user and then grant the user the
necessary privileges for completing this tutorial.

CREATE USER sysadmin_vpd IDENTIFIED BY password CONTAINER = CURRENT;
GRANT CREATE SESSION, CREATE ANY CONTEXT, CREATE PROCEDURE, CREATE TRIGGER, ADMINISTER DATABASE
TRIGGER TO sysadmin_vpd;
GRANT EXECUTE ON DBMS_SESSION TO sysadmin_vpd;
GRANT EXECUTE ON DBMS_RLS TO sysadmin_vpd;

Follow the guidelines in Minimum Requirements for Passwords to replace
password with a password that is secure.

4. Create the following local users:

CREATE USER tbrooke IDENTIFIED BY password CONTAINER = CURRENT;
CREATE USER owoods IDENTIFIED BY password CONTAINER = CURRENT;

GRANT CREATE SESSION TO tbrooke, owoods;

Replace password with a password that is secure.

5. Check the account status of the sample user SCOTT, who you will use for this
tutorial:

SELECT USERNAME, ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = 'SCOTT';

The status should be OPEN. If the DBA_USERS view lists user SCOTT as locked and
expired, then enter the following statement to unlock the SCOTT account and create
a new password for him:

ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY password;

Follow the guidelines in Minimum Requirements for Passwords to replace
password with a password that is secure. For greater security, do not reuse the
same password that was used in previous releases of Oracle Database.

6. Connect as user SCOTT.

CONNECT SCOTT -- Or, CONNECT SCOTT@hrpdb
Enter password: password

7. Create and populate the customers table.

CREATE TABLE customers (
 cust_no NUMBER(4),
 cust_email VARCHAR2(20),
 cust_name VARCHAR2(20));

INSERT INTO customers VALUES (1234, 'TBROOKE', 'Thadeus Brooke');
INSERT INTO customers VALUES (5678, 'OWOODS', 'Oberon Woods');

When you enter the user email IDs, enter them in upper-case letters. Later on,
when you create the application context PL/SQL package, the SESSION_USER
parameter of the SYS_CONTEXT function expects the user names to be in upper
case. Otherwise, you will be unable to set the application context for the user.

8. User sysadmin_vpd will need SELECT privileges for the customers table, so as user
SCOTT, grant him this privilege.

GRANT READ ON customers TO sysadmin_vpd;

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-33

9. Create and populate the orders_tab table.

CREATE TABLE orders_tab (
 cust_no NUMBER(4),
 order_no NUMBER(4));

INSERT INTO orders_tab VALUES (1234, 9876);
INSERT INTO orders_tab VALUES (5678, 5432);
INSERT INTO orders_tab VALUES (5678, 4592);

10. Users tbrooke and owoods need to query the orders_tab table, so grant them the
READ object privilege.

GRANT READ ON orders_tab TO tbrooke, owoods;

At this stage, the two sample customers, tbrooke and owoods, have a record of
purchases in the orders_tab order entry table, and if they tried right now, they can see
all the orders in this table.

Step 2: Create a Database Session-Based Application Context
Next, you are ready to create the database session-based application context.

1. Connect as user sysadmin_vpd.

CONNECT sysadmin_vpd -- Or, CONNECT sysadmin_vpd@hrpdb
Enter password: password

2. Enter the following statement:

CREATE OR REPLACE CONTEXT orders_ctx USING orders_ctx_pkg;

This statement creates the orders_ctx application context. Remember that even
though user sysadmin_vpd has created this context and it is associated with the
sysadmin_vpd schema, the SYS schema owns the application context.

Step 3: Create a PL/SQL Package to Set the Application Context
After you create the application context, you are ready to create a package to set the
context.

• As user sysadmin_vpd, create the following PL/SQL package, which will set the
database session-based application context when the customers tbrooke and
owoods log onto their accounts.

CREATE OR REPLACE PACKAGE orders_ctx_pkg IS
 PROCEDURE set_custnum;
 END;
/
CREATE OR REPLACE PACKAGE BODY orders_ctx_pkg IS
 PROCEDURE set_custnum
 AS
 custnum NUMBER;
 BEGIN
 SELECT cust_no INTO custnum FROM SCOTT.CUSTOMERS
 WHERE cust_email = SYS_CONTEXT('USERENV', 'SESSION_USER');
 DBMS_SESSION.SET_CONTEXT('orders_ctx', 'cust_no', custnum);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN NULL;

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-34

 END set_custnum;
END;
/

In this example:

– custnum NUMBER creates the custnum variable, which will hold the customer ID.

– SELECT cust_no INTO custnum performs a SELECT statement to copy the
customer ID that is stored in the cust_no column data from the
scott.customers table into the custnum variable.

– WHERE cust_email = SYS_CONTEXT('USERENV', 'SESSION_USER') uses a
WHERE clause to find all the customer IDs that match the user name of the user
who is logging on.

– DBMS_SESSION.SET_CONTEXT('orders_ctx', 'cust_no', custnum) sets the
orders_ctx application context values by creating the cust_no attribute and
then setting it to the value stored in the custnum variable.

– EXCEPTION ... WHEN adds a WHEN NO_DATA_FOUND system exception to catch
any no data found errors that may result from the SELECT statement in the
SELECT cust_no INTO custnum ... statement.

To summarize, the sysadmin_vpd.set_cust_num procedure identifies whether or not
the session user is a registered customer by attempting to select the user's customer
ID into the custnum variable. If the user is a registered customer, then Oracle
Database sets an application context value for this user. As you will see in Step 6:
Create a PL/SQL Policy Function to Limit User Access to Their Orders, the policy
function uses the context value to control the access a user has to data in the
orders_tab table.

Step 4: Create a Logon Trigger to Run the Application Context PL/SQL
Package

The logon trigger runs the PL/SQL package procedure so that the next time a user
logs on, the application context is set.

• As user sysadmin_vpd, create the following logon trigger:

CREATE TRIGGER set_custno_ctx_trig AFTER LOGON ON DATABASE
 BEGIN
 sysadmin_vpd.orders_ctx_pkg.set_custnum;
 END;
/

Related Topics

• Logon Triggers to Run a Database Session Application Context Package
Users must run database session application context package after when they log
in to the database instance.

Step 5: Test the Logon Trigger
The logon trigger sets the application context for the user when the trigger runs the
sysadmin_vpd.orders_ctx_pkg.set_custnum procedure.

1. Connect as user tbrooke.

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-35

CONNECT tbrooke -- For a CDB, connect to the PDB, e.g., @hrpdb
Enter password: password

2. Execute the following query:

SELECT SYS_CONTEXT('orders_ctx', 'cust_no') custnum FROM DUAL;

The following output should appear:

EMP_ID

1234

Step 6: Create a PL/SQL Policy Function to Limit User Access to Their Orders
The next step is to create a PL/SQL function to control the display of the user’s query.

When the user who has logged in performs a SELECT * FROM scott.orders_tab
query, the function should cause the output to display only the orders of that user.

1. Connect as user sysadmin_vpd.

CONNECT sysadmin_vpd -- Or, CONNECT sysadmin_vpd@hrpdb
Enter password: password

2. Create the following function:

CREATE OR REPLACE FUNCTION get_user_orders(
 schema_p IN VARCHAR2,
 table_p IN VARCHAR2)
 RETURN VARCHAR2
 AS
 orders_pred VARCHAR2 (400);
 BEGIN
 orders_pred := 'cust_no = SYS_CONTEXT(''orders_ctx'', ''cust_no'')';
 RETURN orders_pred;
END;
/

This function creates and returns a WHERE predicate that translates to "where the
orders displayed belong to the user who has logged in." It then appends this WHERE
predicate to any queries this user may run against the scott.orders_tab table. Next,
you are ready to create an Oracle Virtual Private Database policy that applies this
function to the orders_tab table.

Step 7: Create the New Security Policy
Finally, you are ready to create the VPD security policy.

• As user sysadmin_vpd, use the DBMS_RLS.ADD_POLICY procedure to create the
policy as follows:

BEGIN
 DBMS_RLS.ADD_POLICY (
 object_schema => 'scott',
 object_name => 'orders_tab',
 policy_name => 'orders_policy',
 function_schema => 'sysadmin_vpd',
 policy_function => 'get_user_orders',
 statement_types => 'select',
 policy_type => DBMS_RLS.CONTEXT_SENSITIVE,
 namespace => 'orders_ctx',

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-36

 attribute => 'cust_no');
END;
/

This statement creates a policy named orders_policy and applies it to the
orders_tab table, which customers will query for their orders, in the SCOTT schema.
The get_user_orders function implements the policy, which is stored in the
sysadmin_vpd schema. The policy further restricts users to issuing SELECT statements
only. The namespace and attribute parameters specify the application context that
you created earlier.

Step 8: Test the New Policy
Now that you have created all the components, you are ready to test the policy.

1. Connect as user tbrooke.

CONNECT tbrooke -- Or, CONNECT tbrooke@hrpdb
Enter password: password

User tbrooke can log on because he has passed the requirements you defined in
the application context.

2. As user tbrooke, access your purchases.

SELECT * FROM scott.orders_tab;

The following output should appear:

 CUST_NO ORDER_NO
---------- ----------
 1234 9876

User tbrooke has passed the second test. He can access his own orders in the
scott.orders_tab table.

3. Connect as user owoods, and then access your purchases.

CONNECT owoods -- For a CDB, connect to the PDB, e.g., @hrpdb
Enter password: password

SELECT * FROM scott.orders_tab

The following output should appear:

 CUST_NO ORDER_NO
---------- ----------
 5678 5432
 5678 4592

As with user tbrooke, user owoods can log on and see a listing of his own orders.

Note the following:

• You can create several predicates based on the position of a user. For example, a
sales representative would be able to see records only for his customers, and an
order entry clerk would be able to see any customer order. You could expand the
custnum_sec function to return different predicates based on the user position
context value.

• The use of an application context in a fine-grained access control package
effectively gives you a bind variable in a parsed statement. For example:

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-37

SELECT * FROM scott.orders_tab
WHERE cust_no = SYS_CONTEXT('order_entry', 'cust_num');

This is fully parsed and optimized, but the evaluation of the cust_num attribute
value of the user for the order_entry context takes place at run-time. This means
that you get the benefit of an optimized statement that executes differently for
each user who issues the statement.

Note:

You can improve the performance of the function in this tutorial by
indexing cust_no.

• You can set context attributes based on data from a database table or tables, or
from a directory server using Lightweight Directory Access Protocol (LDAP).

Note:

Oracle Database PL/SQL Language Reference for more information about
triggers

Compare this tutorial, which uses an application context within the dynamically
generated predicate, with About Oracle Virtual Private Database Policies, which uses
a subquery in the predicate.

Step 9: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

1. Connect as user SCOTT.

CONNECT SCOTT -- Or, CONNECT SCOTT@hrpdb
Enter password: password

2. Remove the orders_tab and customers tables.

DROP TABLE orders_tab;
DROP TABLE customers;

3. Connect as user SYS, connecting with AS SYSDBA.

CONNECT SYS AS SYSDBA -- Or, CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

4. Run the following statements to drop the components for this tutorial:

DROP CONTEXT orders_ctx;
DROP USER sysadmin_vpd CASCADE;
DROP USER tbrooke;
DROP USER owoods;

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-38

Tutorial: Implementing an Oracle Virtual Private Database Policy
Group

This tutorial demonstrates how to create an Oracle Virtual Private Database policy
group.

• About This Tutorial
This tutorial shows how you can use Oracle Virtual Private Database (VPD) to
create a policy group.

• Step 1: Create User Accounts and Other Components for This Tutorial
First, you must create user accounts and tables for this tutorial, and grant the
appropriate privileges.

• Step 2: Create the Two Policy Groups
Next, you must create a policy group for each of the two nondatabase users,
provider_a and provider_b.

• Step 3: Create PL/SQL Functions to Control the Policy Groups
A policy group must have a function that defines how the application can control
data access for users.

• Step 4: Create the Driving Application Context
The application context determines which policy the nondatabase user who is the
logging on should use.

• Step 5: Add the PL/SQL Functions to the Policy Groups
Now that you have created the necessary functions, you are ready to associate
them with their appropriate policy groups.

• Step 6: Test the Policy Groups
Now you are ready to test the two policy groups.

• Step 7: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

About This Tutorial
This tutorial shows how you can use Oracle Virtual Private Database (VPD) to create a
policy group.

Oracle Virtual Private Database Policy Groups describes how you can group a set of
policies for use in an application. When a nondatabase user logs onto the application,
Oracle Database grants the user access based on the policies defined within the
appropriate policy group.

For column-level access control, every column or set of hidden columns is controlled
by one policy. In this tutorial, you must hide two sets of columns. So, you must create
two policies, one for each set of columns that you want to hide. You only want one
policy for each user; the driving application context separates the policies for you.

Note:

If you are using a multitenant environment, then this tutorial applies to the
current PDB only.

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-39

Step 1: Create User Accounts and Other Components for This Tutorial
First, you must create user accounts and tables for this tutorial, and grant the
appropriate privileges.

1. Log on as user SYS with the SYSDBA administrative privilege.

sqlplus sys as sysdba
Enter password: password

2. In a multitenant environment, connect to the appropriate PDB.

For example:

CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

To find the available PDBs, run the show pdbs command. To check the current
PDB, run the show con_name command.

3. Create the following local users:

CREATE USER apps_user IDENTIFIED BY password CONTAINER = CURRENT;
GRANT CREATE SESSION TO apps_user;
CREATE USER sysadmin_pg IDENTIFIED BY password CONTAINER = CURRENT;
GRANT CREATE SESSION, CREATE PROCEDURE, CREATE ANY CONTEXT TO sysadmin_pg;

Follow the guidelines in Minimum Requirements for Passwords to replace
password with a password that is secure.

4. Grant the following additional privilege to user sysadmin_pg:

GRANT EXECUTE ON DBMS_RLS TO sysadmin_pg;

5. Log on as user OE.

CONNECT OE -- Or, CONNECT OE@hrpdb
Enter password: password

If the OE account is locked and expired, then reconnect as user SYS with the
SYSDBA administrative privilege and enter the following statement to unlock the
account and give it s new password:

ALTER USER OE ACCOUNT UNLOCK IDENTIFIED BY password;

Replace password with a password that is secure. For greater security, do not
reuse the same password that was used in previous releases of Oracle Database.

6. Create the product_code_names table:

CREATE TABLE product_code_names(
group_a varchar2(32),
year_a varchar2(32),
group_b varchar2(32),
year_b varchar2(32));

7. Insert some values into the product_code_names table:

INSERT INTO product_code_names values('Biffo','2008','Beffo','2004');
INSERT INTO product_code_names values('Hortensia','2008','Bunko','2008');
INSERT INTO product_code_names values('Boppo','2006','Hortensia','2003');

COMMIT;

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-40

8. Grant the apps_user user SELECT privileges on the product_code_names table.

GRANT SELECT ON product_code_names TO apps_user;

Step 2: Create the Two Policy Groups
Next, you must create a policy group for each of the two nondatabase users,
provider_a and provider_b.

1. Connect as user sysadmin_pg.

CONNECT sysadmin_pg -- Or, CONNECT sysadmin_pg@hrpdb
Enter password: password

2. Create the provider_a_group policy group, to be used by user provider_a:

BEGIN
 DBMS_RLS.CREATE_POLICY_GROUP(
 object_schema => 'oe',
 object_name => 'product_code_names',
 policy_group => 'provider_a_group');
END;
/

3. Create the provider_b_group policy group, to be used by user provider_b:

BEGIN
 DBMS_RLS.CREATE_POLICY_GROUP(
 object_schema => 'oe',
 object_name => 'product_code_names',
 policy_group => 'provider_b_group');
END;
/

Step 3: Create PL/SQL Functions to Control the Policy Groups
A policy group must have a function that defines how the application can control data
access for users.

The function that you will create for this policy group applies to users provider_a and
provider_b.

1. Create the vpd_function_provider_a function, which restricts the data accessed
by user provider_a.

CREATE OR REPLACE FUNCTION vpd_function_provider_a
 (schema in varchar2, tab in varchar2) return varchar2 as
 predicate varchar2(8) default NULL;
 BEGIN
 IF LOWER(SYS_CONTEXT('USERENV','CLIENT_IDENTIFIER')) = 'provider_a'
 THEN predicate := '1=2';
 ELSE NULL;
 END IF;
 RETURN predicate;
END;
/

This function checks that the user logging in is really user provider_a. If this is
true, then only the data in the product_code_names table columns group_a and
year_a will be visible to provider_a. Data in columns group_b and year_b will not
appear for provider_a. This works as follows: Setting predicate := '1=2' hides

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-41

the relevant columns. In Step 5: Add the PL/SQL Functions to the Policy Groups,
you specify these columns in the SEC_RELEVANT_COLS parameter.

2. Create the vpd_function_provider_b, function, which restricts the data accessed
by user provider_a.

CREATE OR REPLACE FUNCTION vpd_function_provider_b
 (schema in varchar2, tab in varchar2) return varchar2 as
 predicate varchar2(8) default NULL;
 BEGIN
 IF LOWER(SYS_CONTEXT('USERENV','CLIENT_IDENTIFIER')) = 'provider_b'
 THEN predicate := '1=2';
 ELSE NULL;
 END IF;
 RETURN predicate;
END;
/

Similar to the vpd_function_provider_a function, this function checks that the
user logging in is really user provider_b. If this is true, then only the data in the
columns group_b and year_b will be visible to provider_b, with data in the
group_a and year_a not appearing for provider_b. Similar to the
vpd_function_provider_a function, predicate := '1=2' hides the relevant
columns specified Step 5: Add the PL/SQL Functions to the Policy Groups in the
SEC_RELEVANT_COLS parameter.

Related Topics

• Function to Generate the Dynamic WHERE Clause
The Oracle Virtual Private Database (VPD) function defines the restrictions that
you want to enforce.

Step 4: Create the Driving Application Context
The application context determines which policy the nondatabase user who is the
logging on should use.

1. As user sysadmin_pg, create the driving application context as follows:

CREATE OR REPLACE CONTEXT provider_ctx USING provider_package;

2. Create the PL/SQL provider_package package for the application context.

CREATE OR REPLACE PACKAGE provider_package IS
 PROCEDURE set_provider_context (policy_group varchar2 default NULL);
END;
/
CREATE OR REPLACE PACKAGE BODY provider_package AS
 PROCEDURE set_provider_context (policy_group varchar2 default NULL) IS
 BEGIN
 CASE LOWER(SYS_CONTEXT('USERENV', 'CLIENT_IDENTIFIER'))
 WHEN 'provider_a' THEN
 DBMS_SESSION.SET_CONTEXT('provider_ctx','policy_group','PROVIDER_A_GROUP');
 WHEN 'provider_b' THEN
 DBMS_SESSION.SET_CONTEXT('provider_ctx','policy_group','PROVIDER_B_GROUP');
 END CASE;
 END set_provider_context;
END;
/

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-42

3. Associate the provider_ctx application context with the product_code_names
table, and then provide a name.

BEGIN
 DBMS_RLS.ADD_POLICY_CONTEXT(
 object_schema =>'oe',
 object_name =>'product_code_names',
 namespace =>'provider_ctx',
 attribute =>'policy_group');
END;
/

4. Grant the apps_user account the EXECUTE privilege for the provider_package
package.

GRANT EXECUTE ON provider_package TO apps_user;

Step 5: Add the PL/SQL Functions to the Policy Groups
Now that you have created the necessary functions, you are ready to associate them
with their appropriate policy groups.

1. Add the vpd_function_provider_a function to the provider_a_group policy
group.

BEGIN
 DBMS_RLS.ADD_GROUPED_POLICY(
 object_schema => 'oe',
 object_name => 'product_code_names',
 policy_group => 'provider_a_group',
 policy_name => 'filter_provider_a',
 function_schema => 'sysadmin_pg',
 policy_function => 'vpd_function_provider_a',
 statement_types => 'select',
 policy_type => DBMS_RLS.CONTEXT_SENSITIVE,
 sec_relevant_cols => 'group_b,year_b',
 sec_relevant_cols_opt => DBMS_RLS.ALL_ROWS,
 namespace => 'provider_ctx',
 attribute => 'provider_group');
END;
/

The group_b and year_b columns specified in the sec_relevant_cols parameter
are hidden from user provider_a.

2. Add the vpd_function_provider_b function to the provider_b_group policy
group.

BEGIN
 DBMS_RLS.ADD_GROUPED_POLICY(
 object_schema => 'oe',
 object_name => 'product_code_names',
 policy_group => 'provider_b_group',
 policy_name => 'filter_provider_b',
 function_schema => 'sysadmin_pg',
 policy_function => 'vpd_function_provider_b',
 statement_types => 'select',
 policy_type => DBMS_RLS.CONTEXT_SENSITIVE,
 sec_relevant_cols => 'group_a,year_a',
 sec_relevant_cols_opt => DBMS_RLS.ALL_ROWS,
 namespace => 'provider_ctx',
 attribute => 'provider_group');

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-43

END;
/

The group_a and year_a columns specified in the sec_relevant_cols parameter
are hidden from user provider_b.

Step 6: Test the Policy Groups
Now you are ready to test the two policy groups.

1. Connect as user apps_user and then enter the following statements to ensure that
the output you will create later on is nicely formatted.

CONNECT apps_user -- Or, CONNECT apps_user@hrpdb
Enter password: password

col group_a format a16
col group_b format a16;
col year_a format a16;
col year_b format a16;

2. Set the session identifier to provider_a.

EXEC DBMS_SESSION.SET_IDENTIFIER('provider_a');

Here, the application sets the identifier. Setting the identifier to provider_a sets
the apps_user user to a user who should only see the products available to
products in the provider_a_group policy group.

3. Run the provider_package to set the policy group based on the context.

EXEC sysadmin_pg.provider_package.set_provider_context;

At this stage, you can check the application context was set, as follows:

SELECT SYS_CONTEXT('USERENV', 'CLIENT_IDENTIFIER') AS END_USER FROM DUAL;

The following output should appear:

END_USER

provider_a

4. Enter the following SELECT statement:

SELECT * FROM oe.product_code_names;

The following output should appear:

GROUP_A YEAR_A GROUP_B YEAR_B
---------------- ---------------- ---------------- ----------------
Biffo 2008
Hortensia 2008
Boppo 2006

5. Set the client identifier to provider_b and then enter the following statements:

EXEC DBMS_SESSION.SET_IDENTIFIER('provider_b');
EXEC sysadmin_pg.provider_package.set_provider_context;
SELECT * FROM oe.product_code_names;

The following output should appear:

Chapter 12
Tutorials: Creating Oracle Virtual Private Database Policies

12-44

GROUP_A YEAR_A GROUP_B YEAR_B
---------------- ---------------- ---------------- ----------------
 Beffo 2004
 Bunko 2008
 Hortensia 2003

Step 7: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

1. Connect as user OE.

CONNECT OE -- Or, CONNECT OE@hrpdb
Enter password: password

2. Drop the product_code_names table.

DROP TABLE product_code_names;

3. Connect as user SYS with the SYSDBA administrative privilege.

CONNECT SYS AS SYSDBA -- Or, CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

4. Drop the application context and users for this tutorial.

DROP CONTEXT provider_ctx;
DROP USER sysadmin_pg cascade;
DROP USER apps_user;

How Oracle Virtual Private Database Works with Other
Oracle Features

You should be aware of the impact of using Oracle Virtual Private Database with other
Oracle features.

• Oracle Virtual Private Database Policies with Editions
You should be aware of how to use Oracle VPD with editions.

• SELECT FOR UPDATE Statement in User Queries on VPD-Protected Tables
As a general rule, users should not include the FOR UPDATE clause when querying
Virtual Private Database-protected tables.

• Oracle Virtual Private Database Policies and Outer or ANSI Joins
Oracle Virtual Private Database rewrites SQL by using dynamic views.

• Oracle Virtual Private Database Security Policies and Applications
An Oracle Virtual Private Database security policy is applied within the database
itself, rather than within an application.

• Automatic Reparsing for Fine-Grained Access Control Policies Functions
Queries against objects enabled with fine-grained access control run the policy
function so that the most current predicate is used for each policy.

• Oracle Virtual Private Database Policies and Flashback Queries
Operations on the database use the most recently committed data available.

• Oracle Virtual Private Database and Oracle Label Security
You can use Oracle Virtual Private Database with Oracle Label Security, but when
you do, you should be aware of security exceptions.

Chapter 12
How Oracle Virtual Private Database Works with Other Oracle Features

12-45

• Export of Data Using the EXPDP Utility access_method Parameter
Be aware if you try to export data from objects that have VPD policies defined on
them.

• User Models and Oracle Virtual Private Database
You can use Oracle Virtual Private Database in several types of user models.

Oracle Virtual Private Database Policies with Editions
You should be aware of how to use Oracle VPD with editions.

If you are preparing an application for edition-based redefinition, and you cover each
table that the application uses with an editioning view, then you must move the Virtual
Private Database polices that protect these tables to the editioning view.

When an editioned object has a Virtual Private Database policy, then it applies in all
editions in which the object is visible. When an editioned object is actualized, any VPD
policies that are attached to it are newly attached to the new actual occurrence. When
you newly apply a VPD policy to an inherited editioned object, this action will actualize
it.

See Also:

Oracle Database Development Guide for detailed information about editions

SELECT FOR UPDATE Statement in User Queries on VPD-Protected
Tables

As a general rule, users should not include the FOR UPDATE clause when querying
Virtual Private Database-protected tables.

The Virtual Private Database technology depends on rewriting the user's query against
an inline view that includes the VPD predicate generated by the VPD policy function.
Because of this, the same limitations on views also apply to VPD-protected tables. If a
user's query against a VPD-protected table includes the FOR UPDATE clause in a
SELECT statement, in most cases, the query may not work. However, the user's query
may work in some situations if the inline view generated by VPD is sufficiently simple.

See Also:

Oracle Database SQL Language Reference for more information about the
restrictions of the FOR UPDATE clause in the SELECT statement

Oracle Virtual Private Database Policies and Outer or ANSI Joins
Oracle Virtual Private Database rewrites SQL by using dynamic views.

Chapter 12
How Oracle Virtual Private Database Works with Other Oracle Features

12-46

For SQL that contains outer join or ANSI operations, some views may not merge and
some indexes may not be used. This problem is a known optimization limitation. To
remedy this problem, rewrite the SQL to not use outer joins or ANSI operations.

Oracle Virtual Private Database Security Policies and Applications
An Oracle Virtual Private Database security policy is applied within the database itself,
rather than within an application.

Hence, a user trying to access data by using a different application cannot bypass the
Oracle Virtual Private Database security policy. Another advantage of creating the
security policy in the database is that you maintain it in one central place, rather than
maintaining individual security policies in multiple applications. Oracle Virtual Private
Database provides stronger security than application-based security, at a lower cost of
ownership.

You may want to enforce different security policies depending on the application that is
accessing data. Consider a situation in which two applications, Order Entry and
Inventory, both access the orders table. You may want to have the Inventory
application use a policy that limits access based on type of product. At the same time,
you may want to have the Order Entry application use a policy that limits access based
on customer number.

In this case, you must partition the use of fine-grained access by application.
Otherwise, both policies would be automatically concatenated together, which may not
be the result that you want. You can specify two or more policy groups, and a driving
application context that determines which policy group is in effect for a given
transaction. You can also designate default policies that always apply to data access.
In a hosted application, for example, data access should be limited by subscriber ID.

Related Topics

• Tutorial: Implementing an Oracle Virtual Private Database Policy Group
This tutorial demonstrates how to create an Oracle Virtual Private Database policy
group.

Automatic Reparsing for Fine-Grained Access Control Policies
Functions

Queries against objects enabled with fine-grained access control run the policy
function so that the most current predicate is used for each policy.

For example, in the case of a time-based policy function, in which queries are only
allowed between 8:00 a.m. and 5:00 p.m., a cursor execution parsed at noon runs the
policy function at that time, ensuring that the policy is consulted again for the query.
Even if the curser was parsed at 9 a.m., when it runs later on (for example, at noon),
then the Virtual Private Database policy function runs again to ensure that the
execution of the cursor is still permitted at the current time (noon). This ensures that
the security check it must perform is the most recent.

Automatic re-execution of the Virtual Private Database policy function does not occur
when you set the DBMS_RLS.ADD_POLICY setting STATIC_POLICY to TRUE while adding
the policy. This setting causes the policy function to return the same predicate.

Chapter 12
How Oracle Virtual Private Database Works with Other Oracle Features

12-47

Oracle Virtual Private Database Policies and Flashback Queries
Operations on the database use the most recently committed data available.

The flashback query feature enables you to query the database at some point in the
past.

To write an application that uses flashback query, you can use the AS OF clause in
SQL queries to specify either a time or a system change number (SCN), and then
query against the committed data from the specified time. You can also use the
DBMS_FLASHBACK PL/SQL package, which requires more code, but enables you to
perform multiple operations, all of which refer to the same point in time.

However, if you use flashback query against a database object that is protected with
Oracle Virtual Private Database policies, then the current policies are applied to the
old data. Applying the current Oracle Virtual Private Database policies to flashback
query data is more secure because it reflects the most current business policy.

See Also:

• Oracle Database Development Guide for more information about the
flashback query feature and how to write applications that use it

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_FLASHBACK PL/SQL package

Oracle Virtual Private Database and Oracle Label Security
You can use Oracle Virtual Private Database with Oracle Label Security, but when you
do, you should be aware of security exceptions.

• Using Oracle Virtual Private Database to Enforce Oracle Label Security Policies
Oracle Virtual Private Database policies provide column or row-level access
control based on Oracle Label Security user authorizations.

• Oracle Virtual Private Database and Oracle Label Security Exceptions
Be aware of the security exceptions when you use Oracle Virtual Private Database
and Oracle Label Security.

Using Oracle Virtual Private Database to Enforce Oracle Label Security
Policies

Oracle Virtual Private Database policies provide column or row-level access control
based on Oracle Label Security user authorizations.

In general, you must perform the following steps:

1. When you create the Oracle Label Security policy, do not apply the policy to the
table that you want to protect. (The Virtual Private Database policy that you create
handles this for you.) In the SA_SYSDBA.CREATE_POLICY procedure, set the
default_options parameter to NO_CONTROL.

Chapter 12
How Oracle Virtual Private Database Works with Other Oracle Features

12-48

2. Create the Oracle Label Security label components and authorize users as you
normally would.

3. When you create the Oracle Virtual Private Database policy, do the following:

• In the PL/SQL function you create for the policy, use the Oracle Label Security
DOMINATES function to compare the authorization of the user with the label that
you created in Step 2. The DOMINATES function determines if the user
authorization is equal to, or if it is more sensitive than, the label used in the
comparison. If the user authorization passes, then the user is granted access
to the column. Otherwise, the user is denied access.

• In the Virtual Private Database policy definition, apply this function to the table
that you want to protect. In the DBMS_RLS.ADD_POLICY procedure, use the
sensitive column (SEC_RELEVANT_COLS parameter) and column masking
(SEC_RELEVANT_COLS_OPT parameter) functionality to show or hide columns
based on Oracle Label Security user authorizations.

See Also:

Oracle Label Security Administrator’s Guide for more information about the
dominance functions

Oracle Virtual Private Database and Oracle Label Security Exceptions
Be aware of the security exceptions when you use Oracle Virtual Private Database
and Oracle Label Security.

These security exceptions are as follows:

• When you are exporting data, Oracle Virtual Private Database and Oracle
Label Security policies are not enforced during a direct path export
operation. In a direct path export operation, Oracle Database reads data from
disk into the buffer cache and transfers rows directly to the Export client.

• You cannot apply Oracle Virtual Private Database policies and Oracle Label
Security policies to objects in the SYS schema. The SYS user and users
making a DBA-privileged connection to the database (for example, CONNECT/AS
SYSDBA) do not have Oracle Virtual Private Database or Oracle Label Security
policies applied to their actions. The database user SYS is thus always exempt
from Oracle Virtual Private Database or Oracle Label Security enforcement,
regardless of the export mode, application, or utility used to extract data from the
database.

However, you can audit SYSDBA actions by enabling auditing upon installation and
specifying that this audit trail be stored in a secure location in the operating
system. You can also closely monitor the SYS user by using Oracle Database
Vault.

• Database users who were granted the EXEMPT ACCESS POLICY privilege,
either directly or through a database role, are exempt from Oracle Virtual
Private Database enforcements. The system privilege EXEMPT ACCESS POLICY
allows a user to be exempted from all fine-grained access control policies on any
SELECT or DML operation (INSERT, UPDATE, and DELETE). This provides ease of use

Chapter 12
How Oracle Virtual Private Database Works with Other Oracle Features

12-49

for administrative activities, such as installation and import and export of the
database, through a non-SYS schema.

However, the following policy enforcement options remain in effect even when
EXEMPT ACCESS POLICY is granted:

– INSERT_CONTROL, UPDATE_CONTROL, DELETE_CONTROL, WRITE_CONTROL,
LABEL_UPDATE, and LABEL_DEFAULT

– If the Oracle Label Security policy specifies the ALL_CONTROL option, then all
enforcement controls are applied except READ_CONTROL and CHECK_CONTROL.

Because EXEMPT ACCESS POLICY negates the effect of fine-grained access control,
you should only grant this privilege to users who have legitimate reasons for
bypassing fine-grained access control enforcement. Do not grant this privilege
using the WITH ADMIN OPTION. If you do, users could pass the EXEMPT ACCESS
POLICY privilege to other users, and thus propagate the ability to bypass fine-
grained access control.

Note:

• The EXEMPT ACCESS POLICY privilege does not affect the enforcement of
object privileges such as SELECT, INSERT, UPDATE, and DELETE. These
privileges are enforced even if a user was granted the EXEMPT ACCESS
POLICY privilege.

• The SYS_CONTEXT values that Oracle Virtual Private Database uses are
not propagated to secondary databases for failover.

See Also:

Oracle Database Utilities for more information about direct path export
operations

Export of Data Using the EXPDP Utility access_method Parameter
Be aware if you try to export data from objects that have VPD policies defined on
them.

If you try to use the Oracle Data Pump Export (EXPDP) utility with the access_method
parameter set to direct_path to export data from a schema that contains an object
that has a Virtual Private Database policy defined on it, then an ORA-31696 error
message may appear and the export operation will fail.

The error message is as follows:

ORA-31696: unable to export/import TABLE_DATA:"schema.table" using client specified
DIRECT_PATH method

This problem only occurs when you perform a schema-level export as a user who has
not been granted the EXP_FULL_DATABASE role. It does not occur during a full database
export, which requires the EXP_FULL_DATABASE role. The EXP_FULL_DATABASE role

Chapter 12
How Oracle Virtual Private Database Works with Other Oracle Features

12-50

includes the EXEMPT ACCESS POLICY system privilege, which bypasses Virtual Private
Database policies.

To find the underlying problem, try the EXPDP invocation again, but do not set the
access_method parameter to direct_path. Instead, use either automatic or
external_table. The underlying problem could be a permissions problem, for
example:

ORA-39181: Only partial table data may be exported due to fine grain access control
on "schema_name"."object_name"

See Also:

Oracle Database Utilities for more information about using Data Pump Export

User Models and Oracle Virtual Private Database
You can use Oracle Virtual Private Database in several types of user models.

These user models are as follows:

• Application users who are also database users. Oracle Database enables
applications to enforce fine-grained access control for each user, regardless of
whether that user is a database user or an application user unknown to the
database. When application users are also database users, Oracle Virtual Private
Database enforcement works as follows: users connect to the database, and then
the application sets up application contexts for each session. (You can use the
default USERENV application context namespace, which provides many parameters
for retrieve different types of user session data.) As each session is initiated under
a different user name, it can enforce different fine-grained access control
conditions for each user.

• Proxy authentication using OCI or JDBC/OCI. Proxy authentication permits
different fine-grained access control for each user, because each session (OCI or
JDBC/OCI) is a distinct database session with its own application context.

• Proxy authentication integrated with Enterprise User Security. If you have
integrated proxy authentication by using Enterprise User Security, you can retrieve
user roles and other attributes from Oracle Internet Directory to enforce Oracle
Virtual Private Database policies. (In addition, globally initialized application
context can also be retrieved from the directory.)

• Users connecting as One Big Application User. Applications connecting to the
database as a single user on behalf of all users can have fine-grained access
control for each user. The user for that single session is often called One Big
Application User. Within the context of that session, however, an application
developer can create a global application context attribute to represent the
individual application user (for example, REALUSER). Although all database
sessions and audit records are created for One Big Application User, the attributes
for each session can vary, depending on who the end user is. This model works
best for applications with a limited number of users and no reuse of sessions. The
scope of roles and database auditing is diminished because each session is
created as the same database user.

Chapter 12
How Oracle Virtual Private Database Works with Other Oracle Features

12-51

• Web-based applications. Web-based applications typically have hundreds of
users. Even when there are persistent connections to the database, supporting
data retrieval for many user requests, these connections are not specific to
particular Web-based users. Instead, Web-based applications typically set up and
reuse connections, to provide scalability, rather than having different sessions for
each user. For example, when Web users Jane and Ajit connect to a middle tier
application, it may establish a single database session that it uses on behalf of
both users. Typically, neither Jane nor Ajit is known to the database. The
application is responsible for switching the user name on the connection, so that,
at any given time, it is either Jane or Ajit using the session.

Oracle Virtual Private Database helps with connection pooling by allowing multiple
connections to access more than one global application context. This ability makes
it unnecessary to establish a separate application context for each distinct user
session.

Table 12-3 summarizes how Oracle Virtual Private Database applies to user models.

Table 12-3 Oracle Virtual Private Database in Different User Models

User Model Scenario Individual
Database

Connection

Separate
Application Context

per User

Single
Database
Connection

Application Must
Switch User Name

Application users are also
database users

Yes Yes No No

Proxy authentication using OCI
or JDBC/OCI

Yes Yes No No

Proxy authentication integrated
with Enterprise User Security1

No No Yes Yes

One Big Application User No No2 No Yes2

Web-based applications No No Yes Yes

1 User roles and other attributes, including globally initialized application context, can be retrieved from Oracle Internet Directory
to enforce Oracle Virtual Private Database.

2 Application developers can create a global application context attribute representing individual application users (for example,
REALUSER), which can then be used for controlling each session attributes, or for auditing.

Related Topics

• Global Application Contexts
You can use a global application context to access application values across
database sessions, including an Oracle Real Application Clusters environment.

Oracle Virtual Private Database Data Dictionary Views
Oracle Database provides data dictionary views that list information about Oracle
Virtual Private Database policies.

Table 12-4 lists Virtual Private Database-specific views

Chapter 12
Oracle Virtual Private Database Data Dictionary Views

12-52

Table 12-4 Data Dictionary Views That Display Information about VPD Policies

View Description

ALL_POLICIES Describes all Oracle Virtual Private Database security policies for objects
accessible to the current user.

ALL_POLICY_ATTRIBUTES Describes all the application context namespaces, attributes, and Virtual
Private Database policy associations where the logged in user is the owner of
the VPD policy or the VPD policy belongs to PUBLIC.

ALL_POLICY_CONTEXTS Describes the driving contexts defined for the synonyms, tables, and views
accessible to the current user. A driving context is an application context used
in an Oracle Virtual Private Database policy.

ALL_POLICY_GROUPS Describes the Oracle Virtual Private Database policy groups defined for the
synonyms, tables, and views accessible to the current user

ALL_SEC_RELEVANT_COLS Describes the security relevant columns of the security policies for the tables
and views accessible to the current user

DBA_POLICIES Describes all Oracle Virtual Private Database security policies in the
database.

DBA_POLICY_ATTRIBUTES Describes all the application context namespaces, attributes, and Virtual
Private Database policy associations for context-sensitive and shared
context-sensitive Virtual Private Database policies

DBA_POLICY_GROUPS Describes all policy groups in the database.

DBA_POLICY_CONTEXTS Describes all driving contexts in the database. Its columns are the same as
those in ALL_POLICY_CONTEXTS.

DBA_SEC_RELEVANT_COLS Describes the security relevant columns of all security policies in the database

UNIFIED_AUDIT_TRAIL Captures the VPD predicates in the RLS_INFO column, for unified auditing
and fine-grained auditing

USER_POLICIES Describes all Oracle Virtual Private Database security policies associated with
objects owned by the current user. This view does not display the
OBJECT_OWNER column.

USER_POLICY_ATTRIBUTES Describes all the application context namespaces, attributes, and Virtual
Private Database policy associations where the owner of the Virtual Private
Database policy is the current user

USER_POLICY_CONTEXTS Describes the driving contexts defined for the synonyms, tables, and views
owned by the current user. Its columns (except for OBJECT_OWNER) are the
same as those in ALL_POLICY_CONTEXTS.

USER_SEC_RELEVANT_COLS Describes the security relevant columns of the security policies for the tables
and views owned by the current user. Its columns (except for OBJECT_OWNER)
are the same as those in ALL_SEC_RELEVANT_COLS.

USER_POLICY_GROUPS Describes the policy groups defined for the synonyms, tables, and views
owned by the current user. This view does not display the OBJECT_OWNER
column.

V$VPD_POLICY For the current PDB, displays all the fine-grained security policies and
predicates associated with the cursors currently in the library cache. This view
is useful for finding the policies that were applied to a SQL statement.

Chapter 12
Oracle Virtual Private Database Data Dictionary Views

12-53

Tip:

In addition to these views, check the database trace file if you find errors in
application that use Virtual Private Database policies. The USER_DUMP_DEST
initialization parameter specifies the current location of the trace files. You
can find the value of this parameter by issuing SHOW PARAMETER
USER_DUMP_DEST in SQL*Plus.

See Also:

• Oracle Database Reference for more information about these views

• Oracle Database SQL Tuning Guide for more information about trace
files

Chapter 12
Oracle Virtual Private Database Data Dictionary Views

12-54

13
Using Transparent Sensitive Data
Protection

Transparent sensitive data protection enables you to find all table columns in a
database that hold sensitive data.

• About Transparent Sensitive Data Protection
Transparent sensitive data protection is a way to find and classify table columns
that hold sensitive information.

• General Steps for Using Transparent Sensitive Data Protection
To use TSDP with Oracle Data Redaction, you must follow a set of general steps.

• Use Cases for Transparent Sensitive Data Protection Policies
Transparent sensitive data protection has several benefits.

• Privileges Required for Using Transparent Sensitive Data Protection
To use transparent sensitive data protection, you must have the EXECUTE privilege
for several PL/SQL packages.

• How a Multitenant Environment Affects Transparent Sensitive Data Protection
In a multitenant environment, you can apply Transparent Sensitive Data Protection
policies to the current PDB or current application PDB only.

• Creating Transparent Sensitive Data Protection Policies
You must create a sensitive type, find the sensitive columns to be protected, and
then import these columns from ADM into your database.

• Altering Transparent Sensitive Data Protection Policies
The DBMS_TSDP_PROTECT.ALTER_POLICY procedure can alter a TSDP policy.

• Disabling Transparent Sensitive Data Protection Policies
The DBMS_TSDP_PROTECT.DISABLE_PROTECTION_COLUMN procedure disables one or
all TSDP policies.

• Dropping Transparent Sensitive Data Protection Policies
You can drop an entire TSDP policy or a condition-enable-options combination
from the policy.

• Using the Predefined REDACT_AUDIT Policy to Mask Bind Values
The predefined REDACT_AUDIT policy masks bind values, which can appear in trace
files when an event is set.

• Transparent Sensitive Data Protection Policies with Data Redaction
Oracle Data Redaction features work with transparent sensitive data protection
policies.

• Using Transparent Sensitive Data Protection Policies with Oracle VPD Policies
You can combine protections from TSDP and Oracle Virtual Private Database into
one policy.

• Using Transparent Sensitive Data Protection Policies with Unified Auditing
The transparent sensitive data protection and unified auditing procedures can
combine the protections of these two features.

13-1

• Using Transparent Sensitive Data Protection Policies with Fine-Grained Auditing
The transparent sensitive data protection and fine-grained auditing procedures can
combine the protections of these two features.

• Using Transparent Sensitive Data Protection Policies with TDE Column Encryption
The TSDP procedures and Transparent Data Encryption column encryption
statements can combine the protections of these two features.

• Transparent Sensitive Data Protection Data Dictionary Views
Oracle Database provides data dictionary views that list information about
transparent sensitive data protection policies.

About Transparent Sensitive Data Protection
Transparent sensitive data protection is a way to find and classify table columns that
hold sensitive information.

This feature enables you to quickly find the table columns in a database that hold
sensitive data, classify this data, and then create a policy that protects this data as a
whole for a given class. Examples of this type of sensitive data are credit card
numbers or Social Security numbers.

The TSDP policy then protects the sensitive data in these table columns by using
either Oracle Data Redaction or Oracle Virtual Private Database settings. The TSDP
policy applies at the column level of the table that you want to protect, targeting a
specific column data type, such as all NUMBER data types of columns that contain credit
card information. You can create a uniform TSDP policy for all of the data that you
classify, and then modify this policy as necessary, as compliance regulations change.
Optionally, you can export the TSDP policies for use in other databases.

The benefits of TSDP policies are enormous: You easily can create and apply TSDP
policies throughout a large organization with numerous databases. This helps auditors
greatly by enabling them to estimate the protection for the data that the TSDP policies
target. TSDP is particularly useful for government environments, in which you may
have a lot of data with similar security restrictions and you must apply a policy to all of
this data consistently. The policy could be to redact it, encrypt it, control access to it,
audit access to it, and mask it in the audit trail. Without TSDP, you would have to
configure every redaction policy, column-level encryption configuration, and Virtual
Private Database policy column by column.

General Steps for Using Transparent Sensitive Data
Protection

To use TSDP with Oracle Data Redaction, you must follow a set of general steps.

1. Create a sensitive type to classify the types of columns that you want to protect.

For example, you can create a sensitive type for classify all Social Security
numbers or credit card numbers. To create the sensitive type, either use the
DBMS_TSDP_MANAGE.ADD_SENSITIVE_TYPE PL/SQL procedure or use an Enterprise
Manager Cloud Control Application Data Model. To add multiple sensitive types in
one operation from an Application Data Model, you can use the
DBMS_TSDP_MANAGE.IMPORT_SENSITIVE_TYPES procedure.

2. Identify a list of sensitive columns that are associated with the sensitive types.

Chapter 13
About Transparent Sensitive Data Protection

13-2

To determine and generate this list, you can use either of the following methods:

• The DBMS_TSDP_MANAGE.ADD_SENSITIVE_COLUMN procedure individually
identifies sensitive columns.

• An Oracle Enterprise Manager Cloud Control Application Data Model enables
you to identify a group of sensitive columns. It then prepares this list of
sensitive columns in XML format, which you then import into your database.

3. If you used an Application Data Model for Step 2, then import the list of sensitive
columns from the Application Data Model into your database by using the
DBMS_TSDP_MANAGE.IMPORT_DISCOVERY_RESULT procedure.

4. Create the TSDP policy by using the DBMS_TSDP_PROTECT.ADD_POLICY procedure
within an anonymous block that defines the Data Redaction or Virtual Private
Database settings that you want to use.

5. Associate the TSDP policy with one or more sensitive types by using the
DBMS_TSDP_PROTECT.ASSOCIATE_POLICY procedure.

6. Enable the TSDP policy protections by using the
DBMS_TSDP_PROTECT.ENABLE_PROTECTION_SOURCE,
DBMS_TSDP_PROTECT.ENABLE_PROTECTION_COLUMN, or the
DBMS_TSDP_PROTECT.ENABLE_PROTECTION_TYPE procedure.

7. Optionally, export the TSDP policy to other databases by using Oracle Data Pump
to perform a full database export. (You cannot individually export TSDP policies.)

Use Cases for Transparent Sensitive Data Protection
Policies

Transparent sensitive data protection has several benefits.

These benefits are as follows:

• You configure the sensitive data protection once, and then deploy this
protection as necessary. You can configure transparent sensitive data protection
policies to designate how a class of data (for example, credit card columns) must
be protected without actually having to specify the target data. In other words,
when you create the transparent sensitive data protection policy, you do not need
to include references to the actual target columns that you want to protect. The
transparent sensitive data protection policy finds these target columns based on a
list of sensitive columns in the database and the policy's associations with the
specified sensitive types. This can be useful when you add more sensitive data to
your databases after you have created the transparent sensitive data protection
policies. After you create the policy, you can enable protection for the sensitive
data in a single step (for example, enable protection based on the entire source
database). The sensitive type of the new data and the sensitive type and policy
associations determine how the sensitive data is protected. In this way, as new
sensitive data is added, you do not need to configure its protection, as long as it
meets the current transparent sensitive data protection policy's requirements.

• You can manage protection of multiple sensitive columns. You can enable or
disable protection for multiple sensitive columns based on a suitable attribute
(such as the source database of the identification, the sensitive type itself, or a
specific schema, table, or column). This granularity provides a high level of control
over data security. The design of this feature enables you to manage data security
based on specific compliance needs for large data sets that fall under the purview

Chapter 13
Use Cases for Transparent Sensitive Data Protection Policies

13-3

of these compliance regulations. You can configure data security based on a
specific category rather than for each individual column. For example, you can
configure protection for credit card numbers or Social Security numbers, but you
do not need to configure protection for each and every column in the database that
contains this data.

• You can protect the sensitive columns identified using the Oracle Enterprise
Manager Cloud Control Application Data Modeling (ADM) feature. You can
use the Cloud Control ADM feature to create sensitive types and discover a list of
sensitive columns. Then you can import this list of sensitive columns and their
corresponding sensitive types into your database. From there, you can create and
manage transparent sensitive data protection policies using this information.

Privileges Required for Using Transparent Sensitive Data
Protection

To use transparent sensitive data protection, you must have the EXECUTE privilege for
several PL/SQL packages.

These privileges are as follows:

• DBMS_TSDP_MANAGE, which enables you to import and manage sensitive columns
and sensitive types into your database. The procedures in this package execute
with invoker's rights. Typically, an application database administrator will be
granted privileges for this package.

• DBMS_TSDP_PROTECT, which you use to create the TSDP policy. The procedures in
this package execute with invoker's rights. Typically, a security database
administrator will be granted privileges for this package.

• DBMS_REDACT, if you plan to create Data Redaction policies. Typically, a security
database administrator will be granted privileges for this package.

• DBMS_RLS, if you plan to incorporate Oracle Virtual Private Database functionality
into your TSDP policies. Typically, a security database administrator will be
granted privileges for this package.

For better separation of duty, these packages are designed so that either an
application database administrator has control over one area of the TSDP policy
creation (as in the case of the DBMS_TSDP_MANAGE package) or a security database
administrator (for the DBMS_TSDP_PROTECT, DBMS_REDACT, and DBMS_RLS packages).

How a Multitenant Environment Affects Transparent
Sensitive Data Protection

In a multitenant environment, you can apply Transparent Sensitive Data Protection
policies to the current PDB or current application PDB only.

If you are using Enterprise Manager Cloud Control Application Data Model, then you
can find sensitive columns that belong to both local and common application objects
(that is, common objects that are visible and accessible in the current PDB) inside the
PDB. This enables you to use a TSDP policy to protect both local objects to the PDB
and common objects that are accessible from the PDB.

In an application root:

Chapter 13
Privileges Required for Using Transparent Sensitive Data Protection

13-4

• For application containers in general:

– When you create scripts for application install, upgrade, patch, or uninstall
operations, you can include SQL statements within the ALTER PLUGGABLE
DATABASE app_name BEGIN INSTALL and ALTER PLUGGABLE DATABASE
app_name END INSTALL blocks to perform various operations. If you include
TSDP statements within these blocks, then the TSDP statements will fail. You
can, however, include TSDP statements outside these blocks in the script.

• In the application root:

– You can perform TSDP operations in both application common objects and
application root local objects.

– A TSDP policy that is defined in the application root container behaves as if it
is a local policy to the application root. That is, the policy is effective only in the
application root container.

In an application PDB:

• The security policies that protect an application PDB apply to TSDP operations
that are performed on local application objects.

• The security policies that protect an application PDB apply to TSDP operations
that are performed on application common objects that are accessed from the
PDB. However, access to the application common object outside the application
PDB is not governed by the security policy that protects the application PDB.

You can find a listing of TSDP policies and the security features that are associated
with them by querying the DBA_TSDP_POLICY_FEATURE data dictionary views. To
find all PDBs, query the DBA_PDBS view.

Creating Transparent Sensitive Data Protection Policies
You must create a sensitive type, find the sensitive columns to be protected, and then
import these columns from ADM into your database.

• Step 1: Create a Sensitive Type
The sensitive type is a class of data that you designate as sensitive.

• Step 2: Identify the Sensitive Columns to Protect
After you define a sensitive column, you are ready to identify the columns to
protect.

• Step 3: Import the Sensitive Columns List from ADM into Your Database
Next, you are ready to import the sensitive columns list from ADM into your
database.

• Step 4: Create the Transparent Sensitive Data Protection Policy
After you have created the list of sensitive columns and imported this list into your
database, you can create the transparent sensitive data protection policy.

• Step 5: Associate the Policy with a Sensitive Type
The DBMS_TSDP_PROTECT.ASSOCIATE_POLICY procedure associates a TSDP policy
with a sensitive type.

• Step 6: Enable the Transparent Sensitive Data Protection Policy
You can enable the TSDP policy for the current database in a protected source, a
specific table column, or a specific column type.

Chapter 13
Creating Transparent Sensitive Data Protection Policies

13-5

• Step 7: Optionally, Export the Policy to Other Databases
You can export or import the policy to or from another database.

Step 1: Create a Sensitive Type
The sensitive type is a class of data that you designate as sensitive.

For example, you can create a credit_card_type sensitive type for all credit card
numbers.

• To create a sensitive type, either create it from an Enterprise Manager Cloud
Control Application Data Model or use the
DBMS_TSDP_MANAGE.ADD_SENSITIVE_TYPE PL/SQL procedure.

To drop a sensitive type, you can use the
DBMS_TSDP_MANAGE.DROP_SENSITIVE_TYPE procedure.

For example, to create the sensitive type credit_card_num_type:

BEGIN
 DBMS_TSDP_MANAGE.ADD_SENSITIVE_TYPE (
 sensitive_type => 'credit_card_num_type',
 user_comment => 'Type for credit card columns using a number data type');
END;
/

In this example:

• sensitive_type: Create a name that describes the sensitive type that you want to
capture. This value is case sensitive, so when you reference it later on, ensure
that you use the case in which you created it. You can find existing sensitive types
by querying the DBA_SENSITIVE_COLUMN_TYPES data dictionary view.

• user_comment: Optionally, enter a description for the sensitive type.

See Also:

• Oracle Database Testing Guide for detailed information about
Application Data Models

• Oracle Database PL/SQL Packages and Types Reference information
about the DBMS_TSDP_MANAGE.ADD_SENSITIVE_TYPE PL/SQL procedure

Step 2: Identify the Sensitive Columns to Protect
After you define a sensitive column, you are ready to identify the columns to protect.

To identify the columns to protect, based on the sensitive type that you defined, you
either can use an Enterprise Manager Cloud Control Application Data Model to identify
these columns, or you can use the DBMS_TSDP_MANAGE.ADD_SENSITIVE_COLUMN
procedure.

To remove the column from the list of sensitive columns for the database, you can use
the DBMS_TSDP_MANAGE.DROP_SENSITIVE_COLUMN procedure.

Chapter 13
Creating Transparent Sensitive Data Protection Policies

13-6

1. Find the sensitive type that you want to use.

For example:

SELECT NAME FROM DBA_SENSITIVE_COLUMN_TYPES;

NAME

credit_card_num_type

2. Execute the DBMS_TSDP_MANAGE.ADD_SENSITIVE_COLUMN procedure to associate
the sensitive type with a table column. Ensure that you enter the sensitive_type
parameter using the case in which you used to create the sensitive type.

For example:

BEGIN
 DBMS_TSDP_MANAGE.ADD_SENSITIVE_COLUMN(
 schema_name => 'OE',
 table_name => 'CUST_CC',
 column_name => 'CREDIT_CARD',
 sensitive_type => 'credit_card_num_type',
 user_comment => 'Sensitive column addition of credit_card_num_type');
END;
/

Step 3: Import the Sensitive Columns List from ADM into Your
Database

Next, you are ready to import the sensitive columns list from ADM into your database.

• If you had used an Application Data Model to create the list of sensitive columns,
then import this list into your database by running the
DBMS_TSDP_MANAGE.IMPORT_DISCOVERY_RESULT procedure.

If you had used the DBMS_TSDP_MANAGE.ADD_SENSITIVE_COLUMN procedure to
identify these columns, then you can bypass this step.

For example, to import the Cloud Control Application Data Model into the current
database:

BEGIN
 DBMS_TSDP_MANAGE.IMPORT_DISCOVERY_RESULT (
 discovery_result => xml_adm_result,
 discovery_source => 'ADM_Demo');
END;
/

In this example:

• discovery_result refers to the list of sensitive columns and their associated
sensitive types. This list is in XML format.

• discover_source refers to the name of the Application Data Model that contains
the list of sensitive columns referred by the discovery_result setting. You can
find a list of the Application Data Models from the Data Discovery and Modeling
page in Enterprise Manager Cloud Control. (To access this page, from the
Enterprise menu, select Quality Management, and then Data Discovery and
Modeling. You can find a list of the sensitive columns and their associated types
in the Sensitive Columns tab.)

Chapter 13
Creating Transparent Sensitive Data Protection Policies

13-7

Step 4: Create the Transparent Sensitive Data Protection Policy
After you have created the list of sensitive columns and imported this list into your
database, you can create the transparent sensitive data protection policy.

• About Creating the Transparent Sensitive Data Protection Policy
The DBMS_TSDP_PROTECT.ADD_POLICY procedure creates the transparent sensitive
data protection policy.

• Creating the Transparent Sensitive Data Protection Policy
You can create a transparent sensitive data protection policy that uses a partial
number data type-based Data Redaction policy.

• Setting the Oracle Data Redaction or Virtual Private Database Feature Options
The TSDP feature options describe the Oracle Data Redaction or Virtual Private
Database settings to use for the transparent sensitive data protection policy.

• Setting Conditions for the Transparent Sensitive Data Protection Policy
Optionally, you can specify conditions for the transparent sensitive data protection
policy.

• Specifying the DBMS_TSDP_PROTECT.ADD_POLICY Procedure
The DBMS_TSDP_PROTECT.ADD_POLICY procedure names the TSDP policy and
executes the FEATURE_OPTIONS and POLICY_CONDITIONS settings.

About Creating the Transparent Sensitive Data Protection Policy
The DBMS_TSDP_PROTECT.ADD_POLICY procedure creates the transparent sensitive data
protection policy.

After you have identified the sensitive columns, and if you had used an Application
Data Model to create the list of sensitive columns, and imported this list into your
database, you are ready to create the transparent sensitive data protection policy. To
create the transparent sensitive data protection policy, you must configure it for the
Virtual Private Database or Oracle Data Redaction settings that you want to use, and
then apply these settings to a transparent sensitive data protection policy defined by
DBMS_TSDP_PROTECT.ADD_POLICY.

You can create the policy by defining an anonymous block that has the following
components:

• If you are using Oracle Data Redaction for your policy, a specification of the type
of Data Redaction that you want to use, such as partial Data Redaction

• If you are using Oracle Virtual Private Database for your policy, a specification of
the VPD settings that you want to use

• Conditions to test when the policy is enabled. For example, the data type of the
column which should be satisfied before the policy can be enabled.

• A named transparent sensitive data protection policy to tie these components
together, by using the DBMS_TSDP_PROTECT.ADD_POLICY procedure

After you create the sensitive type, it resides in the SYS schema.

Chapter 13
Creating Transparent Sensitive Data Protection Policies

13-8

Related Topics

• Tutorial: Creating a TSDP Policy That Uses Virtual Private Database Protection
This tutorial demonstrates how to incorporate Oracle Virtual Private Database
protection with a transparent sensitive data protection policy.

Creating the Transparent Sensitive Data Protection Policy
You can create a transparent sensitive data protection policy that uses a partial
number data type-based Data Redaction policy.

Example 13-1 shows how to create this type of policy.

• To create the policy, use the DBMS_TSDP_PROTECT.ADD_POLICY procedure, as
shown in Example 13-1.

Example 13-1 Creating a Transparent Sensitive Data Protection Policy

DECLARE
 redact_feature_options DBMS_TSDP_PROTECT.FEATURE_OPTIONS;
 policy_conditions DBMS_TSDP_PROTECT.POLICY_CONDITIONS;
BEGIN
 redact_feature_options ('expression') :=
 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') =''APPUSER''';
 redact_feature_options ('function_type') := 'DBMS_REDACT.PARTIAL';
 redact_feature_options ('function_parameters') := '0,1,6';
 policy_conditions(DBMS_TSDP_PROTECT.DATATYPE) := 'NUMBER';
 policy_conditions(DBMS_TSDP_PROTECT.LENGTH) := '16';
 DBMS_TSDP_PROTECT.ADD_POLICY ('redact_partial_cc',
 DBMS_TSDP_PROTECT.REDACT,redact_feature_options,
 policy_conditions);
END;
/

In this example:

• redact_feature_options DBMS_TSDP_PROTECT.FEATURE_OPTIONS creates the
variable redact_feature_options, which uses the FEATURE_OPTIONS data type.
See Setting the Oracle Data Redaction or Virtual Private Database Feature
Options for more information.

• policy_conditions DBMS_TSDP_PROTECT.POLICY_CONDITIONS creates the variable
policy_conditions, which uses the POLICY_CONDITIONS data type. See Setting
Conditions for the Transparent Sensitive Data Protection Policy for more
information.

• redact_feature_options lines (3) write the Data Redaction policy settings to the
redact_feature_option variable. This example applies the Data Redaction policy
to the user APPUSER and defines the policy as a partial data redaction for number
data types. See Oracle Database Advanced Security Guide for information about
how the function_parameters parameter works for this case.

• policy_conditions lines (2) write the TSDP policy conditions to the
policy_conditions variable (that is, the data type and length) for the protected
NUMBER data type column.

Chapter 13
Creating Transparent Sensitive Data Protection Policies

13-9

• DBMS_TSDP_PROTECT.ADD_POLICY executes the DBMS_TSDP_PROTECT.ADD_POLICY
procedure, which creates the redact_partial_cc TSDP policy. See Specifying the
DBMS_TSDP_PROTECT.ADD_POLICY Procedure for more information.

If you want to see an example of a similar policy for VPD, see Step 4: Create and
Enable a Transparent Sensitive Data Protection Policy.

Setting the Oracle Data Redaction or Virtual Private Database Feature Options
The TSDP feature options describe the Oracle Data Redaction or Virtual Private
Database settings to use for the transparent sensitive data protection policy.

• For Data Redaction, define the feature options by using the name
redact_feature_options variable and for the type, you must use the type
DBMS_TSDP_PROTECT.FEATURE_OPTIONS, which is an associative array of the data
type VARCHAR2(TSDP_PARAM_MAX). Initialize these options with the parameter-value
pairs that correspond with the DBMS_REDACT.ADD_POLICY parameters.

For example, to specify a TSDP policy that uses partial Data Redaction, Example 13-1
shows the following parameter-value pair:

redact_feature_options ('function_type') := 'DBMS_REDACT.PARTIAL';

For a partial Data Redaction policy that uses a number data type for the protected
column, Example 13-1 specifies the following additional parameter-value pairs:

redact_feature_options ('expression') := 'expression';
redact_feature_options ('function_parameters') := 'values';

Similarly, for Virtual Private Database, you use the vpd_feature_options variable to
define the VPD feature options. For example:

vpd_feature_options ('statement_types') := 'SELECT, INSERT, UPDATE, DELETE';

See Also:

• Oracle Database Advanced Security Guide for more information about
Data Redaction policy creation parameters

• DBMS_RLS.ADD_POLICY Parameters That Are Used for TSDP Policies
for more information about available VPD parameters

Setting Conditions for the Transparent Sensitive Data Protection Policy
Optionally, you can specify conditions for the transparent sensitive data protection
policy.

However, if you choose to omit conditions, you still must include the following line in
the DECLARE variables. (In this case, the default value for policy_conditions is an
empty associative array.)

policy_conditions SYS.DBMS_TSDP_PROTECT.POLICY_CONDITIONS;

• To define the conditions, use the name policy_conditions for the variable and for
the type, use type DBMS_TSDP_PROTECT.POLICY_CONDITIONS, which is an

Chapter 13
Creating Transparent Sensitive Data Protection Policies

13-10

associative array of the data type VARCHAR2(TSDP_PARAM_MAX). Ensure that no two
conditions are satisfied by a single target sensitive column. The target column's
properties should satisfy all the condition properties for the corresponding
DBMS_TSDP_PROTECT.FEATURE_OPTIONS settings to be applied on the column

Example 13-1 shows the policy conditions as follows:

policy_conditions(DBMS_TSDP_PROTECT.DATATYPE) := 'NUMBER';
policy_conditions(DBMS_TSDP_PROTECT.LENGTH) := '16';

Optionally, you can specify one or more of the following keys for the
POLICY_CONDITIONS settings:

• DBMS_TSDP_PROTECT.DATATYPE enables you to specify a data type.

• DBMS_TSDP_PROTECT.LENGTH enables you to specify a data type length for the
DBMS_TSDP_PROTECT.DATATYPE key.

• DBMS_TSDP_PROTECT.PARENT_SCHEMA enables you to restrict the policy to a specific
schema. If you omit this setting, then the policy applies to all schemas in the
database.

• DBMS_TSDP_PROTECT.PARENT_TABLE enables you to restrict the policy to a table
specified by the DBMS_TSDP_PROTECT.PARENT_SCHEMA key. If you omit this setting,
then the policy applies to all tables within the specified schema.

Specifying the DBMS_TSDP_PROTECT.ADD_POLICY Procedure
The DBMS_TSDP_PROTECT.ADD_POLICY procedure names the TSDP policy and executes
the FEATURE_OPTIONS and POLICY_CONDITIONS settings.

In the policy, the redact_feature_options and the policy_conditions settings work
together: When the policy is enabled (using any of the
DBMS_TSDP_PROTECT.ENABLE_PROTECTION* procedures) on the target object, then the
redact_feature_options settings apply only if the corresponding policy_condition
settings are satisfied. You must enter the following parameters:

• To specify a procedure that names the transparent sensitive data protection policy
and executes the necessary settings, include the following parameters:

– policy_name creates a name for the TSDP policy. The name that you enter is
stored in the database using the case sensitivity that you used when you
created it. For example, if you had entered redact_partial_cc, then the
database stores it as redact_partial_cc, not redact_partial_cc.

– security_feature refers to the security feature the TSDP policy will use.
Enter DBMS_TSDP_PROTECT.REDACT to specify Oracle Data Redaction.

– policy_enable_options refers to the variable that you defined for the
DBMS_TSDP_PROTECT.FEATURE_OPTIONS type.

– policy_apply_condition refers to the variable that you defined for the
DBMS_TSDP_PROTECT.POLICY_CONDITIONS type.

Example 13-1 shows the policy set as follows:

DBMS_TSDP_PROTECT.ADD_POLICY('redact_partial_cc', DBMS_TSDP_PROTECT.REDACT,
redact_feature_options, policy_conditions);

Chapter 13
Creating Transparent Sensitive Data Protection Policies

13-11

Step 5: Associate the Policy with a Sensitive Type
The DBMS_TSDP_PROTECT.ASSOCIATE_POLICY procedure associates a TSDP policy with
a sensitive type.

1. Find the sensitive type that you want to use.

For example, to find a list of all sensitive types:

SELECT NAME FROM DBA_SENSITIVE_COLUMN_TYPES ORDER BY NAME;

NAME

credit_card_num_type

2. Run the DBMS_TSDP_PROTECT.ASSOCIATE_POLICY procedure to associate the policy
with a sensitive column type.

For example:

BEGIN
 DBMS_TSDP_PROTECT.ASSOCIATE_POLICY(
 policy_name => 'redact_partial_cc',
 sensitive_type => 'credit_card_num_type',
 associate => true);
END;
/

The following query shows that the credit_card_num_type is now associated with
the redact_partial_cc policy.

SELECT POLICY_NAME, SENSITIVE_TYPE FROM DBA_TSDP_POLICY_TYPE ORDER BY
SENSITIVE_TYPE;

POLICY_NAME SENSITIVE_TYPE
----------------- --------------------
redact_partial_cc credit_card_num_type

Step 6: Enable the Transparent Sensitive Data Protection Policy
You can enable the TSDP policy for the current database in a protected source, a
specific table column, or a specific column type.

• Enabling Protection for the Current Database in a Protected Source
You can enable transparent sensitive data protection for the current database in a
protected source.

• Enabling Protection for a Specific Table Column
You can enable transparent sensitive data protection for a specific column in a
table.

• Enabling Protection for a Specific Column Type
You can enable transparent sensitive data protection for a specific column type,
such as all columns that use the VARCHAR2 data type.

Chapter 13
Creating Transparent Sensitive Data Protection Policies

13-12

Enabling Protection for the Current Database in a Protected Source
You can enable transparent sensitive data protection for the current database in a
protected source.

If you must disable the protection, then you can run the
DBMS_TSDP_PROTECT.DISABLE_PROTECTION_SOURCE procedure.

• Run the DBMS_TSDP_PROTECT.ENABLE_PROTECTION_SOURCE procedure to enable this
type of protection.

For example, to enable transparent sensitive data protection policies for the orders_db
database.

BEGIN
 DBMS_TSDP_PROTECT.ENABLE_PROTECTION_SOURCE(
 discovery_source => 'orders_db');
END;
/

Enabling Protection for a Specific Table Column
You can enable transparent sensitive data protection for a specific column in a table.

Remember that you can enable only one policy per table. If you must disable the
protection, then you can run the DBMS_TSDP_PROTECT.DISABLE_PROTECTION_COLUMN
procedure.

• Run the DBMS_TSDP_PROTECT.ENABLE_PROTECTION_COLUMN procedure to enable this
type of protection.

For example, to enable the transparent sensitive data protection policy
redact_partial_cc for a specific table column:

BEGIN
 DBMS_TSDP_PROTECT.ENABLE_PROTECTION_COLUMN(
 schema_name => 'OE',
 table_name => 'CUST_CC',
 column_name => 'CREDIT_CARD',
 policy => 'redact_partial_cc');
END;
/

If an ORA-45622: warnings generated during policy enforcement error appears,
then check the configuration of the policy. In this example, the redact_partial_cc
policy is enabled on a column if this column is of the NUMBER data type and has a
length of 16. Even though the OE.CUST_CC.CREDIT_CARD column is associated with the
redact_partial_cc policy, the policy is not enabled if this column fails to satisfy the
conditions (data type and length).

Enabling Protection for a Specific Column Type
You can enable transparent sensitive data protection for a specific column type, such
as all columns that use the VARCHAR2 data type.

If you must disable the protection, then you can run the
DBMS_TSDP_PROTECT.DISABLE_PROTECTION_TYPE procedure.

Chapter 13
Creating Transparent Sensitive Data Protection Policies

13-13

• Run the DBMS_TSDP_PROTECT.ENABLE_PROTECTION_TYPE procedure to enable this
type of protection.

For example, to enable transparent sensitive data protection for all columns that use
the credit_card_num_type sensitive type:

BEGIN
 DBMS_TSDP_PROTECT.ENABLE_PROTECTION_TYPE(
 sensitive_type => 'credit_card_num_type');
END;
/

Step 7: Optionally, Export the Policy to Other Databases
You can export or import the policy to or from another database.

• To export or import the TSDP policy to or from another database, use Oracle Data
Pump to perform a full export or import of the database that contains the policy.

Remember that the export and import operations apply to the entire database, not just
the transparent sensitive data protection policy.

See Also:

• Oracle Database Utilities for information about using Oracle Data Pump

• Oracle Database Vault Administrator’s Guide for information about using
Oracle Data Pump in an Oracle Database Vault environment

Altering Transparent Sensitive Data Protection Policies
The DBMS_TSDP_PROTECT.ALTER_POLICY procedure can alter a TSDP policy.

When you alter a transparent data protection policy, you must define how the Data
Redaction settings must change, and then apply these changes to the transparent
sensitive data protection policy itself.

You can find a list of existing policies and their protection definitions by querying the
DBA_TSDP_POLICY_FEATURE data dictionary view.

• To alter a transparent sensitive data protection policy, use the
DBMS_TSDP_PROTECT.ALTER_POLICY procedure.

For example, to alter an existing transparent sensitive data protection policy:

DECLARE
 redact_feature_options SYS.DBMS_TSDP_PROTECT.FEATURE_OPTIONS;
 policy_conditions SYS.DBMS_TSDP_PROTECT.POLICY_CONDITIONS;
 BEGIN
 redact_feature_options ('expression') :=
 'SYS_CONTEXT(''USERENV'',''SESSION_ USER'') =''APPUSER''';
 redact_feature_options ('function_type') := 'DBMS_REDACT.PARTIAL';
 redact_feature_options ('function_parameters') := '9,1,6';
 policy_conditions(DBMS_TSDP_PROTECT.DATATYPE) := 'NUMBER';
 policy_conditions(DBMS_TSDP_PROTECT.LENGTH) := '22';
 DBMS_TSDP_PROTECT.ALTER_POLICY ('redact_partial_cc',

Chapter 13
Altering Transparent Sensitive Data Protection Policies

13-14

 redact_feature_options, policy_conditions);
END;
/

In this example:

• redact_feature_options SYS.DBMS_TSDP_PROTECT.FEATURE_OPTIONS creates the
variable redact_feature_options, which uses the FEATURE_OPTIONS data type.

• policy_conditions SYS.DBMS_TSDP_PROTECT.POLICY_CONDITIONS creates the
variable policy_conditions, which uses the POLICY_CONDITIONS data type.

• redact_feature_options ... redact_feature_optionswrites the Data
Redaction policy settings to the redact_feature_option variable. This example
applies the Data Redaction policy to the user APPUSER, defines the policy as a
partial data redaction for number data types. See Oracle Database Advanced
Security Guide for information about how the function_parameters parameter
works for this case.

• policy_conditions ... policy_conditions writes the TSDP policy conditions to
the policy_conditions variable (that is, the data type and length) for the
protected NUMBER data type column.

• DBMS_TSDP_PROTECT.ALTER_POLICY ... executes the
DBMS_TSDP_PROTECT.ALTER_POLICY procedure, which alters the
redact_partial_cc TSDP policy to use the definitions set in the
redact_feature_options and policy_conditions variables.

Disabling Transparent Sensitive Data Protection Policies
The DBMS_TSDP_PROTECT.DISABLE_PROTECTION_COLUMN procedure disables one or all
TSDP policies.

1. Query the DBA_TSDP_POLICY_PROTECTION data dictionary view to find the protected
columns and their associated transparent sensitive data protection policies.

For example:

SELECT COLUMN_NAME, TSDP_POLICY FROM DBA_TSDP_POLICY_PROTECTION WHERE TABLE_NAME
= 'CUST_CC';

COLUMN_NAME TSDP_POLICY
------------ ------------------
CREDIT_CARD redact_partial_cc

2. Run the DBMS_TSDP_PROTECT.DISABLE_PROTECTION_COLUMN procedure.

For example, to disable the redact_partial_cc policy on the CREDIT_CARD column
of the CUST_CC table:

BEGIN
 DBMS_TSDP_PROTECT.DISABLE_PROTECTION_COLUMN(
 schema_name => 'OE',
 table_name => 'CUST_CC',
 column_name => 'CREDIT_CARD',
 policy => 'redact_partial_cc');
END;
/

Chapter 13
Disabling Transparent Sensitive Data Protection Policies

13-15

You can use the % wildcard in this procedure to specify multiple items. For
example, to disable protection for any columns that begin with CREDIT, you could
enter the following:

BEGIN
 DBMS_TSDP_PROTECT.DISABLE_PROTECTION_COLUMN(
 schema_name => 'OE',
 table_name => 'CUST_CC',
 column_name => 'CREDIT%',
 policy => 'redact_partial_cc');
END;
/

To disable all transparent sensitive data protection policies for a table, you can
omit the policy parameter. For example:

BEGIN
 DBMS_TSDP_PROTECT.DISABLE_PROTECTION_COLUMN(
 schema_name => 'OE',
 table_name => 'CUST_CC',
 column_name => '%');
END;
/

Dropping Transparent Sensitive Data Protection Policies
You can drop an entire TSDP policy or a condition-enable-options combination from
the policy.

If the policy only has one condition-enable-options combination, then Oracle Database
drops the entire policy. You do not need to disable a policy before dropping it, but you
do need to drop its associated sensitive column first, then its sensitive type.

1. Query the POLICY_NAME column of the DBA_TSDP_POLICY_FEATURE data dictionary
view to find the policy that you want to drop.

SELECT POLICY_NAME FROM DBA_TSDP_POLICY_FEATURE;

POLICY_NAME

redact_partial_cc

Remember that you must be granted the SELECT_CATALOG_ROLE role to query the
transparent sensitive data protection data dictionary views.

2. Find the sensitive column that is associated with this policy.

For example:

SELECT COLUMN_NAME FROM DBA_TSDP_POLICY_PROTECTION WHERE TSDP_POLICY =
'redact_partial_cc';

COLUMN_NAME

CREDIT_CARD

3. Drop this sensitive column.

For example:

BEGIN
 DBMS_TSDP_MANAGE.DROP_SENSITIVE_COLUMN (

Chapter 13
Dropping Transparent Sensitive Data Protection Policies

13-16

 schema_name => 'OE',
 table_name => 'CUST_CC',
 column_name => 'CREDIT_CARD');
END;
/

4. Find the sensitive type that is associated with this policy.

For example:

SELECT SENSITIVE_TYPE FROM DBA_TSDP_POLICY_TYPE WHERE POLICY_NAME =
'redact_partial_cc';

SENSITIVE_TYPE

credit_card_num_type

5. Drop this sensitive type.

For example:

BEGIN
 DBMS_TSDP_MANAGE.DROP_SENSITIVE_TYPE (sensitive_type =>
'credit_card_num_type');END;
/

6. Run the DBMS_TSDP_PROTECT.DROP_POLICY procedure to drop the policy.

For example, to completely drop the policy:

BEGIN
 DBMS_TSDP_PROTECT.DROP_POLICY(
 policy_name => 'redact_partial_cc');
END;
/

To drop the default condition-enable options combination from the policy:

DECLARE
 policy_conditions DBMS_TSDP_PROTECT.POLICY_CONDITIONS;
BEGIN
 DBMS_TSDP_PROTECT.DROP_POLICY ('redact_partial_cc', policy_conditions);
END;
/

To drop the default condition-enable options combination from the policy based on
a specific condition:

DECLARE
 policy_conditions DBMS_TSDP_PROTECT.POLICY_CONDITIONS;
BEGIN
 policy_conditions (DBMS_TSDP_PROTECT.DATATYPE) := 'NUMBER';
 DBMS_TSDP_PROTECT.DROP_POLICY ('redact_partial_cc', policy_conditions);
END;
/

Using the Predefined REDACT_AUDIT Policy to Mask Bind
Values

The predefined REDACT_AUDIT policy masks bind values, which can appear in trace
files when an event is set.

Chapter 13
Using the Predefined REDACT_AUDIT Policy to Mask Bind Values

13-17

• About the REDACT_AUDIT Policy
The predefined REDACT_AUDIT transparent sensitive data protection policy masks
bind values.

• Variables Associated with Sensitive Columns
Bind variables affect the use of sensitive columns with conditions, SELECT items,
and INSERT or UPDATE operations.

• How Bind Variables on Sensitive Columns Behave with Views
A bind variable that appears in a query on a view is considered sensitive if the
view column references a sensitive column.

• Disabling the REDACT_AUDIT Policy
By default, the REDACT_AUDIT policy is enabled for all sensitive columns.

• Enabling the REDACT_AUDIT Policy
You can enable the REDACT_AUDIT policy for a specific sensitive column or for all
columns in the database.

About the REDACT_AUDIT Policy
The predefined REDACT_AUDIT transparent sensitive data protection policy masks bind
values.

The bind values of the bind variables that are used in SQL statements can appear in
audit records when auditing is configured. Similarly, bind values can appear in trace
files when the appropriate event is set. Bind values can also appear when you query
the V$SQL_BIND_DATA dynamic view.

The REDACT_AUDIT transparent sensitive data protection policy displays the data as an
asterisk (*) in audit records, trace files, and in V$SQL_BIND_DATA view queries. By
default the REDACT_AUDIT policy is associated with every sensitive type in the
database. When you identify a column as sensitive, by default, the REDACT_AUDIT
policy is enabled for it.

You can disable and enable the REDACT_AUDIT policy, but you cannot alter or drop it.

Variables Associated with Sensitive Columns
Bind variables affect the use of sensitive columns with conditions, SELECT items, and
INSERT or UPDATE operations.

• About Variables Associated with Sensitive Columns
You can associate variables with sensitive columns in TSDP policies.

• Bind Variables and Sensitive Columns in the Expressions of Conditions
You can include sensitive columns in SQL queries that have WHERE clauses.

• A Bind Variable and a Sensitive Column Appearing in the Same SELECT Item
If a column in a SELECT item is sensitive, then all the binds in the SELECT item are
considered sensitive.

• Bind Variables in Expressions Assigned to Sensitive Columns in INSERT or
UPDATE Operations
You can assign multiple bind variables to different columns in one INSERT or
UPDATE statement.

Chapter 13
Using the Predefined REDACT_AUDIT Policy to Mask Bind Values

13-18

About Variables Associated with Sensitive Columns
You can associate variables with sensitive columns in TSDP policies.

A bind variable can be considered to be sensitive or "associated" with a sensitive
column if the bind variable occurs in the same comparison condition as a sensitive
column, if it occurs in a SELECT statement alongside a sensitive column, or if it occurs
in an INSERT or UPDATE operation that involves a sensitive column.

Bind Variables and Sensitive Columns in the Expressions of Conditions
You can include sensitive columns in SQL queries that have WHERE clauses.

A SQL query that contains a WHERE clause can include sensitive columns and bind
variables for use with comparison operators such as =, IS, IS NOT, LIKE, BETWEEN, and
IN, as well as in subqueries.

In the following comparison query, the bind value in VAR1 is masked because VAR1 and
the sensitive column SALARY appear in the expression that is compared using the
comparison condition >.

SELECT EMPLOYEE_ID FROM HR.EMPLOYEES WHERE SALARY > :VAR1;

In the next query, the bind values in VAR1 and VAR2 are masked because VAR1, VAR2,
and the sensitive column SALARY appear in the expression that uses the comparison
equality condition =.

SELECT EMPLOYEE_ID FROM HR.EMPLOYEES WHERE SALARY + :VAR1 = TO_NUMBER(:VAR2,
'9G999D99');

For floating point conditions, the sensitive column and the bind variable appear in the
expression that is evaluated. In the following example, the bind value in VAR1 is
masked because VAR1 and the sensitive column SALARY appear in the expression for
the IS NOT NAN condition.

SELECT COUNT() FROM HR.EMPLOYEES WHERE (SALARY * :VAR1) IS NOT NAN;

In pattern matching conditions, the sensitive column and the bind variable appear as
arguments. In the following example, the bind value in VAR1 is masked because VAR1
and the sensitive column LAST_NAME are the arguments for the LIKE condition.

SELECT LAST_NAME FROM HR.EMPLOYEES WHERE LAST_NAME LIKE :VAR1;

For BETWEEN conditions, the sensitive column and the bind variable appear in the
expressions that are arguments. In the following example, bind values in VAR1 and
VAR2 are masked because VAR1, VAR2, and SALARY appear in expressions that are
arguments to the BETWEEN condition.

SELECT EMPLOYEE_ID FROM HR.EMPLOYEES WHERE SALARY BETWEEN :VAR1 AND :VAR2;

In the next example, the sensitive column and the bind variable are the arguments of
the IN condition. Here, the bind values in VAR1 and VAR2 are masked because VAR1,
VAR2, and the sensitive column SALARY appear as arguments to the IN condition.

SELECT COUNT() FROM HR.EMPLOYEES WHERE SALARY IN (:VAR1, :VAR2);

Chapter 13
Using the Predefined REDACT_AUDIT Policy to Mask Bind Values

13-19

When a condition has a nested subquery as an argument, the bind variables and
sensitive columns that appear in the nested subquery are not considered to be
associated with the condition. In the following query, the sensitive column SALARY and
the subquery are expressions for the greater-than condition >.

SELECT EMPLOYEE_ID FROM HR.EMPLOYEES WHERE SALARY > (SELECT SALARY FROM HR.EMPLOYEES
WHERE MANAGER_ID = :VAR1);

However, variable VAR1 is associated with column MANAGER_ID as variable VAR1 and
MANAGER_ID appears in expressions being compared using the condition =. Because
MANAGER_ID is not a sensitive column, variable VAR1 is not considered sensitive. The
variable VAR1 is not considered to be associated with the sensitive column SALARY.

In the case of the logical conditions, model conditions, multiset conditions, XML
conditions, compound conditions, IS OF type conditions, and EXISTS conditions, there
can be no cases where a bind variable and a sensitive column are associated with
each other. This is due to the structure or the nature of these conditions.

A Bind Variable and a Sensitive Column Appearing in the Same SELECT Item
If a column in a SELECT item is sensitive, then all the binds in the SELECT item are
considered sensitive.

For example, assume that HR.EMPLOYEES.SALARY and HR.EMPLOYEES.COMMISSION_PCT
are sensitive columns. In the following query, the bind variable VAR1 is considered
sensitive because it appears in the same SELECT item as the sensitive column SALARY,
so its bind value is masked.

SELECT (SALARY * :VAR1) AS BONUS AS FROM HR.EMPLOYEES WHERE EMPLOYEE_ID = :VAR2;

In the next example, the bind variable VAR1 is considered sensitive because it appears
in the same SELECT item as SALARY. VAR2 is considered sensitive because it appears in
the same SELECT item as the sensitive column COMMISSION_PCT.

SELECT (SALARY * :VAR1), (COMMISSION_PCT * :VAR2), (EMPNO + :VAR3) AS BONUS AS FROM
PAYROLL.ACCOUNT;

Bind Variables in Expressions Assigned to Sensitive Columns in INSERT or
UPDATE Operations

You can assign multiple bind variables to different columns in one INSERT or UPDATE
statement.

Consider the following INSERT statement:

INSERT INTO PAYROLL.ACCOUNT (ACCOUNT_NUM, SALARY) VALUES (:VAR1 * :VAR2 , :VAR3);

In this INSERT statement, the following takes place:

• The bind variables VAR1 and VAR2 appear in the expression (:VAR1 * :VAR2),
which is assigned to the sensitive column ACCOUNT_NUM.

• The bind variable VAR3 is assigned to sensitive column SALARY.

Consider the following UPDATE statement:

UPDATE PAYROLL.ACCOUNT SET ACCOUNT_NUM = :VAR1, SALARY = :VAR2;

Chapter 13
Using the Predefined REDACT_AUDIT Policy to Mask Bind Values

13-20

In this UPDATE statement, the following takes place:

• The bind variable VAR1 is assigned to sensitive column ACCOUNT_NUM.

• The bind variable VAR2 is assigned to sensitive column SALARY.

How Bind Variables on Sensitive Columns Behave with Views
A bind variable that appears in a query on a view is considered sensitive if the view
column references a sensitive column.

For example, suppose you identify the SALARY column in the HR.EMPLOYEES table as
sensitive. Then you create the view EMPLOYEES_VIEW as follows:

CREATE OR REPLACE VIEW HR.EMPLOYEES_VIEW AS SELECT * FROM HR.EMPLOYEES;

When a user references the SALARY column from this view in a SQL statement, any
bind variable that has been associated with the SALARY column is considered sensitive
and its bind value then masked.

SELECT EMPLOYEE_ID FROM HR.EMPLOYEES_VIEW WHERE SALARY = :VAR1;

In this case, the bind variable VAR1 is masked because it is associated with the
HR.EMPLOYEES_VIEW.SALARY column, which references the sensitive column
HR.EMPLOYEES.SALARY.

Disabling the REDACT_AUDIT Policy
By default, the REDACT_AUDIT policy is enabled for all sensitive columns.

You can disable it for a specific sensitive column or all sensitive columns, and when
needed, re-enable it. Remember that you cannot alter or delete the REDACT_AUDIT
policy.

• To disable the REDACT_AUDIT policy, use the
DBMS_TSDP_PROTECT.DISABLE_PROTECTION_COLUMN procedure.

For example, to disable the REDACT_AUDIT policy for the SALARY column of
HR.EMPLOYEES:

BEGIN
 DBMS_TSDP_PROTECT.DISABLE_PROTECTION_COLUMN(
 schema_name => 'HR',
 table_name => 'EMPLOYEES',
 column_name => 'SALARY',
 policy => 'REDACT_AUDIT');
END;
/

The following example shows how to disable the REDACT_AUDIT policy for all sensitive
columns in the current database.

BEGIN
 DBMS_TSDP_PROTECT.DISABLE_PROTECTION_COLUMN(
 policy => 'REDACT_AUDIT');
END;
/

Chapter 13
Using the Predefined REDACT_AUDIT Policy to Mask Bind Values

13-21

Enabling the REDACT_AUDIT Policy
You can enable the REDACT_AUDIT policy for a specific sensitive column or for all
columns in the database.

• To enable the REDACT_AUDIT policy, use the
DBMS_TSDP_PROTECT.DISABLE_PROTECTION_COLUMN procedure.

For example, to re-enable the REDACT_AUDIT policy for the SALARY column of
HR.EMPLOYEES:

BEGIN
 DBMS_TSDP_PROTECT.ENABLE_PROTECTION_COLUMN(
 schema_name => 'HR',
 table_name => 'EMPLOYEES',
 column_name => 'SALARY',
 policy => 'REDACT_AUDIT');
END;
/

The following example shows how to enable the REDACT_AUDIT policy for all sensitive
columns in the current database.

BEGIN
 DBMS_TSDP_PROTECT.ENSABLE_PROTECTION_COLUMN(
 policy => 'REDACT_AUDIT');
END;
/

Transparent Sensitive Data Protection Policies with Data
Redaction

Oracle Data Redaction features work with transparent sensitive data protection
policies.

The Data Redaction function types, function parameters, and expressions can be used
in the TSDP policy definition. For example, you can set the enable the TSDP policy to
use FULL or PARTIAL data redaction. This chapter uses Data Redaction for examples of
managing TSDP policies.

See Also:

• Creating Transparent Sensitive Data Protection Policies for an example
of how to create TSDP policies that use Data Redaction function types

• Oracle Database Advanced Security Guide for details about Oracle Data
Redaction

Chapter 13
Transparent Sensitive Data Protection Policies with Data Redaction

13-22

Using Transparent Sensitive Data Protection Policies with
Oracle VPD Policies

You can combine protections from TSDP and Oracle Virtual Private Database into one
policy.

• About Using TSDP Policies with Oracle Virtual Private Database Policies
To incorporate Oracle Virtual Private Database protection with transparent
sensitive data protection policies, you must use the DBMS_TSDP_PROTECT and
DBMS_RLS packages.

• DBMS_RLS.ADD_POLICY Parameters That Are Used for TSDP Policies
Oracle Database provides a set of parameters for fine-tuning the behavior of
TSDP policies.

• Tutorial: Creating a TSDP Policy That Uses Virtual Private Database Protection
This tutorial demonstrates how to incorporate Oracle Virtual Private Database
protection with a transparent sensitive data protection policy.

About Using TSDP Policies with Oracle Virtual Private Database
Policies

To incorporate Oracle Virtual Private Database protection with transparent sensitive
data protection policies, you must use the DBMS_TSDP_PROTECT and DBMS_RLS
packages.

This feature works as follows:

1. You create a VPD policy function with a suitable predicate. Later on, when you
create the TSDP policy, you will refer to this VPD policy function by using the
policy_function setting of the DBMS_RLS.ADD_POLICY procedure for the
feature_options parameter of the DBMS_TSDP_PROTECT.ADD_POLICY procedure.

2. You create a TSDP policy with the necessary VPD settings similar to the VPD
policy function.

The TSDP policy uses parameter settings from the DBMS_RLS.ADD_POLICY
procedure to provide VPD protection. Table 13-1 lists these parameters. Be aware
that parameters from the DBMS_RLS.ADD_GROUPED_POLICY policy are not supported.

3. You associate the TSDP policy with the necessary sensitive types by using the
DBMS_TSDP_PROTECT.ASSOCIATE_POLICY procedure.

4. You then enable TSDP protection by using any of the
DBMS_TSDP_PROTECT.ENABLE_PROTECTION_* procedures.

5. You enable the TSDP policy. At this point, Oracle Database creates an internal
VPD policy that uses the function that you created in Step 1.

The name of the internal policy begins with ORA$VPD followed by an identifier (for
example, ORA$VPD_6J6L3RSJSN2VAN0XF). You can find this policy by querying the
POLICY_NAME column of the DBA_POLICIES data dictionary view.

6. When users query the table, the output for the column is based on both the VPD
protections and the TSDP policy that are now in place.

Chapter 13
Using Transparent Sensitive Data Protection Policies with Oracle VPD Policies

13-23

7. These protections remain in place until you disable the TSDP policy for this
column. At that point, Oracle Database automatically drops the internal VPD
policy, because it is no longer needed. If you reenable the TSDP policy, then the
internal VPD policy is recreated.

Related Topics

• Function to Generate the Dynamic WHERE Clause
The Oracle Virtual Private Database (VPD) function defines the restrictions that
you want to enforce.

DBMS_RLS.ADD_POLICY Parameters That Are Used for TSDP
Policies

Oracle Database provides a set of parameters for fine-tuning the behavior of TSDP
policies.

Table 13-1 describes the DBMS_RLS.ADD_POLICY parameters that are permissible in the
FEATURE_OPTIONS parameter when you use the DBMS_TSDP_PROTECT.ADD_POLICY or
DBMS_TSDP_PROTECT.ALTER_POLICY procedure.

Table 13-1 DBMS_RLS.ADD_POLICY Parameters Used for TSDP Policies

Parameter Description Default

function_schema Schema of the policy function (current default
schema, if NULL). If no function_schema is
specified, then the current user's schema is
assumed.

NULL

policy_function Name of a function that generates a predicate for
the policy. If the function is defined within a package,
then you must include the name of the package (for
example, my_package.my_function).

NULL

statement_types Statement types to which the policy applies. It can
be any combination of INDEX, SELECT, INSERT,
UPDATE, or DELETE. The default is to apply to most
of these types except INDEX.

NULL

update_check Optional argument for INSERT or UPDATE statement
types. Setting update_check to TRUE sets Oracle
Database to check the policy against the value after
an INSERT or UPDATE operation.

The check applies only to the security relevant
columns that are included in the policy definition. In
other words, the INSERT or UPDATE operation will
fail only if the security relevant column that is defined
in the policy is added or updated in the INSERT or
UPDATE statement.

FALSE

static_policy If you set this value to TRUE, then Oracle Database
assumes that the policy function for the static policy
produces the same predicate string for anyone
accessing the object, except for SYS or the privileged
user who has the EXEMPT ACCESS POLICY
privilege.

FALSE

Chapter 13
Using Transparent Sensitive Data Protection Policies with Oracle VPD Policies

13-24

Table 13-1 (Cont.) DBMS_RLS.ADD_POLICY Parameters Used for TSDP
Policies

Parameter Description Default

policy_type Default is NULL, which means policy_type is
decided by the value of the static_policy
parameter. Specifying any of these policy types
overrides the value of static_policy.

NULL

long_predicate Default is FALSE, which means the policy function
can return a predicate with a length of up to 4000
bytes. TRUE means the predicate text string length
can be up to 32K bytes. Policies existing before the
availability of the long_predicate parameter retain
a 32K limit.

FALSE

sec_relevant_cols_opt If you specify this parameter, then transparent
sensitive data protection inputs the sensitive column
on which the protection is enabled to the
sec_relevant_cols parameter of the
DBMS_RLS.ADD_POLICY procedure.

Allowed values are for sec_relevant_cols_opt
are as follows:

• NULL enables the filtering defined with
sec_relevant_cols to take effect.

• DBMS_RLS.ALL_ROWS displays all rows, but with
sensitive column values, which are filtered by
the sec_relevant_cols parameter, they
display as NULL.

NULL

Related Topics

• Attaching a Policy to a Database Table, View, or Synonym
The DBMS_RLS PL/SQL package can attach a policy to a table, view, or synonym.

Tutorial: Creating a TSDP Policy That Uses Virtual Private Database
Protection

This tutorial demonstrates how to incorporate Oracle Virtual Private Database
protection with a transparent sensitive data protection policy.

• Step 1: Create the hr_appuser User Account
First, you must create a sample user account and then grant this user the
appropriate privileges.

• Step 2: Identify the Sensitive Columns
As the sample user tsdp_admin, you are ready to identify sensitive columns to
protect.

• Step 3: Create an Oracle Virtual Private Database Function
TSDP will associate the Oracle VPD policy function with the VPD policy that is
automatically created when the TSDP policy is enabled.

Chapter 13
Using Transparent Sensitive Data Protection Policies with Oracle VPD Policies

13-25

• Step 4: Create and Enable a Transparent Sensitive Data Protection Policy
After you have created the VPD policy function, you can associate it with a
transparent sensitive data protection policy.

• Step 5: Test the Transparent Sensitive Data Protection Policy
Now, you are ready to test the transparent sensitive data protection policy.

• Step 6: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

Step 1: Create the hr_appuser User Account
First, you must create a sample user account and then grant this user the appropriate
privileges.

1. Log into the database instance as user SYS with the SYSDBA administrative
privilege.

sqlplus sys as sysdba
Enter password: password

2. If you are using a multitenant environment, then connect to the appropriate
pluggable database (PDB).

For example:

CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

To find the available PDBs, run the show pdbs command. To check the current
PDB, run the show con_name command.

3. Create the following user accounts:

GRANT CREATE SESSION TO hr_appuser IDENTIFIED BY password;
GRANT CREATE SESSION TO tsdp_admin IDENTIFIED BY password;

Follow the guidelines in Minimum Requirements for Passwords to replace
password with a password that is secure.

4. Grant user tsdp_admin the following privileges:

GRANT CREATE PROCEDURE TO tsdp_admin;
GRANT EXECUTE ON DBMS_TSDP_MANAGE TO tsdp_admin;
GRANT EXECUTE ON DBMS_TSDP_PROTECT TO tsdp_admin;
GRANT EXECUTE ON DBMS_RLS to tsdp_admin;

5. Connect as user SCOTT.

CONNECT SCOTT -- Or, CONNECT SCOTT@hrpdb
Enter password: password

6. Grant the hr_appuser the READ object privilege for the EMP table.

GRANT READ ON EMP TO hr_appuser;

Step 2: Identify the Sensitive Columns
As the sample user tsdp_admin, you are ready to identify sensitive columns to protect.

1. Connect as user tsdp_admin.

Chapter 13
Using Transparent Sensitive Data Protection Policies with Oracle VPD Policies

13-26

CONNECT tsdp_admin -- Or, CONNECT tsdb_admin@hrpdb
Enter password: password

2. Create the salary_type sensitive type:

BEGIN
 DBMS_TSDP_MANAGE.ADD_SENSITIVE_TYPE (
 sensitive_type => 'salary_type',
 user_comment => 'Type for SCOTT.EMP column');
END;
/

3. Associate the salary_type sensitive type with the SCOTT.EMP table.

BEGIN
 DBMS_TSDP_MANAGE.ADD_SENSITIVE_COLUMN (
 schema_name => 'SCOTT',
 table_name => 'EMP',
 column_name => 'SAL',
 sensitive_type => 'salary_type',
 user_comment => 'Sensitive column addition of SALARY_TYPE');
END;
/

Step 3: Create an Oracle Virtual Private Database Function
TSDP will associate the Oracle VPD policy function with the VPD policy that is
automatically created when the TSDP policy is enabled.

• To create the VPD policy function, use the CREATE OR REPLACE FUNCTION
procedure, as follows:

CREATE OR REPLACE FUNCTION vpd_function (
 v_schema IN VARCHAR2,
 v_objname IN VARCHAR2)
 RETURN VARCHAR2 AS
BEGIN
 RETURN 'SYS_CONTEXT(''USERENV'',''SESSION_USER'') = ''HR_APPUSER''';
END vpd_function;
/

Step 4: Create and Enable a Transparent Sensitive Data Protection Policy
After you have created the VPD policy function, you can associate it with a transparent
sensitive data protection policy.

1. Create the Transparent Sensitive Data Protection policy.

DECLARE
 vpd_feature_options DBMS_TSDP_PROTECT.FEATURE_OPTIONS;
 policy_conditions DBMS_TSDP_PROTECT.POLICY_CONDITIONS;
BEGIN
 vpd_feature_options ('policy_function') := 'vpd_function';
 vpd_feature_options ('sec_relevant_cols_opt') := 'DBMS_RLS.ALL_ROWS';
 dbms_tsdp_protect.add_policy('tsdp_vpd', DBMS_TSDP_PROTECT.VPD,
vpd_feature_options, policy_conditions);
END;
/

In this example, the vpd_feature_options parameter refers to the
sec_relevant_cols_opt parameter from the DBMS_RLS.ADD_POLICY procedure.

Chapter 13
Using Transparent Sensitive Data Protection Policies with Oracle VPD Policies

13-27

When the TSDP policy is enabled, the VPD policy that is automatically created will
have its sec_relevant_cols parameter (of DBMS_RLS.ADD_POLICY) set to the name
of the sensitive column on which TSDP enables the VPD policy. If you had not
used the sec_relevant_cols_opt parameter, then TSDP would not have used the
DBMS_RLS.ADD_POLICY sec_relevant_cols_opt parameter.

2. Associate the tsdp_vpd1 TSDP policy with the salary_type sensitive type.

BEGIN
 DBMS_TSDP_PROTECT.ASSOCIATE_POLICY(
 policy_name => 'tsdp_vpd',
 sensitive_type => 'salary_type',
 associate => TRUE);
END;
/

3. Enable protection to enforce the Virtual Private Database policy on all columns
identified as SALARY_TYPE:

BEGIN
 DBMS_TSDP_PROTECT.ENABLE_PROTECTION_TYPE(
 sensitive_type => 'salary_type');
END;
/

Step 5: Test the Transparent Sensitive Data Protection Policy
Now, you are ready to test the transparent sensitive data protection policy.

1. Connect as user hr_appuser.

CONNECT hr_appuser -- Or, CONNECT hr_appuser@hrpdb
Enter password: password

2. Query the SCOTT.EMP table as follows:

SELECT SAL, COMM, EMPNO FROM SCOTT.EMP;

The following output appears:

 SAL COMM EMPNO
--------- ------ ----------
 800 7369
 1600 300 7499
 1250 500 7521
 2975 7566
 1250 1400 7654
 2850 7698
 2450 7782
 3000 7788
 5000 7839
 1500 0 7844
 1100 7876
 950 7900
 3000 7902
 1300 7934
14 rows selected.

The vpd_function function enables user hr_appuser to see the salaries in the SAL
column of the EMP table.

3. Connect as user SCOTT and then perform the same query.

Chapter 13
Using Transparent Sensitive Data Protection Policies with Oracle VPD Policies

13-28

CONNECT SCOTT -- Or, CONNECT SCOTT@hrpdb
Enter password: password

SELECT SAL, COMM, EMPNO FROM SCOTT.EMP;

The following output appears:

 SAL COMM EMPNO
--------- ------ ----------
 7369
 300 7499
 500 7521
 7566
 1400 7654
 7698
 7782
 7788
 7839
 0 7844
 7876
 7900
 7902
 7934
14 rows selected.

Even though SCOTT owns the EMP table, the vpd_function function prevents him
from seeing the salaries in the SAL column of this table

Step 6: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

1. Connect as user tsdp_admin.

CONNECT tsdp_admin -- Or, CONNECT tsdp_admin@hrpdb
Enter password: password

2. Execute the following statements in the order shown.

BEGIN
 DBMS_TSDP_MANAGE.DROP_SENSITIVE_COLUMN (
 schema_name => 'SCOTT',
 table_name => 'EMP',
 column_name => 'SAL');
END;
/

BEGIN
 DBMS_TSDP_MANAGE.DROP_SENSITIVE_TYPE(
 sensitive_type => 'salary_type');
END;
/

BEGIN
 DBMS_TSDP_PROTECT.DROP_POLICY(
 policy_name => 'tsdp_vpd');
END;
/

3. Connect as user SYSTEM.

Chapter 13
Using Transparent Sensitive Data Protection Policies with Oracle VPD Policies

13-29

CONNECT SYSTEM -- Or, CONNECT SYSTEM@hrpdb
Enter password: password

4. Drop the tsdp_admin and hr_appuser accounts.

DROP USER tsdp_admin CASCADE;
DROP USER hr_appuser

Using Transparent Sensitive Data Protection Policies with
Unified Auditing

The transparent sensitive data protection and unified auditing procedures can combine
the protections of these two features.

• About Using TSDP Policies with Unified Audit Policies
You can configure transparent sensitive data protection policies to audit object
actions using unified auditing.

• Unified Audit Policy Settings That Are Used with TSDP Policies
Audit policy settings can be used in the POLICY_ENABLE_OPTIONS parameter for the
DBMS_TSDP_PROTECT.ADD_POLICY or DBMS_TSDP_PROTECT.ALTER_POLICY procedure.

About Using TSDP Policies with Unified Audit Policies
You can configure transparent sensitive data protection policies to audit object actions
using unified auditing.

The DBMS_TSDP_PROTECT.ADD_POLICY and DBMS_TSDP_PROTECT.ALTER_POLICY
procedures enable you to specify settings from the CREATE AUDIT POLICY, ALTER
AUDIT POLICY, AUDIT POLICY, and COMMENT SQL statements. The TSDP policy enables
the creation of action audit-options for object-specific options in the policy, such as
INSERT or DELETE operations. System-wide audit options are not supported. Therefore,
the audited object type is always TABLE. Only standard actions (such as INSERT) are
permitted. Component actions, such as creating policies for Oracle Label Security or
other Oracle Database features, are not supported.

This feature works as follows:

1. You create a TSDP policy with the necessary unified audit settings.

The TSDP policy uses parameter settings from the CREATE AUDIT POLICY, AUDIT
POLICY, and COMMENT statements. Unified Audit Policy Settings That Are Used with
TSDP Policies lists these settings.

2. You associate the TSDP policy with the necessary sensitive types by using the
DBMS_TSDP_PROTECT.ASSOCIATE_POLICY procedure.

3. You then enable TSDP protection by using any of the
DBMS_TSDP_PROTECT.ENABLE_PROTECTION_* procedures.

4. You enable the TSDP policy. As part of the TSDP policy enablement process,
Oracle Database internally creates a unified audit policy and then enables it on the
list of target users and roles that you specified in the
DBMS_TSDP_PROTECT.ADD_POLICY procedure from Step 1.

The name of the internal policy begins with ORA$UNIFIED_AUDIT_ followed by a
random alpha-numeric string (for example,
ORA$UNIFIED_AUDIT_6J6L3RSJSN2VAN0XF). You can find this policy by querying the

Chapter 13
Using Transparent Sensitive Data Protection Policies with Unified Auditing

13-30

POLICY_NAME column of the AUDIT_UNIFIED_POLICIES data dictionary view. To find
the names of the users and roles on which this internally created TSDP unified
audit policy is enforced, query the AUDIT_UNIFIED_ENABLED_POLICIES view.

5. When users try to perform an action on the table that is being protected by the
TSDP policy, then based on the TSDP unified audit policy configuration, a unified
audit record is written to the unified audit trail for this object access. You can then
query the UNIFIED_AUDIT_TRAIL view to see the unified audit record that was
created because of the TSDP unified audit policy enforcement.

6. These protections remain in place until you disable the TSDP policy for this
column. At that point, Oracle Database automatically disables and then drops the
internal policy, because it is no longer necessary. (A unified audit policy must be
disabled before it can be dropped.) If you re-enable the TSDP policy, then the
internal policy is recreated.

Unified Audit Policy Settings That Are Used with TSDP Policies
Audit policy settings can be used in the POLICY_ENABLE_OPTIONS parameter for the
DBMS_TSDP_PROTECT.ADD_POLICY or DBMS_TSDP_PROTECT.ALTER_POLICY procedure.

These audit policy settings are from the AUDIT, CREATE AUDIT POLICY, and ALTER
AUDIT POLICY statements.

The following table describes these settings.

Table 13-2 Unified Audit Policy Settings Used for TSDP Policies

Parameter Description Default

ACTION_AUDIT_OPTIONS A string containing a comma-separated list
of SQL actions.

Valid actions are: ALTER, AUDIT, COMMENT,
DELETE, FLASHBACK, GRANT, INDEX,
INSERT, LOCK, RENAME, SELECT, UPDATE

To configure the policy to audit all of these
actions, specify the keyword ALL.

ALL

AUDIT_CONDITION SYS_CONTEXT (namespace, attribute)
 operation value-list

In this syntax, operation can be any of
the following operators: IN,| NOT IN, =, <,
>, or <>

If the audit condition contains a single
quotation mark, then specify two single
quotation marks instead of one, and
enclose the SYS_CONTEXT in single
quotations. For example:

'SYS_CONTEXT(''USERENV'',
''CLIENT_IDENTIFIER'') = ''myclient'''

NULL

EVALUATE_PER Can be one of the following:

• STATEMENT
• SESSION
• INSTANCE

STATEMENT

Chapter 13
Using Transparent Sensitive Data Protection Policies with Unified Auditing

13-31

Table 13-2 (Cont.) Unified Audit Policy Settings Used for TSDP Policies

Parameter Description Default

ENTITY_NAME A string that contains a comma-separated
list of users or roles. If you omit this
parameter, then the audit policy is enabled
for all users.

NULL (that is, all
database users)

ENABLE_OPTION Applies only if the ENTITY_NAME parameter
is used. It specifies if the ENTITY_NAME is a
BY user list, an EXCEPT user list, or a BY
USERS WITH GRANTED ROLES role list.
Valid settings are:

• BY
• EXCEPT
• BY USERS WITH GRANTED ROLES

BY

UNIFIED_AUDIT_POLICY_CO
MMENT

A string that describes the unified audit
policy that will be created

NULL

Using Transparent Sensitive Data Protection Policies with
Fine-Grained Auditing

The transparent sensitive data protection and fine-grained auditing procedures can
combine the protections of these two features.

• About Using TSDP Policies with Fine-Grained Auditing
You can configure a Transparent Sensitive Data Protection policy for fine-grained
auditing.

• Fine-Grained Auditing Parameters That Are Used with TSDP Policies
DBMS_FGA.ADD_POLICY settings can be used in the POLICY_ENABLE_OPTIONS
parameter for the DBMS_TSDP_PROTECT.ADD_POLICY or
DBMS_TSDP_PROTECT.ALTER_POLICY procedure.

About Using TSDP Policies with Fine-Grained Auditing
You can configure a Transparent Sensitive Data Protection policy for fine-grained
auditing.

The DBMS_TSDP_PROTECT.ADD_POLICY and DBMS_TSDP_PROTECT.ALTER_POLICY
procedures enable you to specify settings from the DBMS_FGA.ADD_POLICY procedure.

This feature works as follows:

1. You create a TSDP policy with the necessary fine-grained audit settings.

The TSDP policy uses parameter settings from the DBMS_FGA.ADD_POLICY
procedure. Fine-Grained Auditing Parameters That Are Used with TSDP Policies
lists these settings.

2. You associate the TSDP policy with the necessary sensitive types by using the
DBMS_TSDP_PROTECT.ASSOCIATE_POLICY procedure.

Chapter 13
Using Transparent Sensitive Data Protection Policies with Fine-Grained Auditing

13-32

3. You then enable TSDP protection by using any of the
DBMS_TSDP_PROTECT.ENABLE_PROTECTION_* procedures.

4. You enable the TSDP policy. As part of the TSDP policy enablement process,
Oracle Database internally creates a fine-grained audit policy that you specified in
the DBMS_TSDP_PROTECT.ADD_POLICY procedure from Step 1.

The name of the internal policy begins with ORA$FGA_ followed by a random alpha-
numeric string (for example, ORA$FGA_6J6L3RSJSN2VAN0XF). You can find this
policy by querying the POLICY_NAME column of the DBA_POLICIES data dictionary
view.

5. When users try to perform an action on the table that is being protected by the
TSDP policies, then based on the policy configuration, a fine-grained audit record
is generated in the DBA_FGA_AUDIT_TRAIL data dictionary view for this object
access.

6. These protections remain in place until you disable the TSDP policy for this
column. At that point, Oracle Database automatically drops the internal policy,
because it is no longer needed. If you reenable the TSDP policy, then the internal
policy is recreated.

Fine-Grained Auditing Parameters That Are Used with TSDP Policies
DBMS_FGA.ADD_POLICY settings can be used in the POLICY_ENABLE_OPTIONS parameter
for the DBMS_TSDP_PROTECT.ADD_POLICY or DBMS_TSDP_PROTECT.ALTER_POLICY
procedure.

The following table describes these settings.

Table 13-3 Fine-Grained Audit Policy Settings Used for TSDP Policies

Parameter Description Default

audit_condition Specifies a Boolean value to indicate a
monitoring condition, using the following syntax:

operator value

For example: < 1000

NULL

handler_schema Schema that contains the event handler. The
default, NULL, enables the current schema to be
used.

NULL

handler_module Function name of the event handler. Include the
package name if necessary. This function is
invoked only after the first row that matches the
audit condition in the query is processed. If the
procedure fails with an exception, then the user’s
SQL statement fails as well.

NULL

statement_types You can specify one of the following statement
types: INSERT, UPDATE, SELECT, or DELETE.

SELECT

Chapter 13
Using Transparent Sensitive Data Protection Policies with Fine-Grained Auditing

13-33

Table 13-3 (Cont.) Fine-Grained Audit Policy Settings Used for TSDP Policies

Parameter Description Default

audit_trail If you have not yet migrated the database to full
unified auditing, then use this setting to set the
destination of the audit records: DB for the
database or XML for XML records. This setting
also specifies whether to populate the LSQLTEXT
and LSQLBIND columns in the FGA_LOG$ system
table.

If full unified auditing is enabled, then Oracle
Database ignores this parameter and writes the
audit records to the unified audit trail.

NULL

object_schema The schema that corresponds to the sensitive
column

Schema that
contains the
sensitive column

object_name The table that contains the sensitive column The object (table
or view) that
contains the
sensitive column

policy_name A system-generated name for the internal fine-
grained audit policy

Internal fine-
grained audit
policy system-
generated name

audit_column The sensitive column The sensitive
column

audit_column_opts Determines whether to audit all or specific
columns

DBMS_FGA.ANY_C
OLUMN

enable Enable status for the TSDP policy; can be either
TRUE or FALSE

TRUE

policy_owner User who invokes the
DBMS_TSDP_PROTECT.ENABLE_PROTECTION_*
procedure

Current user

Using Transparent Sensitive Data Protection Policies with
TDE Column Encryption

The TSDP procedures and Transparent Data Encryption column encryption
statements can combine the protections of these two features.

• About Using TSDP Policies with TDE Column Encryption
A TSDP policy can enable the encryption of columns that use Transparent Data
Encryption.

• TDE Column Encryption ENCRYPT Clause Settings Used with TSDP Policies
The CREATE TABLE and ALTER TABLE statement ENCRYPT clause settings can be
used in the POLICY_ENABLE_OPTIONS parameter for the
DBMS_TSDP_PROTECT.ADD_POLICY or DBMS_TSDP_PROTECT.ALTER_POLICY procedure.

Chapter 13
Using Transparent Sensitive Data Protection Policies with TDE Column Encryption

13-34

About Using TSDP Policies with TDE Column Encryption
A TSDP policy can enable the encryption of columns that use Transparent Data
Encryption.

The DBMS_TSDP_PROTECT.ADD_POLICY and DBMS_TSDP_PROTECT.ALTER_POLICY
procedures enable you to specify the ENCRYPT clause settings from the CREATE TABLE
or ALTER TABLE statement.

This feature works as follows:

1. You can create a TSDP policy by using the DBMS_TSDP_PROTECT.ADD_POLICY
procedure. In the ADD_POLICY procedure, you can configure the policy for column
encryption by setting the SECURITY_FEATURE parameter to
DBMS_TSDP_PROTECT.COLUMN_ENCRYPTION. This setting enables encryption on the
sensitive column when the TSDP policy is enabled on the object.

2. You create a TSDP policy with the necessary table encryption settings.

The TSDP policy uses parameter settings from the CREATE TABLE or ALTER TABLE
SQL statement. TDE Column Encryption ENCRYPT Clause Settings Used with
TSDP Policies lists these settings.

3. You associate the TSDP policy with the necessary sensitive types by using the
DBMS_TSDP_PROTECT.ASSOCIATE_POLICY procedure.

4. You then enable TSDP protection by using any of the
DBMS_TSDP_PROTECT.ENABLE_PROTECTION_* procedures.

5. You enable the TSDP policy. At this point, Oracle Database creates an internal
TSDP policy that uses the encrypted table settings that you created earlier in this
procedure.

The name of the internal policy begins with ORA$TDECE_ followed by a random
alpha-numeric string (for example, ORA#TDECE_6J6L3RSJSN2VAN0XF). You can find
this policy by querying the TSDP_POLICY column of DBA_TSDP_POLICY_PROTECTION
view.

6. When users try to perform an action on the table that is being protected by the
policies, the output for the column is based on both the TDE column protections
and the TSDP policy that are now in place. You can check if the column has been
encrypted after you enabled the TSDP policy by querying the ENCRYPTION_ALG
column of the DBA_ENCRYPTED_COLUMNS view.

7. These protections remain in place until you disable the TSDP policy for this
column. At that point, Oracle Database internally issues an ALTER TABLE statement
on the table that contains the sensitive column, so that the sensitive column is
decrypted. If you reenable the TSDP policy, then TSDP internally executes the
ALTER TABLE statement with the ENCRYPT clause for the column.

Note:

It is possible to create two policies on the same column with each policy
specifying a different encryption algorithm. In this case, the stronger of the
two algorithms is enforced on the sensitive column.

Chapter 13
Using Transparent Sensitive Data Protection Policies with TDE Column Encryption

13-35

TDE Column Encryption ENCRYPT Clause Settings Used with TSDP
Policies

The CREATE TABLE and ALTER TABLE statement ENCRYPT clause settings can be used in
the POLICY_ENABLE_OPTIONS parameter for the DBMS_TSDP_PROTECT.ADD_POLICY or
DBMS_TSDP_PROTECT.ALTER_POLICY procedure.

The following table describes these settings.

Table 13-4 TDE Column Encryption ENCRYPT Settings Used for TSDP Policies

Parameter Description Default

encrypt_algorithm Available values

• 3DES168
• AES128
• AES192
• AES256
• ARIA128
• ARIA192
• ARIA256
• SEED128
• GOST256

AES192

salt Available values:

• SALT
• NO SALT

SALT

integrity_algorith
m

Available values:

• SHA-1
• NOMAC

SHA-1

Transparent Sensitive Data Protection Data Dictionary
Views

Oracle Database provides data dictionary views that list information about transparent
sensitive data protection policies.

Table 13-5 describes these views. Before you can use these views, you must be
granted the SELECT_CATALOG_ROLE role.

Table 13-5 Transparent Sensitive Data Protection Views

View Description

DBA_DISCOVERY_SOURCE Describes discovery import information with regard to
transparent sensitive data protection policies

DBA_SENSITIVE_COLUMN_TYPES Describes the sensitive column types that have been
defined for the current database

DBA_SENSITIVE_DATA Describes the sensitive columns in the database

Chapter 13
Transparent Sensitive Data Protection Data Dictionary Views

13-36

Table 13-5 (Cont.) Transparent Sensitive Data Protection Views

View Description

DBA_TSDP_IMPORT_ERRORS Shows information regarding the errors encountered
during import of discovery result. It shows information
with regard to the error code, schema name, table
name, column name, and sensitive type.

DBA_TSDP_POLICY_CONDITION Describes the transparent sensitive data protection
policy and condition mapping. This view also lists the
property-value pairs for the condition.

DBA_TSDP_POLICY_FEATURE Shows the transparent sensitive data protection policy
security feature mapping. (At this time, only Oracle Data
Redaction and Oracle Virtual Private Database are
supported.)

DBA_TSDP_POLICY_PARAMETER Describes the parameters of transparent sensitive data
protection policies

DBA_TSDP_POLICY_PROTECTION Shows the list of columns that have been protected
through transparent sensitive data protection

DBA_TSDP_POLICY_TYPE Shows the policy to sensitive column type mapping

See Also:

Oracle Database Reference for more information about these views

Chapter 13
Transparent Sensitive Data Protection Data Dictionary Views

13-37

14
Encryption of Sensitive Credential Data in
the Data Dictionary

You can encrypt sensitive credential information, such as passwords that are stored in
the data dictionary.

• About Encrypting Sensitive Credential Data in the Data Dictionary
The data dictionary SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL system tables
store sensitive credential data, such as user passwords.

• How the Multitenant Option Affects the Encryption of Sensitive Data
In a multitenant environment, you can encrypt sensitive data dictionary information
from the application root, as well as within individual pluggable databases (PDBs).

• Encrypting Sensitive Credential Data in System Tables
The ALTER DATABASE DICTIONARY statement can encrypt sensitive credential data
in the SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL system tables.

• Rekeying Sensitive Credential Data in the SYS.LINK$ System Table
You can use the ALTER DATABASE DICTIONARY statement to rekey sensitive
credential data in the data dictionary SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL
system tables.

• Deleting Sensitive Credential Data in System Tables
The ALTER DATABASE DICTIONARY statement can invalidate existing credentials in
SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL and obfuscate future credential
entries to those tables.

• Restoring the Functioning of Database Links After a Lost Keystore
Database links can be adversely affected if the TDE keystore and its master
encryption key is inadvertently lost.

• Data Dictionary Views for Encrypted Data Dictionary Credentials
Oracle Database provides a set of data dictionary views that provide information
about the encryption of sensitive credential data in the data dictionary.

About Encrypting Sensitive Credential Data in the Data
Dictionary

The data dictionary SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL system tables store
sensitive credential data, such as user passwords.

The SYS.LINK$ table stores information about database links.
SYS.SCHEDULER$_CREDENTIAL stores information about Oracle Scheduler events. By
default, the sensitive credential data stored in these tables is obfuscated.

You can manually encrypt the data that is stored in the SYS.LINK$ and
SYS.SCHEDULER$_CREDENTIAL tables by using the ALTER DATABASE DICTIONARY
statement. Though this feature makes use of Transparent Data Encryption (TDE), you
do not need to have an Advanced Security Option license to perform the encryption,

14-1

but you must have the SYSKM administrative privilege. TDE performs the encryption by
using the AES256 (Advanced Encryption Standard) algorithm. The encryption follows
the same behavior as other data that is encrypted using TDE.

As a best security practice, Oracle recommends that you encrypt this sensitive
credential data. To check the status the data dictionary credentials, you can query the
DICTIONARY_CREDENTIALS_ENCRYPT data dictionary view.

How the Multitenant Option Affects the Encryption of
Sensitive Data

In a multitenant environment, you can encrypt sensitive data dictionary information
from the application root, as well as within individual pluggable databases (PDBs).

When you encrypt, rekey, or decrypt sensitive credential data in the SYS.LINK$ and
SYS.SCHEDULER$_CREDENTIAL system tables, you must synchronize the affected PDBs
after you complete the process. The instructions for doing so are in the procedures
that cover these topics.

Encrypting Sensitive Credential Data in System Tables
The ALTER DATABASE DICTIONARY statement can encrypt sensitive credential data in
the SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL system tables.

The database must have an open keystore and an encryption key before you run the
ALTER DATABASE DICTIONARY statement with the ENCRYPT CREDENTIALS clause to
encrypt SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL. The credential data encryption
process de-obfuscates the obfuscated passwords and then encrypts them. The
encryption applies to any future password changes that users may make after you
complete this process.

1. Connect to the database instance as a user who as been granted the SYSKM
administrative privilege.

For example:

CONNECT hr_admin AS SYSKM
Enter password: password

In a multitenant environment, connect to either the application root or to a
pluggable database (PDB).

2. If necessary, create and open a keystore and then set an encryption key.

You can query the V$ENCRYPTION_WALLET dynamic view to find the status of a
keystore.

Use the ADMINISTER KEY MANAGEMENT statement to perform these three tasks. For
example:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE '/etc/ORACLE/WALLETS/orcl' IDENTIFIED
BY password;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "password";
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY "password" WITH
BACKUP;

Chapter 14
How the Multitenant Option Affects the Encryption of Sensitive Data

14-2

In a multitenant environment, include the CONTAINER = ALL clause if you are in the
application root. This applies the keystore operation for PDBs that are in united
mode. For PDBs that are in isolated mode, run the statement from within the PDB.

3. Run the ALTER DATABASE DICTIONARY statement to encrypt the data.

For example:

ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS;

In an application root, to apply the encryption to the associated PDBs, include the
CONTAINER = ALL clause.

ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS CONTAINER = ALL;

4. If you performed the encryption from the application root, then synchronize the
associated PDBs.

ALTER PLUGGABLE DATABASE APPLICATION APPCDBSYSTEM SYNC;

Rekeying Sensitive Credential Data in the SYS.LINK$
System Table

You can use the ALTER DATABASE DICTIONARY statement to rekey sensitive credential
data in the data dictionary SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL system tables.

To rekey this sensitive credential data, you must run the ALTER DATABASE DICTIONARY
statement with the REKEY CREDENTIALS clause. The rekey operation, which uses
column encryption, does not affect other TDE master encryption keys.

1. Connect to the database instance as a user who as been granted the SYSKM
administrative privilege.

For example:

CONNECT hr_admin AS SYSKM
Enter password: password

In a multitenant environment, connect to either the application root or to a
pluggable database (PDB).

2. If necessary, create and open a keystore and then set an encryption key.

You can query the V$ENCRYPTION_WALLET dynamic view to find the status of a
keystore.

Use the ADMINISTER KEY MANAGEMENT statement to perform these three tasks. For
example:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE '/etc/ORACLE/WALLETS/orcl' IDENTIFIED
BY password;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "password";
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY "password" WITH
BACKUP;

In a multitenant environment, include the CONTAINER = ALL clause if you are in the
application root.

3. Run the ALTER DATABASE DICTIONARY statement to rekey the data.

For example:

Chapter 14
Rekeying Sensitive Credential Data in the SYS.LINK$ System Table

14-3

ALTER DATABASE DICTIONARY REKEY CREDENTIALS;

In an application root, to apply the encryption to the associated PDBs, include the
CONTAINER = ALL clause.

ALTER DATABASE DICTIONARY REKEY CREDENTIALS CONTAINER = ALL;

4. If you performed the rekey operation from the application root, then synchronize
the associated PDBs.

ALTER PLUGGABLE DATABASE APPLICATION APPCDBSYSTEM SYNC;

Deleting Sensitive Credential Data in System Tables
The ALTER DATABASE DICTIONARY statement can invalidate existing credentials in
SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL and obfuscate future credential entries to
those tables.

To delete this credential data, you must run the ALTER DATABASE DICTIONARY
statement with the DELETE CREDENTIALS clause. This statement is mainly used in
cases where you must recover the database link from the loss of a Transparent Data
Encryption (TDE) keystore.

1. Connect to the database instance as a user who as been granted the SYSKM
administrative privilege.

For example:

CONNECT hr_admin AS SYSKM
Enter password: password

In a multitenant environment, connect to either the application root or to a
pluggable database (PDB).

2. If necessary, create and open a keystore and then set an encryption key.

You can query the V$ENCRYPTION_WALLET dynamic view to find the status of a
keystore.

Use the ADMINISTER KEY MANAGEMENT statement to perform these three tasks. For
example:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE '/etc/ORACLE/WALLETS/orcl' IDENTIFIED
BY password;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "password";
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY "password" WITH
BACKUP;

In a multitenant environment, include the CONTAINER = ALL clause if you are in the
application root.

3. Run the ALTER DATABASE DICTIONARY statement to delete the password credential.

For example:

ALTER DATABASE DICTIONARY DELETE CREDENTIALS KEY;

In an application root, to delete the SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL
password credentials in the associated PDBs, include the CONTAINER = ALL
clause.

ALTER DATABASE DICTIONARY DELETE CREDENTIALS CONTAINER = ALL;

Chapter 14
Deleting Sensitive Credential Data in System Tables

14-4

4. If you performed the credential deletion from the application root, then synchronize
the associated PDBs.

ALTER PLUGGABLE DATABASE APPLICATION APPCDBSYSTEM SYNC;

Related Topics

• Restoring the Functioning of Database Links After a Lost Keystore
Database links can be adversely affected if the TDE keystore and its master
encryption key is inadvertently lost.

Restoring the Functioning of Database Links After a Lost
Keystore

Database links can be adversely affected if the TDE keystore and its master
encryption key is inadvertently lost.

When a TDE keystore and master encryption key are lost, existing database links that
are authenticated with encrypted passwords become unusable.

1. Connect to the database instance as a user who as been granted the SYSKM
administrative privilege and who has the ALTER DATABASE LINK system privilege.

For example:

CONNECT hr_admin AS SYSKM
Enter password: password

In a multitenant environment, connect to either the application root or to a
pluggable database (PDB).

2. Delete the encrypted credentials from the SYS.LINK$ system table.

ALTER DATABASE DICTIONARY DELETE CREDENTIALS KEY;

If you are performing the deletion from the application root, then include the
CONTAINER = ALL clause.

ALTER DATABASE DICTIONARY DELETE CREDENTIALS CONTAINER = ALL;

3. Create and open a keystore and then set an encryption key.

For example:

ADMINISTER KEY MANAGEMENT CREATE KEYSTORE '/etc/ORACLE/WALLETS/orcl' IDENTIFIED
BY password;
ADMINISTER KEY MANAGEMENT SET KEYSTORE OPEN IDENTIFIED BY "password";
ADMINISTER KEY MANAGEMENT SET ENCRYPTION KEY IDENTIFIED BY "password" WITH
BACKUP;

In a multitenant environment, include the CONTAINER = ALL clause if you are in the
application root.

4. Encrypt the password credentials in SYS.LINK$ and SYS.SCHEDULER$_CREDENTIAL.

ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS;

If you are performing the encryption from the application root, then include the
CONTAINER = ALL clause.

ALTER DATABASE DICTIONARY ENCRYPT CREDENTIALS CONTAINER = ALL;

Chapter 14
Restoring the Functioning of Database Links After a Lost Keystore

14-5

5. Using the password of the user who is associated with the database link, reset the
database link passwords that were affected by the ALTER DATABASE DICTIONARY
DELETE CREDENTIALS KEY statement.

For example:

ALTER DATABASE LINK database_link_name CONNECT TO user_id IDENTIFIED BY password;

To find existing database links and their owners, query the DBA_DB_LINKS data
dictionary view.

6. If you performed the credential deletion from the application root, then synchronize
the associated PDBs.

ALTER PLUGGABLE DATABASE APPLICATION APPCDBSYSTEM SYNC;

Data Dictionary Views for Encrypted Data Dictionary
Credentials

Oracle Database provides a set of data dictionary views that provide information about
the encryption of sensitive credential data in the data dictionary.

Table 14-1 lists the data dictionary views. For detailed information about these views,
see Oracle Database Reference.

Table 14-1 Data Dictionary Views for Encrypted Data Dictionary Credentials

View Description

ALL_DB_LINKS Describes database links that are accessible to the
current user. A value of YES in the VALID column
indicates that the database link is usable.

DBA_DB_LINKS Describes describes all database links in the
database. A value of YES in the VALID column
indicates that the database link is usable. (This view
is available to administrative users only, such as SYS
or users who have been granted the DBA role.)

DICTIONARY_CREDENTIALS_ENCRYPT Describes the status of dictionary credentials. The
ENFORCEMENT column lists ENABLED if the credentials
are encrypted and DISABLED if the credentials are
not encrypted.

USER_DB_LINKS Describes the database links hat are owned by the
current user. A value of YES in the VALID column
indicates that the database link is usable.

Chapter 14
Data Dictionary Views for Encrypted Data Dictionary Credentials

14-6

15
Manually Encrypting Data

You can use the DBMS_CRYPTO PL/SQL package to manually encrypt data.

• Security Problems That Encryption Does Not Solve
While there are many good reasons to encrypt data, there are many reasons not
to encrypt data.

• Data Encryption Challenges
In cases where encryption can provide additional security, there are some
associated technical challenges.

• Data Encryption Storage with the DBMS_CRYPTO Package
The DBMS_CRYPTO package provides several ways to address security issues.

• Using Ciphertexts Encrypted in OFB Mode in Oracle Database Release 11g
In Oracle Database Release 11g, ciphertexts configured to use output feedback
(OFB) used electronic codebook (ECB) mode instead.

• Examples of Using the Data Encryption API
Examples of using the data encryption API include using the DBMS_CRYPTO.SQL
procedure, encrypting AES 256-bit data, and encrypting BLOB data.

• Data Dictionary Views for Encrypted Data
Oracle Database provides data dictionary views to find information about
encrypted data.

Security Problems That Encryption Does Not Solve
While there are many good reasons to encrypt data, there are many reasons not to
encrypt data.

• Principle 1: Encryption Does Not Solve Access Control Problems
When you encrypt data, you should be aware that encryption must not interfere
with how you configure access control.

• Principle 2: Encryption Does Not Protect Against a Malicious Administrator
You can protect your databases against malicious database administrators by
using other Oracle features, such as Oracle Database Vault.

• Principle 3: Encrypting Everything Does Not Make Data Secure
A common error is to think that if encrypting some data strengthens security, then
encrypting everything makes all data secure.

Principle 1: Encryption Does Not Solve Access Control Problems
When you encrypt data, you should be aware that encryption must not interfere with
how you configure access control.

Most organizations must limit data access to users who need to see this data. For
example, a human resources system may limit employees to viewing only their own
employment records, while allowing managers of employees to see the employment

15-1

records of subordinates. Human resource specialists may also need to see employee
records for multiple employees.

Typically, you can use access control mechanisms to address security policies that
limit data access to those with a need to see it. Oracle Database has provided strong,
independently evaluated access control mechanisms for many years. It enables
access control enforcement to a fine level of granularity through Virtual Private
Database.

Because human resource records are considered sensitive information, it is tempting
to think that all information should be encrypted for better security. However,
encryption cannot enforce granular access control, and it may hinder data access. For
example, an employee, his manager, and a human resources clerk may all need to
access an employee record. If all employee data is encrypted, then all three must be
able to access the data in unencrypted form. Therefore, the employee, the manager
and the human resources clerk would have to share the same encryption key to
decrypt the data. Encryption would, therefore, not provide any additional security in the
sense of better access control, and the encryption might hinder the proper or efficient
functioning of the application. An additional issue is that it is difficult to securely
transmit and share encryption keys among multiple users of a system.

A basic principle behind encrypting stored data is that it must not interfere with access
control. For example, a user who has the SELECT privilege on emp should not be limited
by the encryption mechanism from seeing all the data he is otherwise allowed to see.
Similarly, there is little benefit to encrypting part of a table with one key and part of a
table with another key if users need to see all encrypted data in the table. In this case,
encryption adds to the overhead of decrypting the data before users can read it. If
access controls are implemented well, then encryption adds little additional security
within the database itself. A user who has privileges to access data within the
database has no more nor any less privileges as a result of encryption. Therefore, you
should never use encryption to solve access control problems.

Principle 2: Encryption Does Not Protect Against a Malicious
Administrator

You can protect your databases against malicious database administrators by using
other Oracle features, such as Oracle Database Vault.

Some organizations, concerned that a malicious user might gain elevated (database
administrator) privileges by guessing a password, like the idea of encrypting stored
data to protect against this threat.

However, the correct solution to this problem is to protect the database administrator
account, and to change default passwords for other privileged accounts. The easiest
way to break into a database is by using a default password for a privileged account
that an administrator allowed to remain unchanged. One example is SYS/
CHANGE_ON_INSTALL.

While there are many destructive things a malicious user can do to a database after
gaining the DBA privilege, encryption will not protect against many of them. Examples
include corrupting or deleting data, exporting user data to the file system to email the
data back to himself to run a password cracker on it, and so on.

Some organizations are concerned that database administrators, typically having all
privileges, are able to see all data in the database. These organizations feel that the
database administrators should administer the database, but should not be able to see

Chapter 15
Security Problems That Encryption Does Not Solve

15-2

the data that the database contains. Some organizations are also concerned about
concentrating so much privilege in one person, and would prefer to partition the DBA
function, or enforce two-person access rules.

It is tempting to think that encrypting all data (or significant amounts of data) will solve
these problems, but there are better ways to protect against these threats. For
example, Oracle Database supports limited partitioning of DBA privileges. Oracle
Database provides native support for SYSDBA and SYSOPER users. SYSDBA has all
privileges, but SYSOPER has a limited privilege set (such as startup and shutdown of the
database).

Furthermore, you can create smaller roles encompassing several system privileges. A
jr_dba role might not include all system privileges, but only those appropriate to a
junior database administrator (such as CREATE TABLE, CREATE USER, and so on).

Oracle Database also enables auditing the actions taken by SYS (or SYS-privileged
users) and storing that audit trail in a secure operating system location. Using this
model, a separate auditor who has root privileges on the operating system can audit
all actions by SYS, enabling the auditor to hold all database administrators accountable
for their actions.

You can also fine-tune the access and control that database administrators have by
using Oracle Database Vault.

The database administrator function is a trusted position. Even organizations with the
most sensitive data, such as intelligence agencies, do not typically partition the
database administrator function. Instead, they manage their database administrators
strongly, because it is a position of trust. Periodic auditing can help to uncover
inappropriate activities.

Encryption of stored data must not interfere with the administration of the database,
because otherwise, larger security issues can result. For example, if by encrypting
data you corrupt the data, then you create a security problem, the data itself cannot be
interpreted, and it may not be recoverable.

You can use encryption to limit the ability of a database administrator or other
privileged user to see data in the database. However, it is not a substitute for
managing the database administrator privileges properly, or for controlling the use of
powerful system privileges. If untrustworthy users have significant privileges, then they
can pose multiple threats to an organization, some of them far more significant than
viewing unencrypted credit card numbers.

See Also:

Oracle Database Vault Administrator’s Guide for more information about
using Oracle Database Vault to fine-tune the access and control that
database administrators have

Principle 3: Encrypting Everything Does Not Make Data Secure
A common error is to think that if encrypting some data strengthens security, then
encrypting everything makes all data secure.

Chapter 15
Security Problems That Encryption Does Not Solve

15-3

As the discussion of the previous two principles illustrates, encryption does not
address access control issues well, and it is important that encryption not interfere with
normal access controls. Furthermore, encrypting an entire production database means
that all data must be decrypted to be read, updated, or deleted. Encryption is
inherently a performance-intensive operation; encrypting all data will significantly affect
performance.

Availability is a key aspect of security. If encrypting data makes data unavailable, or
adversely affects availability by reducing performance, then encrypting everything will
create a new security problem. Availability is also adversely affected by the database
being inaccessible when encryption keys are changed, as good security practices
require on a regular basis. When the keys are to be changed, the database is
inaccessible while data is decrypted and reencrypted with a new key or keys.

There may be advantages to encrypting data stored off-line. For example, an
organization may store backups for a period of 6 months to a year off-line, in a remote
location. Of course, the first line of protection is to secure the facility storing the data,
by establishing physical access controls. Encrypting this data before it is stored may
provide additional benefits. Because it is not being accessed on-line, performance
need not be a consideration. While an Oracle database does not provide this
capability, there are vendors who provide encryption services. Before embarking on
large-scale encryption of backup data, organizations considering this approach should
thoroughly test the process. It is essential to verify that data encrypted before off-line
storage can be decrypted and re-imported successfully.

Data Encryption Challenges
In cases where encryption can provide additional security, there are some associated
technical challenges.

• Encrypted Indexed Data
Special difficulties arise when encrypted data is indexed.

• Generated Encryption Keys
Encrypted data is only as secure as the key used for encrypting it.

• Transmitted Encryption Keys
If the encryption key is to be passed by the application to the database, then you
must encrypt it.

• Storing Encryption Keys
You can store encryption keys in the database or on an operating system.

• Importance of Changing Encryption Keys
Prudent security practice dictates that you periodically change encryption keys.

• Encryption of Binary Large Objects
Certain data types require more work to encrypt.

Encrypted Indexed Data
Special difficulties arise when encrypted data is indexed.

For example, suppose a company uses a national identity number, such as the U.S.
Social Security number (SSN), as the employee number for its employees. The
company considers employee numbers to be sensitive data, and, therefore, wants to
encrypt data in the employee_number column of the employees table. Because

Chapter 15
Data Encryption Challenges

15-4

employee_number contains unique values, the database designers want to have an
index on it for better performance.

However, if DBMS_CRYPTO (or another mechanism) is used to encrypt data in a column,
then an index on that column will also contain encrypted values. Although an index
can be used for equality checking (for example, SELECT * FROM emp WHERE
employee_number = '987654321'), if the index on that column contains encrypted
values, then the index is essentially unusable for any other purpose. You should not
encrypt indexed data.

Oracle recommends that you do not use national identity numbers as unique IDs.
Instead, use the CREATE SEQUENCE statement to generate unique identity numbers.
Reasons to avoid using national identity numbers are as follows:

• There are privacy issues associated with overuse of national identity numbers (for
example, identity theft).

• Sometimes national identity numbers can have duplicates, as with U.S. Social
Security numbers.

Generated Encryption Keys
Encrypted data is only as secure as the key used for encrypting it.

An encryption key must be securely generated using secure cryptographic key
generation. Oracle Database provides support for secure random number generation,
with the RANDOMBYTES function of DBMS_CRYPTO. (This function replaces the capabilities
provided by the GetKey procedure of the earlier DBMS_OBFUSCATION_TOOLKIT, which
has been deprecated.) DBMS_CRYPTO calls the secure random number generator (RNG)
previously certified by RSA Security.

Note:

Do not use the DBMS_RANDOM package. The DBMS_RANDOM package generates
pseudo-random numbers, which, as Randomness Recommendations for
Security (RFC-1750) states that using pseudo-random processes to
generate secret quantities can result in pseudo-security.

Be sure to provide the correct number of bytes when you encrypt a key value. For
example, you must provide a 16-byte key for the ENCRYPT_AES128 encryption
algorithm.

Transmitted Encryption Keys
If the encryption key is to be passed by the application to the database, then you must
encrypt it.

Otherwise, an intruder could get access to the key as it is being transmitted. Network
data encryption protects all data in transit from modification or interception, including
cryptographic keys.

Chapter 15
Data Encryption Challenges

15-5

Related Topics

• Configuring Oracle Database Native Network Encryption and Data Integrity
You can configure native Oracle Net Services data encryption and data integrity
for both servers and clients.

Storing Encryption Keys
You can store encryption keys in the database or on an operating system.

• About Storing Encryption Keys
Storing encryption keys is one of the most important, yet difficult, aspects of
encryption.

• Storage of Encryption Keys in the Database
Storing encryption keys in the database does not always prevent a database
administrator from accessing encrypted data.

• Storage of Encryption Keys in the Operating System
When you store encryption keys in an operating system flat file, you can make
callouts from PL/SQL to retrieve these encryption keys.

• Users Managing Their Own Encryption Keys
Having the user supply the key assumes the user will be responsible with the key.

• Manual Encryption with Transparent Database Encryption and Tablespace
Encryption
Transparent database encryption and tablespace encryption provide secure
encryption with automatic key management for the encrypted tables and
tablespaces.

About Storing Encryption Keys
Storing encryption keys is one of the most important, yet difficult, aspects of
encryption.

To recover data encrypted with a symmetric key, the key must be accessible to an
authorized application or user seeking to decrypt the data. At the same time, the key
must be inaccessible to someone who is maliciously trying to access encrypted data
that he is not supposed to see.

Storage of Encryption Keys in the Database
Storing encryption keys in the database does not always prevent a database
administrator from accessing encrypted data.

An all-privileged database administrator could still access tables containing encryption
keys. However, it can often provide good security against the casual curious user or
against someone compromising the database file on the operating system.

As a trivial example, suppose you create a table (EMP) that contains employee data.
You want to encrypt the employee Social Security number (SSN) stored in one of the
columns. You could encrypt employee SSN using a key that is stored in a separate
column. However, anyone with SELECT access on the entire table could retrieve the
encryption key and decrypt the matching SSN.

While this encryption scheme seems easily defeated, with a little more effort you can
create a solution that is much harder to break. For example, you could encrypt the

Chapter 15
Data Encryption Challenges

15-6

SSN using a technique that performs some additional data transformation on the
employee_number before using it to encrypt the SSN. This technique might be as
simple as using an XOR operation on the employee_number and the birth date of the
employee to determine the validity of the values.

As additional protection, PL/SQL source code performing encryption can be wrapped,
(using the WRAP utility) which obfuscates (scrambles) the code. The WRAP utility
processes an input SQL file and obfuscates the PL/SQL units in it. For example, the
following command uses the keymanage.sql file as the input:

wrap iname=/mydir/keymanage.sql

A developer can subsequently have a function in the package call the DBMS_CRYPTO
package calls with the key contained in the wrapped package.

Oracle Database enables you to obfuscate dynamically generated PL/SQL code. The
DBMS_DDL package contains two subprograms that allow you to obfuscate dynamically
generated PL/SQL program units. For example, the following block uses the
DBMS_DDL.CREATE_WRAPPED procedure to wrap dynamically generated PL/SQL code.

BEGIN
......
SYS.DBMS_DDL.CREATE_WRAPPED(function_returning_PLSQL_code());
......
END;

While wrapping is not unbreakable, it makes it harder for an intruder to get access to
the encryption key. Even in cases where a different key is supplied for each encrypted
data value, you should not embed the key value within a package. Instead, wrap the
package that performs the key management (that is, data transformation or padding).

See Also:

Oracle Database PL/SQL Packages and Types Reference for additional
information about the WRAP command line utility and the DBMS_DDL
subprograms for dynamic wrapping

An alternative to wrapping the data is to have a separate table in which to store the
encryption key and to envelope the call to the keys table with a procedure. The key
table can be joined to the data table using a primary key to foreign key relationship.
For example, employee_number is the primary key in the employees table that stores
employee information and the encrypted SSN. The employee_number column is a
foreign key to the ssn_keys table that stores the encryption keys for the employee
SSN. The key stored in the ssn_keys table can also be transformed before use (by
using an XOR operation), so the key itself is not stored unencrypted. If you wrap the
procedure, then that can hide the way in which the keys are transformed before use.

The strengths of this approach are:

• Users who have direct table access cannot see the sensitive data unencrypted,
nor can they retrieve the keys to decrypt the data.

• Access to decrypted data can be controlled through a procedure that selects the
encrypted data, retrieves the decryption key from the key table, and transforms it
before it can be used to decrypt the data.

Chapter 15
Data Encryption Challenges

15-7

• The data transformation algorithm is hidden from casual snooping by wrapping the
procedure, which obfuscates the procedure code.

• SELECT access to both the data table and the keys table does not guarantee that
the user with this access can decrypt the data, because the key is transformed
before use.

The weakness to this approach is that a user who has SELECT access to both the key
table and the data table, and who can derive the key transformation algorithm, can
break the encryption scheme.

The preceding approach is not infallible, but it is adequate to protect against easy
retrieval of sensitive information stored in clear text.

Storage of Encryption Keys in the Operating System
When you store encryption keys in an operating system flat file, you can make callouts
from PL/SQL to retrieve these encryption keys.

However, if you store keys in the operating system and make callouts to it, then your
data is only as secure as the protection on the operating system.

If your primary security concern is that the database can be broken into from the
operating system, then storing the keys in the operating system makes it easier for an
intruder to retrieve encrypted data than storing the keys in the database itself.

Users Managing Their Own Encryption Keys
Having the user supply the key assumes the user will be responsible with the key.

Considering that 40 percent of help desk calls are from users who have forgotten their
passwords, you can see the risks of having users manage encryption keys. In all
likelihood, users will either forget an encryption key, or write the key down, which then
creates a security weakness. If a user forgets an encryption key or leaves the
company, then your data is not recoverable.

If you do decide to have user-supplied or user-managed keys, then you need to
ensure you are using native network encryption so that the key is not passed from the
client to the server in the clear. You also must develop key archive mechanisms, which
is also a difficult security problem. Key archives and backdoors create the security
weaknesses that encryption is attempting to solve.

Manual Encryption with Transparent Database Encryption and Tablespace
Encryption

Transparent database encryption and tablespace encryption provide secure encryption
with automatic key management for the encrypted tables and tablespaces.

If the application requires protection of sensitive column data stored on the media,
then these two types of encryption are a simple and fast way of achieving this.

Chapter 15
Data Encryption Challenges

15-8

See Also:

Oracle Database Advanced Security Guide for more information about
Transparent Data Encryption

Importance of Changing Encryption Keys
Prudent security practice dictates that you periodically change encryption keys.

For stored data, this requires periodically unencrypting the data, and then reencrypting
it with another well-chosen key.

You would most likely change the encryption key while the data is not being accessed,
which creates another challenge. This is especially true for a Web-based application
encrypting credit card numbers, because you do not want to shut down the entire
application while you switch encryption keys.

Encryption of Binary Large Objects
Certain data types require more work to encrypt.

For example, Oracle Database supports storage of binary large objects (BLOBs),
which stores very large objects (for example, multiple gigabytes) in the database. A
BLOB can be either stored internally as a column, or stored in an external file.

Related Topics

• Example: Encryption and Decryption Procedures for BLOB Data
You can encrypt BLOB data.

Data Encryption Storage with the DBMS_CRYPTO Package
The DBMS_CRYPTO package provides several ways to address security issues.

While encryption is not the ideal solution for addressing several security threats, it is
clear that selectively encrypting sensitive data before storage in the database does
improve security. Examples of such data could include:

• Credit card numbers

• National identity numbers

Oracle Database provides the PL/SQL package DBMS_CRYPTO to encrypt and decrypt
stored data. This package supports several industry-standard encryption and hashing
algorithms, including the Advanced Encryption Standard (AES) encryption algorithm.
AES was approved by the National Institute of Standards and Technology (NIST) to
replace the Data Encryption Standard (DES).

The DBMS_CRYPTO package enables encryption and decryption for common Oracle
Database data types, including RAW and large objects (LOBs), such as images and
sound. Specifically, it supports BLOBs and CLOBs. In addition, it provides
Globalization Support for encrypting data across different database character sets.

The following cryptographic algorithms are supported:

Chapter 15
Data Encryption Storage with the DBMS_CRYPTO Package

15-9

• Advanced Encryption Standard (AES)

• SHA-2 Cryptographic Hash settings:

– HASH_SH256

– HASH_SH384

– HASH_SH512

• SHA-2 Message Authentication Code (MAC)

Block cipher modifiers are also provided with DBMS_CRYPTO. You can choose from
several padding options, including Public Key Cryptographic Standard (PKCS) #5, and
from four block cipher chaining modes, including Cipher Block Chaining (CBC).
Padding must be done in multiples of eight bytes.

Note:

• DES is no longer recommended by the National Institute of Standards
and Technology (NIST).

• Usage of SHA-1 is more secure than MD5.

• Usage of SHA-2 is more secure than SHA-1.

• Keyed MD5 is not vulnerable.

Table 15-1 summarizes the DBMS_CRYPTO package features.

Table 15-1 DBMS_CRYPTO Package Feature Summary

Feature DBMS_CRYPTO Supported Functionality

Cryptographic algorithms AES

Padding forms PKCS5, zeroes

Block cipher chaining modes CBC, CFB, ECB, OFB

Cryptographic hash algorithms SHA-1, SHA-2, MD4, MD5, HASH_SH256,
HASH_SH384, HASH_SH512

Keyed hash (MAC) algorithms HMAC_MD5, HMAC_SH1, HMAC_SH256,
HMAC_SH384, HMAC_SH512

Cryptographic pseudo-random
number generator

RAW, NUMBER, BINARY_INTEGER

Database types RAW, CLOB, BLOB

DBMS_CRYPTO supports a range of algorithms that accommodate both new and existing
systems. Although 3DES_2KEY and MD4 are provided for backward compatibility, you
achieve better security using 3DES, AES, or SHA-1. Therefore, 3DES_2KEY is not
recommended.

The DBMS_CRYPTO package includes cryptographic checksum capabilities (MD5), which
are useful for comparisons, and the ability to generate a secure random number (the
RANDOMBYTES function). Secure random number generation is an important part of
cryptography; predictable keys are easily guessed keys; and easily guessed keys may
lead to easy decryption of data. Most cryptanalysis is done by finding weak keys or

Chapter 15
Data Encryption Storage with the DBMS_CRYPTO Package

15-10

poorly stored keys, rather than through brute force analysis (cycling through all
possible keys).

Note:

Do not use DBMS_RANDOM, because it is unsuitable for cryptographic key
generation.

Key management is programmatic. That is, the application (or caller of the function)
must supply the encryption key. This means that the application developer must find a
way of storing and retrieving keys securely. The relative strengths and weaknesses of
various key management techniques are discussed in the sections that follow. The
DES algorithm itself has an effective key length of 56-bits.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_CRYPTO package

• Oracle Database PL/SQL Packages and Types Reference for detailed
information about the UTL_RAW package

Using Ciphertexts Encrypted in OFB Mode in Oracle
Database Release 11g

In Oracle Database Release 11g, ciphertexts configured to use output feedback (OFB)
used electronic codebook (ECB) mode instead.

In Oracle Database Release 11g, if you set the DBMS_CRYPTO.CHAIN_OFB block cipher
chaining modifier to configure ciphertext encryption to use output feedback (OFB)
mode, then due to Oracle Bug 13001552, the result is that the configuration used
electronic codebook (ECB) mode erroneously. This bug has been fixed in Oracle
Database Release 12c. Therefore, after an upgrade from Oracle Database release
11g to Release 12c, the ciphertexts that were encrypted using OFB mode in release
11g will no longer decrypt properly in the corrected OFB mode in Oracle Database
Release 12c or later.
To remedy this problem:

1. Log in to the database as a user who has the EXECUTE privilege for the
DBMS_CRYPTO PL/SQL package.

2. Decrypt the cyphertexts using the DBMS_CRYPTO.CHAIN_ECB block cipher chaining
modifier.

The following example, dbmscrypto11.sql, shows the wrong behavior in Oracle
Database Release 11g:

dbmscrypto11.sql:
set serveroutput on

Chapter 15
Using Ciphertexts Encrypted in OFB Mode in Oracle Database Release 11g

15-11

declare
 l_mod_ofb pls_integer;
 l_mod_ecb pls_integer;
 v_key raw(32);
 v_iv raw(16);
 v_test_in raw(16);
 v_ciphertext raw(16);
 v_test_out_ECB raw(16);
 v_test_out_OFB raw(16);
begin
 l_mod_ofb := dbms_crypto.ENCRYPT_AES256
 + dbms_crypto.CHAIN_OFB
 + DBMS_CRYPTO.PAD_NONE ;
 l_mod_ecb := dbms_crypto.ENCRYPT_AES256
 + dbms_crypto.CHAIN_ECB
 + DBMS_CRYPTO.PAD_NONE ;

 v_key := hextoraw
 ('603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4');
 v_iv := hextoraw('000102030405060708090A0B0C0D0E0F');
 v_test_in := hextoraw('6bc1bee22e409f96e93d7e117393172a');
 v_ciphertext := dbms_crypto.encrypt(src => v_test_in,
 TYP => l_mod_ofb,
 key => v_key,
 iv => v_iv);
 v_test_out_ECB := dbms_crypto.decrypt(src => v_ciphertext,
 TYP => l_mod_ecb,
 key => v_key,
 iv => v_iv);
 v_test_out_OFB := dbms_crypto.decrypt(src => v_ciphertext,
 TYP => l_mod_ofb,
 key => v_key,
 iv => v_iv);
 dbms_output.put_line
 ('Input plaintext : '||rawtohex(v_test_in));
 dbms_output.put_line
 ('11g: Ciphertext (encrypt in OFB mode): '||rawtohex(v_ciphertext));
 dbms_output.put_line
 ('11g: Output of decrypt in ECB mode : '||rawtohex(v_test_out_ECB));
 dbms_output.put_line
 ('11g: Output of decrypt in OFB mode : '||rawtohex(v_test_out_OFB));
end;
/

The resulting output is as follows:

SQL> @dbmscrypto11.sql

Input plaintext : 6BC1BEE22E409F96E93D7E117393172A
11g: Ciphertext (encrypt in OFB mode): F3EED1BDB5D2A03C064B5A7E3DB181F8
11g: Output of decrypt in ECB mode : 6BC1BEE22E409F96E93D7E117393172A
11g: Output of decrypt in OFB mode : 6BC1BEE22E409F96E93D7E117393172A

Chapter 15
Using Ciphertexts Encrypted in OFB Mode in Oracle Database Release 11g

15-12

This output illustrates that in Oracle Database release 11g, OFB mode is wrongly ECB
mode, and therefore decrypting in either OFB or ECB mode results in the correct
plaintext.

The next example, dbmscrypto12from11.sql, shows that, after an upgrade from
Oracle Database release 11g to release 12c, ECB mode and not OFB mode has to be
used in order to properly decrypt a ciphertext encrypted in OFB mode in Release 11g.

dbmscrypto12from11.sql:
set serveroutput on

declare
 l_mod_ofb pls_integer;
 l_mod_ecb pls_integer;
 v_key raw(32);
 v_iv raw(16);
 v_test_in raw(16);
 v_ciphertext11 raw(16);
 v_test_out_ECB raw(16);
 v_test_out_OFB raw(16);
begin
 l_mod_ofb := dbms_crypto.ENCRYPT_AES256
 + dbms_crypto.CHAIN_OFB
 + DBMS_CRYPTO.PAD_NONE ;
 l_mod_ecb := dbms_crypto.ENCRYPT_AES256
 + dbms_crypto.CHAIN_ECB
 + DBMS_CRYPTO.PAD_NONE ;

 v_key := hextoraw
 ('603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4');
 v_iv := hextoraw('000102030405060708090A0B0C0D0E0F');
 v_test_in := hextoraw('6bc1bee22e409f96e93d7e117393172a');
 v_ciphertext11 := hextoraw('F3EED1BDB5D2A03C064B5A7E3DB181F8');

 v_test_out_ECB := dbms_crypto.decrypt(src => v_ciphertext11,
 TYP => l_mod_ecb,
 key => v_key,
 iv => v_iv);
 v_test_out_OFB := dbms_crypto.decrypt(src => v_ciphertext11,
 TYP => l_mod_ofb,
 key => v_key,
 iv => v_iv);
 dbms_output.put_line
 ('Input plaintext (to 11g) : '||rawtohex(v_test_in));
 dbms_output.put_line
 ('11g: Ciphertext (encrypt in OFB mode): '||rawtohex(v_ciphertext11));
 dbms_output.put_line
 ('12c: Output of decrypt in ECB mode : '||rawtohex(v_test_out_ECB));
 dbms_output.put_line
 ('12c: Output of decrypt in OFB mode : '||rawtohex(v_test_out_OFB));
end;
/

Chapter 15
Using Ciphertexts Encrypted in OFB Mode in Oracle Database Release 11g

15-13

The resulting output is as follows:

SQL> @dbmscrypto12from11.sql
Input plaintext (to 11g) : 6BC1BEE22E409F96E93D7E117393172A
11g: Ciphertext (encrypt in OFB mode): F3EED1BDB5D2A03C064B5A7E3DB181F8
12c: Output of decrypt in ECB mode : 6BC1BEE22E409F96E93D7E117393172A
12c: Output of decrypt in OFB mode : 4451EBE041EB29E191BBA0E9D67FAEB2

If you are preparing to upgrade from Oracle Database Release 11g to Release 12c,
then edit any scripts that you may have in which OFB mode is specified so that the
decrypt operations use ECB mode. This way, the scripts will work in both release 11g
and release 12c and later, ensuring business continuity.

Examples of Using the Data Encryption API
Examples of using the data encryption API include using the DBMS_CRYPTO.SQL
procedure, encrypting AES 256-bit data, and encrypting BLOB data.

• Example: Data Encryption Procedure
The DBMS_CRYPTO.SQL PL/SQL program can be used to encrypt data.

• Example: AES 256-Bit Data Encryption and Decryption Procedures
You can use a PL/SQL block to encrypt and decrypt a predefined variable.

• Example: Encryption and Decryption Procedures for BLOB Data
You can encrypt BLOB data.

Example: Data Encryption Procedure
The DBMS_CRYPTO.SQL PL/SQL program can be used to encrypt data.

This example code performs the following actions:

• Encrypts a string (VARCHAR2 type) using DES after first converting it into the RAW
data type.

This step is necessary because encrypt and decrypt functions and procedures in
DBMS_CRYPTO package work on the RAW data type only.

• Shows how to create a 160-bit hash using SHA-1 algorithm.

• Demonstrates how MAC, a key-dependent one-way hash, can be computed using
the MD5 algorithm.

The DBMS_CRYPTO.SQL procedure follows:

DECLARE
 input_string VARCHAR2(16) := 'tigertigertigert';
 raw_input RAW(128) :=
UTL_RAW.CAST_TO_RAW(CONVERT(input_string,'AL32UTF8','US7ASCII'));
 key_string VARCHAR2(8) := 'scottsco';
 raw_key RAW(128) :=
UTL_RAW.CAST_TO_RAW(CONVERT(key_string,'AL32UTF8','US7ASCII'));
 encrypted_raw RAW(2048);
 encrypted_string VARCHAR2(2048);
 decrypted_raw RAW(2048);
 decrypted_string VARCHAR2(2048);
-- Begin testing Encryption:
BEGIN

Chapter 15
Examples of Using the Data Encryption API

15-14

 dbms_output.put_line('> Input String : ' ||
 CONVERT(UTL_RAW.CAST_TO_VARCHAR2(raw_input),'US7ASCII','AL32UTF8'));
 dbms_output.put_line('> ========= BEGIN TEST Encrypt =========');
 encrypted_raw := dbms_crypto.Encrypt(
 src => raw_input,
 typ => DBMS_CRYPTO.DES_CBC_PKCS5,
 key => raw_key);
 dbms_output.put_line('> Encrypted hex value : ' ||
 rawtohex(UTL_RAW.CAST_TO_RAW(encrypted_raw)));
decrypted_raw := dbms_crypto.Decrypt(
 src => encrypted_raw,
 typ => DBMS_CRYPTO.DES_CBC_PKCS5,
 key => raw_key);
 decrypted_string :=
 CONVERT(UTL_RAW.CAST_TO_VARCHAR2(decrypted_raw),'US7ASCII','AL32UTF8');
dbms_output.put_line('> Decrypted string output : ' ||
 decrypted_string);
if input_string = decrypted_string THEN
 dbms_output.put_line('> String DES Encyption and Decryption successful');
END if;
dbms_output.put_line('');
dbms_output.put_line('> ========= BEGIN TEST Hash =========');
 encrypted_raw := dbms_crypto.Hash(
 src => raw_input,
 typ => DBMS_CRYPTO.HASH_SH1);
dbms_output.put_line('> Hash value of input string : ' ||
 rawtohex(UTL_RAW.CAST_TO_RAW(encrypted_raw)));
dbms_output.put_line('> ========= BEGIN TEST Mac =========');
 encrypted_raw := dbms_crypto.Mac(
 src => raw_input,
 typ => DBMS_CRYPTO.HMAC_MD5,
 key => raw_key);
dbms_output.put_line('> Message Authentication Code : ' ||
 rawtohex(UTL_RAW.CAST_TO_RAW(encrypted_raw)));
dbms_output.put_line('');
dbms_output.put_line('> End of DBMS_CRYPTO tests ');
END;
/

Example: AES 256-Bit Data Encryption and Decryption Procedures
You can use a PL/SQL block to encrypt and decrypt a predefined variable.

For the following example, the predefined variable is named input_string and it uses
the AES 256-bit algorithm with Cipher Block Chaining and PKCS #5 padding:

declare
 input_string VARCHAR2 (200) := 'Secret Message';
 output_string VARCHAR2 (200);
 encrypted_raw RAW (2000); -- stores encrypted binary text
 decrypted_raw RAW (2000); -- stores decrypted binary text
 num_key_bytes NUMBER := 256/8; -- key length 256 bits (32 bytes)
 key_bytes_raw RAW (32); -- stores 256-bit encryption key
 encryption_type PLS_INTEGER := -- total encryption type
 DBMS_CRYPTO.ENCRYPT_AES256
 + DBMS_CRYPTO.CHAIN_CBC
 + DBMS_CRYPTO.PAD_PKCS5;
begin
 DBMS_OUTPUT.PUT_LINE ('Original string: ' || input_string);
 key_bytes_raw := DBMS_CRYPTO.RANDOMBYTES (num_key_bytes);

Chapter 15
Examples of Using the Data Encryption API

15-15

 encrypted_raw := DBMS_CRYPTO.ENCRYPT
 (
 src => UTL_I18N.STRING_TO_RAW (input_string, 'AL32UTF8'),
 typ => encryption_type,
 key => key_bytes_raw
);
 -- The encrypted value in the encrypted_raw variable can be used here:
 decrypted_raw := DBMS_CRYPTO.DECRYPT
 (
 src => encrypted_raw,
 typ => encryption_type,
 key => key_bytes_raw
);
 output_string := UTL_I18N.RAW_TO_CHAR (decrypted_raw, 'AL32UTF8');
 DBMS_OUTPUT.PUT_LINE ('Decrypted string: ' || output_string);
end;

Example: Encryption and Decryption Procedures for BLOB Data
You can encrypt BLOB data.

The following sample PL/SQL program (blob_test.sql) shows how to encrypt and
decrypt BLOB data. This example code does the following, and prints out its progress
(or problems) at each step:

• Creates a table for the BLOB column

• Inserts the raw values into that table

• Encrypts the raw data

• Decrypts the encrypted data

The blob_test.sql procedure follows:

-- 1. Create a table for BLOB column:
create table table_lob (id number, loc blob);

-- 2. Insert 3 empty lobs for src/enc/dec:
insert into table_lob values (1, EMPTY_BLOB());
insert into table_lob values (2, EMPTY_BLOB());
insert into table_lob values (3, EMPTY_BLOB());

set echo on
set serveroutput on

declare
 srcdata RAW(1000);
 srcblob BLOB;
 encrypblob BLOB;
 encrypraw RAW(1000);
 encrawlen BINARY_INTEGER;
 decrypblob BLOB;
 decrypraw RAW(1000);
 decrawlen BINARY_INTEGER;

 leng INTEGER;

begin

 -- RAW input data 16 bytes
 srcdata := hextoraw('6D6D6D6D6D6D6D6D6D6D6D6D6D6D6D6D');

Chapter 15
Examples of Using the Data Encryption API

15-16

 dbms_output.put_line('---');
 dbms_output.put_line('input is ' || srcdata);
 dbms_output.put_line('---');

 -- select empty lob locators for src/enc/dec
 select loc into srcblob from table_lob where id = 1;
 select loc into encrypblob from table_lob where id = 2;
 select loc into decrypblob from table_lob where id = 3;

 dbms_output.put_line('Created Empty LOBS');
 dbms_output.put_line('---');

 leng := DBMS_LOB.GETLENGTH(srcblob);
 IF leng IS NULL THEN
 dbms_output.put_line('Source BLOB Len NULL ');
 ELSE
 dbms_output.put_line('Source BLOB Len ' || leng);
 END IF;

 leng := DBMS_LOB.GETLENGTH(encrypblob);
 IF leng IS NULL THEN
 dbms_output.put_line('Encrypt BLOB Len NULL ');
 ELSE
 dbms_output.put_line('Encrypt BLOB Len ' || leng);
 END IF;

 leng := DBMS_LOB.GETLENGTH(decrypblob);
 IF leng IS NULL THEN
 dbms_output.put_line('Decrypt BLOB Len NULL ');
 ELSE
 dbms_output.put_line('Decrypt BLOB Len ' || leng);
 END IF;

 -- 3. Write source raw data into blob:
 DBMS_LOB.OPEN (srcblob, DBMS_LOB.lob_readwrite);
 DBMS_LOB.WRITEAPPEND (srcblob, 16, srcdata);
 DBMS_LOB.CLOSE (srcblob);

 dbms_output.put_line('Source raw data written to source blob');
 dbms_output.put_line('---');

 leng := DBMS_LOB.GETLENGTH(srcblob);
 IF leng IS NULL THEN
 dbms_output.put_line('source BLOB Len NULL ');
 ELSE
 dbms_output.put_line('Source BLOB Len ' || leng);
 END IF;

 /*
 * Procedure Encrypt
 * Arguments: srcblob -> Source BLOB
 * encrypblob -> Output BLOB for encrypted data
 * DBMS_CRYPTO.AES_CBC_PKCS5 -> Algo : AES
 * Chaining : CBC
 * Padding : PKCS5
 * 256 bit key for AES passed as RAW
 * ->
 hextoraw('000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F')
 * IV (Initialization Vector) for AES algo passed as RAW
 * -> hextoraw('00000000000000000000000000000000')

Chapter 15
Examples of Using the Data Encryption API

15-17

 */

 DBMS_CRYPTO.Encrypt(encrypblob,
 srcblob,
 DBMS_CRYPTO.AES_CBC_PKCS5,
 hextoraw
('000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F'),
 hextoraw('00000000000000000000000000000000'));

 dbms_output.put_line('Encryption Done');
 dbms_output.put_line('---');

 leng := DBMS_LOB.GETLENGTH(encrypblob);
 IF leng IS NULL THEN
 dbms_output.put_line('Encrypt BLOB Len NULL');
 ELSE
 dbms_output.put_line('Encrypt BLOB Len ' || leng);
 END IF;

 -- 4. Read encrypblob to a raw:
 encrawlen := 999;

 DBMS_LOB.OPEN (encrypblob, DBMS_LOB.lob_readwrite);
 DBMS_LOB.READ (encrypblob, encrawlen, 1, encrypraw);
 DBMS_LOB.CLOSE (encrypblob);

 dbms_output.put_line('Read encrypt blob to a raw');
 dbms_output.put_line('---');

 dbms_output.put_line('Encrypted data is (256 bit key) ' || encrypraw);
 dbms_output.put_line('---');

 /*
 * Procedure Decrypt
 * Arguments: encrypblob -> Encrypted BLOB to decrypt
 * decrypblob -> Output BLOB for decrypted data in RAW
 * DBMS_CRYPTO.AES_CBC_PKCS5 -> Algo : AES
 * Chaining : CBC
 * Padding : PKCS5
 * 256 bit key for AES passed as RAW (same as used during Encrypt)
 * ->
 hextoraw('000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F')
 * IV (Initialization Vector) for AES algo passed as RAW (same as
 used during Encrypt)
 * -> hextoraw('00000000000000000000000000000000')
 */

 DBMS_CRYPTO.Decrypt(decrypblob,
 encrypblob,
 DBMS_CRYPTO.AES_CBC_PKCS5,
 hextoraw
 ('000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F'),
 hextoraw('00000000000000000000000000000000'));

 leng := DBMS_LOB.GETLENGTH(decrypblob);
 IF leng IS NULL THEN
 dbms_output.put_line('Decrypt BLOB Len NULL');
 ELSE
 dbms_output.put_line('Decrypt BLOB Len ' || leng);
 END IF;

Chapter 15
Examples of Using the Data Encryption API

15-18

 -- Read decrypblob to a raw
 decrawlen := 999;

 DBMS_LOB.OPEN (decrypblob, DBMS_LOB.lob_readwrite);
 DBMS_LOB.READ (decrypblob, decrawlen, 1, decrypraw);
 DBMS_LOB.CLOSE (decrypblob);

 dbms_output.put_line('Decrypted data is (256 bit key) ' || decrypraw);
 dbms_output.put_line('---');

 DBMS_LOB.OPEN (srcblob, DBMS_LOB.lob_readwrite);
 DBMS_LOB.TRIM (srcblob, 0);
 DBMS_LOB.CLOSE (srcblob);

 DBMS_LOB.OPEN (encrypblob, DBMS_LOB.lob_readwrite);
 DBMS_LOB.TRIM (encrypblob, 0);
 DBMS_LOB.CLOSE (encrypblob);

 DBMS_LOB.OPEN (decrypblob, DBMS_LOB.lob_readwrite);
 DBMS_LOB.TRIM (decrypblob, 0);
 DBMS_LOB.CLOSE (decrypblob);

end;
/

truncate table table_lob;
drop table table_lob;

Data Dictionary Views for Encrypted Data
Oracle Database provides data dictionary views to find information about encrypted
data.

Table 15-2 lists these data dictionary views.

Table 15-2 Data Dictionary Views That Display Information about Encrypted Data

View Description

ALL_ENCRYPTED_COLUMNS Describes encryption algorithm information for all encrypted columns in all
tables accessible to the user

DBA_ENCRYPTED_COLUMNS Describes encryption algorithm information for all encrypted columns in
the database

USER_ENCRYPTED_COLUMNS Describes encryption algorithm information for all encrypted columns in all
tables in the schema of the user

V$ENCRYPTED_TABLESPACES Displays information about the current pluggable database (PDB)
tablespaces that are encrypted

V$ENCRYPTION_WALLET Displays information on the status of the wallet and the wallet location for
Transparent Data Encryption; applies to the current PDB only

V$RMAN_ENCRYPTION_ALGORITHMS Displays supported encryption algorithms for the current PDB

Chapter 15
Data Dictionary Views for Encrypted Data

15-19

See Also:

Oracle Database Reference for detailed information about these views

Chapter 15
Data Dictionary Views for Encrypted Data

15-20

Part IV
Securing Data on the Network

Part IV describes how to secure data on the network.

• Configuring Oracle Database Native Network Encryption and Data Integrity
You can configure native Oracle Net Services data encryption and data integrity
for both servers and clients.

• Configuring the Thin JDBC Client Network
Oracle Database native network encryption and strong authentication enables thin
Java Database Connectivity (JDBC) clients to securely connect to Oracle
databases.

16
Configuring Oracle Database Native
Network Encryption and Data Integrity

You can configure native Oracle Net Services data encryption and data integrity for
both servers and clients.

• About Oracle Database Native Network Encryption and Data Integrity
Oracle Database enables you to encrypt data that is sent over a network.

• Oracle Database Native Network Encryption Data Integrity
Encrypting network data provides data privacy so that unauthorized parties cannot
view plaintext data as it passes over the network.

• Data Integrity Algorithms Support
A keyed, sequenced implementation of the Message Digest 5 (MD5) algorithm or
the Secure Hash Algorithm (SHA-1 and SHA-2) protect against these attacks.

• Diffie-Hellman Based Key Negotiation
You can use the Diffie-Hellman key negotiation algorithm to secure data in a
multiuser environment.

• Configuration of Data Encryption and Integrity
Oracle Database native Oracle Net Services encryption and integrity presumes the
prior installation of Oracle Net Services.

About Oracle Database Native Network Encryption and Data
Integrity

Oracle Database enables you to encrypt data that is sent over a network.

• How Oracle Database Native Network Encryption and Integrity Works
Oracle Database provides native data network encryption and integrity to ensure
that data is secure as it travels across the network.

• Advanced Encryption Standard
Oracle Database supports the Federal Information Processing Standard (FIPS)
encryption algorithm, Advanced Encryption Standard (AES).

• ARIA
Oracle Database supports the Academia, Research Institute, and Agency (ARIA)
algorithm.

• GOST
Oracle Database supports the GOsudarstvennyy STandart (GOST) algorithm.

• SEED
Oracle Database supports the Korea Information Security Agency (KISA)
encryption algorithm, SEED.

• Triple-DES Support
Oracle Database supports Triple-DES encryption (3DES), which encrypts
message data with three passes of the DES algorithm.

16-1

How Oracle Database Native Network Encryption and Integrity Works
Oracle Database provides native data network encryption and integrity to ensure that
data is secure as it travels across the network.

The purpose of a secure cryptosystem is to convert plaintext data into unintelligible
ciphertext based on a key, in such a way that it is very hard (computationally
infeasible) to convert ciphertext back into its corresponding plaintext without
knowledge of the correct key.

In a symmetric cryptosystem, the same key is used both for encryption and decryption
of the same data. Oracle Database provides the Advanced Encryption Standard (AES)
symmetric cryptosystem for protecting the confidentiality of Oracle Net Services traffic.

Advanced Encryption Standard
Oracle Database supports the Federal Information Processing Standard (FIPS)
encryption algorithm, Advanced Encryption Standard (AES).

AES can be used by all U.S. government organizations and businesses to protect
sensitive data over a network. This encryption algorithm defines three standard key
lengths, which are 128-bit, 192-bit, and 256-bit. All versions operate in outer Cipher
Block Chaining (CBC) mode.

ARIA
Oracle Database supports the Academia, Research Institute, and Agency (ARIA)
algorithm.

This algorithm acknowledges the cooperative efforts of Korean researchers in
designing the algorithm.

ARIA defines three standard key lengths, which are 128-bit, 192-bit, and 256-bit. All
versions operate in outer cipher Cipher Block Chaining (CBC) mode.

GOST
Oracle Database supports the GOsudarstvennyy STandart (GOST) algorithm.

The GOST algorithm was created by the Euro-Asian Council for Standardization,
Metrology and Certification (EACS).

GOST defines a key size of 256-bits. In Oracle Database, outer Cipher Block Chaining
(CBC) mode is used.

SEED
Oracle Database supports the Korea Information Security Agency (KISA) encryption
algorithm, SEED.

SEED defines a key size of 128-bits. There are extensions to the standard that defines
additional key sizes of 192- and 256-bits, but Oracle Database does not support these
extensions. In the Oracle Database, SEED operates in outer Cipher Block Chaining
(CBC) mode.

Chapter 16
About Oracle Database Native Network Encryption and Data Integrity

16-2

Triple-DES Support
Oracle Database supports Triple-DES encryption (3DES), which encrypts message
data with three passes of the DES algorithm.

3DES provides a high degree of message security, but with a performance penalty.
The magnitude of the performance penalty depends on the speed of the processor
performing the encryption. 3DES typically takes three times as long to encrypt a data
block when compared to the standard DES algorithm.

3DES is available in two-key and three-key versions, with effective key lengths of 112-
bits and 168-bits, respectively. Both versions operate in outer Cipher Block Chaining
(CBC) mode.

The DES40 algorithm, available with Oracle Database and Secure Network Services,
is a variant of DES in which the secret key is preprocessed to provide 40 effective key
bits. It was designed to provide DES-based encryption to customers outside the U.S.
and Canada at a time when the U.S. export laws were more restrictive. Currently
DES40, DES, and 3DES are all available for export. DES40 is still supported to
provide backward-compatibility for international customers.

Oracle Database Native Network Encryption Data Integrity
Encrypting network data provides data privacy so that unauthorized parties cannot
view plaintext data as it passes over the network.

Oracle Database also provides protection against two forms of active attacks.

Table 16-1 provides information about these attacks.

Table 16-1 Two Forms of Network Attacks

Type of Attack Explanation

Data modification attack An unauthorized party intercepting data in transit, altering it, and
retransmitting it is a data modification attack. For example,
intercepting a $100 bank deposit, changing the amount
to $10,000, and retransmitting the higher amount is a data
modification attack.

Replay attack Repetitively retransmitting an entire set of valid data is a replay
attack, such as intercepting a $100 bank withdrawal and
retransmitting it ten times, thereby receiving $1,000.

Data Integrity Algorithms Support
A keyed, sequenced implementation of the Message Digest 5 (MD5) algorithm or the
Secure Hash Algorithm (SHA-1 and SHA-2) protect against these attacks.

Both of these hash algorithms create a checksum that changes if the data is altered in
any way. This protection operates independently from the encryption process so you
can enable data integrity with or without enabling encryption.

Chapter 16
Oracle Database Native Network Encryption Data Integrity

16-3

Related Topics

• Configuring Integrity on the Client and the Server
You can use Oracle Net Manager to configure network integrity on both the client
and the server.

Diffie-Hellman Based Key Negotiation
You can use the Diffie-Hellman key negotiation algorithm to secure data in a multiuser
environment.

Secure key distribution is difficult in a multiuser environment. Oracle Database uses
the well known Diffie-Hellman key negotiation algorithm to perform secure key
distribution for both encryption and data integrity.

When encryption is used to protect the security of encrypted data, keys must be
changed frequently to minimize the effects of a compromised key. Accordingly, the
Oracle Database key management function changes the session key with every
session.

You can use Authentication Key Fold-in to defeat a possible third-party attack
(historically called the man-in-the-middle attack) on the Diffie-Hellman key negotiation
algorithm key negotiation. It strengthens the session key significantly by combining a
shared secret, known only to the client and the server, with the original session key
negotiated by Diffie-Hellman.

The client and the server begin communicating using the session key generated by
Diffie-Hellman. When the client authenticates to the server, they establish a shared
secret that is only known to both parties. Oracle Database combines the shared secret
and the Diffie-Hellman session key to generate a stronger session key designed to
defeat a man-in-the-middle attack.

Note:

The authentication key fold-in function is an imbedded feature of Oracle
Database and requires no configuration by the system or network
administrator.

Configuration of Data Encryption and Integrity
Oracle Database native Oracle Net Services encryption and integrity presumes the
prior installation of Oracle Net Services.

• About Activating Encryption and Integrity
In any network connection, both the client and server can support multiple
encryption algorithms and integrity algorithms.

• About Negotiating Encryption and Integrity
The sqlnet.ora file on systems using data encryption and integrity must contain
some or all the REJECTED, ACCEPTED, REQUESTED, and REQUIRED parameters.

• Configuring Encryption and Integrity Parameters Using Oracle Net Manager
You can set up or change encryption and integrity parameter settings using Oracle
Net Manager.

Chapter 16
Diffie-Hellman Based Key Negotiation

16-4

About Activating Encryption and Integrity
In any network connection, both the client and server can support multiple encryption
algorithms and integrity algorithms.

When a connection is made, the server selects which algorithm to use, if any, from
those algorithms specified in the sqlnet.ora files.The server searches for a match
between the algorithms available on both the client and the server, and picks the first
algorithm in its own list that also appears in the client list. If one side of the connection
does not specify an algorithm list, all the algorithms installed on that side are
acceptable. The connection fails with error message ORA-12650 if either side specifies
an algorithm that is not installed.

Encryption and integrity parameters are defined by modifying a sqlnet.ora file on the
clients and the servers on the network.

You can choose to configure any or all of the available encryption algorithms, and
either or both of the available integrity algorithms. Only one encryption algorithm and
one integrity algorithm are used for each connect session.

Note:

Oracle Database selects the first encryption algorithm and the first integrity
algorithm enabled on the client and the server. Oracle recommends that you
select algorithms and key lengths in the order in which you prefer
negotiation, choosing the strongest key length first.

See Also:

• Table 16-3 for a listing of valid encryption algorithms

• Oracle Database Advanced Security Guide for a listing of available
integrity algorithms

• Data Encryption and Integrity Parameters

About Negotiating Encryption and Integrity
The sqlnet.ora file on systems using data encryption and integrity must contain some
or all the REJECTED, ACCEPTED, REQUESTED, and REQUIRED parameters.

• About the Values for Negotiating Encryption and Integrity
Oracle Net Manager can be used to specify four possible values for the encryption
and integrity configuration parameters.

• REJECTED Configuration Parameter
The REJECTED value disables the security service, even if the other side requires
this service.

Chapter 16
Configuration of Data Encryption and Integrity

16-5

• ACCEPTED Configuration Parameter
The ACCEPTED value enables the security service if the other side requires or
requests the service.

• REQUESTED Configuration Parameter
The REQUESTED value enables the security service if the other side permits this
service.

• REQUIRED Configuration Parameter
The REQUIRED value enables the security service or preclude the connection.

About the Values for Negotiating Encryption and Integrity
Oracle Net Manager can be used to specify four possible values for the encryption and
integrity configuration parameters.

The following four values are listed in the order of increasing security, and they must
be used in the profile file (sqlnet.ora) for the client and server of the systems that are
using encryption and integrity.

The value REJECTED provides the minimum amount of security between client and
server communications, and the value REQUIRED provides the maximum amount of
network security:

• REJECTED

• ACCEPTED

• REQUESTED

• REQUIRED

The default value for each of the parameters is ACCEPTED.

Oracle Database servers and clients are set to ACCEPT encrypted connections out of
the box. This means that you can enable the desired encryption and integrity settings
for a connection pair by configuring just one side of the connection, server-side or
client-side.

So, for example, if there are many Oracle clients connecting to an Oracle database,
you can configure the required encryption and integrity settings for all these
connections by making the appropriate sqlnet.ora changes at the server end. You do
not need to implement configuration changes for each client separately.

Table 16-2 shows whether the security service is enabled, based on a combination of
client and server configuration parameters. If either the server or client has specified
REQUIRED, the lack of a common algorithm causes the connection to fail. Otherwise, if
the service is enabled, lack of a common service algorithm results in the service being
disabled.

Table 16-2 Encryption and Data Integrity Negotiations

Client Setting Server Setting Encryption and Data Negotiation

REJECTED REJECTED OFF

ACCEPTED REJECTED OFF

REQUESTED REJECTED OFF

REQUIRED REJECTED Connection fails

Chapter 16
Configuration of Data Encryption and Integrity

16-6

Table 16-2 (Cont.) Encryption and Data Integrity Negotiations

Client Setting Server Setting Encryption and Data Negotiation

REJECTED ACCEPTED OFF

ACCEPTED ACCEPTED OFF1

REQUESTED ACCEPTED ON

REQUIRED ACCEPTED ON

REJECTED REQUESTED OFF

ACCEPTED REQUESTED ON

REQUESTED REQUESTED ON

REQUIRED REQUESTED ON

REJECTED REQUIRED Connection fails

ACCEPTED REQUIRED ON

REQUESTED REQUIRED ON

REQUIRED REQUIRED ON

1 This value defaults to OFF. Cryptography and data integrity are not enabled until the user changes this parameter by using
Oracle Net Manager or by modifying the sqlnet.ora file.

REJECTED Configuration Parameter
The REJECTED value disables the security service, even if the other side requires this
service.

In this scenario, this side of the connection specifies that the security service is not
permitted. If the other side is set to REQUIRED, the connection terminates with error
message ORA-12650. If the other side is set to REQUESTED, ACCEPTED, or REJECTED, the
connection continues without error and without the security service enabled.

ACCEPTED Configuration Parameter
The ACCEPTED value enables the security service if the other side requires or requests
the service.

In this scenario, this side of the connection does not require the security service, but it
is enabled if the other side is set to REQUIRED or REQUESTED. If the other side is set to
REQUIRED or REQUESTED, and an encryption or integrity algorithm match is found, the
connection continues without error and with the security service enabled. If the other
side is set to REQUIRED and no algorithm match is found, the connection terminates
with error message ORA-12650.

If the other side is set to REQUESTED and no algorithm match is found, or if the other
side is set to ACCEPTED or REJECTED, the connection continues without error and without
the security service enabled.

REQUESTED Configuration Parameter
The REQUESTED value enables the security service if the other side permits this service.

Chapter 16
Configuration of Data Encryption and Integrity

16-7

In this scenario, this side of the connection specifies that the security service is desired
but not required. The security service is enabled if the other side specifies ACCEPTED,
REQUESTED, or REQUIRED. There must be a matching algorithm available on the other
side, otherwise the service is not enabled. If the other side specifies REQUIRED and
there is no matching algorithm, the connection fails.

REQUIRED Configuration Parameter
The REQUIRED value enables the security service or preclude the connection.

In this scenario, this side of the connection specifies that the security service must be
enabled. The connection fails if the other side specifies REJECTED or if there is no
compatible algorithm on the other side.

Configuring Encryption and Integrity Parameters Using Oracle Net
Manager

You can set up or change encryption and integrity parameter settings using Oracle Net
Manager.

• Configuring Encryption on the Client and the Server
Use Oracle Net Manager to configure encryption on the client and on the server.

• Configuring Integrity on the Client and the Server
You can use Oracle Net Manager to configure network integrity on both the client
and the server.

• Enabling Both Oracle Native Encryption and SSL Authentication for Different
Users Concurrently
Depending on the SQLNET.ENCRYPTION_CLIENT and SQLNET.ENCRYPTION_SERVER
settings, you can configure Oracle Database to allow both Oracle native
encryption and SSL authentication for different users concurrently.

Configuring Encryption on the Client and the Server
Use Oracle Net Manager to configure encryption on the client and on the server.

1. Start Oracle Net Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command at the
command line:

netmgr

• (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration
and Migration Tools, then Net Manager.

2. Expand Oracle Net Configuration, and from Local, select Profile.

3. From the Naming list, select Network Security.

The Network Security tabbed window appears.

4. Select the Encryption tab.

Chapter 16
Configuration of Data Encryption and Integrity

16-8

5. Select CLIENT or SERVER option from the Encryption box.

6. From the Encryption Type list, select one of the following:

• REQUESTED

• REQUIRED

• ACCEPTED

• REJECTED

7. (Optional) In the Encryption Seed field, enter between 10 and 70 random
characters. The encryption seed for the client should not be the same as that for
the server.

8. Select an encryption algorithm in the Available Methods list. Move it to the
Selected Methods list by choosing the right arrow (>). Repeat for each additional
method you want to use.

9. Select File, Save Network Configuration. The sqlnet.ora file is updated.

10. Repeat this procedure to configure encryption on the other system. The
sqlnet.ora file on the two systems should contain the following entries:

• On the server:

SQLNET.ENCRYPTION_SERVER = [accepted | rejected | requested | required]
SQLNET.ENCRYPTION_TYPES_SERVER = (valid_encryption_algorithm
[,valid_encryption_algorithm])

• On the client:

SQLNET.ENCRYPTION_CLIENT = [accepted | rejected | requested | required]
SQLNET.ENCRYPTION_TYPES_CLIENT = (valid_encryption_algorithm
[,valid_encryption_algorithm])

Table 16-3 lists valid encryption algorithms and their associated legal values.

Chapter 16
Configuration of Data Encryption and Integrity

16-9

Table 16-3 Valid Encryption Algorithms

Algorithm Name Legal Value

AES 256-bit key AES256

AES 192-bit key AES192

AES 128-bit key AES128

Configuring Integrity on the Client and the Server
You can use Oracle Net Manager to configure network integrity on both the client and
the server.

1. Start Oracle Net Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command at the
command line:

netmgr

• (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration
and Migration Tools, then Net Manager.

2. Expand Oracle Net Configuration, and from Local, select Profile.

3. From the Naming list, select Network Security.

The Network Security tabbed window appears.

4. Select the Integrity tab.

Chapter 16
Configuration of Data Encryption and Integrity

16-10

5. Depending upon which system you are configuring, select the Server or Client
from the Integrity box.

6. From the Checksum Level list, select one of the following checksum level values:

• REQUESTED

• REQUIRED

• ACCEPTED

• REJECTED

7. Select an integrity algorithm in the Available Methods list. Move it to the Selected
Methods list by choosing the right arrow (>). Repeat for each additional method
you want to use.

8. Select File, Save Network Configuration.

The sqlnet.ora file is updated.

9. Repeat this procedure to configure integrity on the other system.

The sqlnet.ora file on the two systems should contain the following entries:

• On the server:

SQLNET.CRYPTO_CHECKSUM_SERVER = [accepted | rejected | requested | required]
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER = (valid_crypto_checksum_algorithm
[,valid_crypto_checksum_algorithm])

• On the client:

SQLNET.CRYPTO_CHECKSUM_CLIENT = [accepted | rejected | requested | required]
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT = (valid_crypto_checksum_algorithm
[,valid_crypto_checksum_algorithm])

See Also:

Oracle Database Advanced Security Guide for a list of the supported
encryption and integrity algorithms

Enabling Both Oracle Native Encryption and SSL Authentication for Different
Users Concurrently

Depending on the SQLNET.ENCRYPTION_CLIENT and SQLNET.ENCRYPTION_SERVER
settings, you can configure Oracle Database to allow both Oracle native encryption
and SSL authentication for different users concurrently.

• About Enabling Both Oracle Native Encryption and SSL Authentication for
Different Users Concurrently
By default, Oracle Database does not allow both Oracle native encryption and
Secure Sockets Layer (SSL) authentication for different users concurrently.

• Configuring Both Oracle Native Encryption and SSL Authentication for Different
Users Concurrently
Use the IGNORE_ANO_ENCRYPTION_FOR_TCPS parameter to enable the concurrent
use of both Oracle native encryption and Secure Sockets Layer (SSL)
authentication.

Chapter 16
Configuration of Data Encryption and Integrity

16-11

About Enabling Both Oracle Native Encryption and SSL Authentication for Different Users
Concurrently

By default, Oracle Database does not allow both Oracle native encryption and Secure
Sockets Layer (SSL) authentication for different users concurrently.

The use of both Oracle native encryption (also called Advanced Networking Option
(ANO) encryption) and SSL authentication together is called double encryption.
Suppose the client has the SQLNET.ENCRYPTION_CLIENT parameter set to required and
the server has the SQLNET.ENCRYPTION_SERVER parameter set to required. If a TCPS
listener is used, then the connection is refused and the ORA-12696: Double
Encryption Turned On, login disallowed error is returned.

However, there are cases in which both a TCP and TCPS listener must be configured,
so that some users can connect to the server using a user name and password, and
others can validate to the server by using an SSL certificate. In these situations, you
must configure both password-based authentication and SSL authentication. A
workaround in previous releases was to set the SQLNET.ENCRYPTION_SERVER parameter
to requested. If your requirements are that SQLNET.ENCRYPTION_SERVER be set to
required, then you can set the IGNORE_ANO_ENCRYPTION_FOR_TCPS parameter in both
SQLNET.ENCRYPTION_CLIENT and SQLNET.ENCRYPTION_SERVER to TRUE. By default, it is
set to FALSE.

Setting IGNORE_ANO_ENCRYPTION_FOR_TCPS to TRUE forces the client to ignore the value
that is set for the SQLNET.ENCRYPTION_CLIENT parameter for all outgoing TCPS
connections. Instead of returning the ORA-12696 error when both TCPS and ANO are
configured, this parameter allows the database to ignore the
SQLNET.ENCRYPTION_CLIENT or SQLNET.ENCRYPTION_SERVER setting when there is a
conflict between the use of a TCPS client and when these two parameters are set to
required.

Configuring Both Oracle Native Encryption and SSL Authentication for Different Users
Concurrently

Use the IGNORE_ANO_ENCRYPTION_FOR_TCPS parameter to enable the concurrent use of
both Oracle native encryption and Secure Sockets Layer (SSL) authentication.

On the server, you must set IGNORE_ANO_ENCRYPTION_FOR_TCPS in the sqlnet.ora file,
and on the client, you can set it in either the sqlnet.ora file or the tnsnames.ora file.

1. Log in to the database server

2. Go to the location of the sqlnet.ora file.

By default, sqlnet.ora is in the ORACLE_BASE/network/admin directory. The
sqlnet.ora file can also be stored in the directory specified by the TNS_ADMIN
environment variable.

3. In sqlnet.ora, check if the current SQLNET.ENCRYPTION_SERVER setting is required
or requested.

4. If SQLNET.ENCRYPTION_SERVER is set to required, then add the
SQLNET.IGNORE_ANO_ENCRYPTION_FOR_TCPS to sqlnet.ora and then set it to TRUE.

IGNORE_ANO_ENCRYPTION_FOR_TCPS=TRUE

5. Save and exit sqlnet.ora.

Chapter 16
Configuration of Data Encryption and Integrity

16-12

6. Log in to the client.

For the client, you can set the value in either the sqlnet.ora file or the
tnsnames.ora file.

• Setting the value in sqlnet.ora: Check if the SQLNET.ENCRYPTION_CLIENT
parameter is set to required. If SQLNET.ENCRYPTION_CLIENT, then edit the
sqlnet.ora file to have the following setting:

IGNORE_ANO_ENCRYPTION_FOR_TCPS=TRUE

• Setting the value in tnsnames.ora: By default, tnsnames.ora is in the same
location as sqlnet.ora. If SQLNET.ENCRYPTION_CLIENT is set to required in
sqlnet.ora, then in the SECURITY portion of the TNS_ALIAS setting, set
IGNORE_ANO_ENCRYPTION_FOR_TCPS=TRUE. For example:

test_ssl=
 (DESCRIPTION =
 (ADDRESS=(PROTOCOL=tcps)(HOST=)(PORT=1750))
 (CONNECT_DATA=(SID=^ORACLE_SID^))
 (SECURITY=(IGNORE_ANO_ENCRYPTION_FOR_TCPS=TRUE))
)

Chapter 16
Configuration of Data Encryption and Integrity

16-13

17
Configuring the Thin JDBC Client Network

Oracle Database native network encryption and strong authentication enables thin
Java Database Connectivity (JDBC) clients to securely connect to Oracle databases.

• About the Java Implementation
Oracle Database provides a Java implementation of native network encryption and
strong authentication.

• Java Database Connectivity Support
JDBC, an industry-standard Java interface, is a Java standard for connecting to a
relational database from a Java program.

• Thin JDBC Features
The Thin JDBC driver provides security features such as strong authentication,
data encryption, and data integrity checking.

• Implementation Overview
On the server side, the negotiation of algorithms and the generation of keys
function exactly the same as Oracle Database native encryption.

• Obfuscation of the Java Cryptography Code
The obfuscation of the Java cryptography code protects Java classes and
methods that contain encryption and decryption capabilities with obfuscation
software.

• Configuration Parameters for the Thin JDBC Network Implementation
The Thin JDBC network implementation for the client provides parameters to
control encryption, integrity, and the authentication service.

About the Java Implementation
Oracle Database provides a Java implementation of native network encryption and
strong authentication.

The Java implementation of Oracle Database native network encryption and strong
authentication provides network authentication, encryption and integrity protection for
Thin JDBC clients that must communicate with Oracle Databases that have Oracle
Database native network encryption and strong authentication configured.

See Also:

Oracle Database JDBC Developer's Guide for information about JDBC,
including examples

17-1

Java Database Connectivity Support
JDBC, an industry-standard Java interface, is a Java standard for connecting to a
relational database from a Java program.

Sun Microsystems defined the JDBC standard and Oracle implements and extends
the standard with its own JDBC drivers.

Oracle JDBC drivers are used to create Java Database Connectivity (JDBC)
applications to communicate with Oracle databases. Oracle implements two types of
JDBC drivers: Thick JDBC drivers built on top of the C-based Oracle Net client, as well
as a Thin (Pure Java) JDBC driver to support downloadable applets. Oracle
extensions to JDBC include the following features:

• Data access and manipulation

• LOB access and manipulation

• Oracle object type mapping

• Object reference access and manipulation

• Array access and manipulation

• Application performance enhancement

Thin JDBC Features
The Thin JDBC driver provides security features such as strong authentication, data
encryption, and data integrity checking.

Because the Thin JDBC driver is designed to be used with downloadable applets used
over the Internet, Oracle designed a 100 percent Java implementation of Oracle
Database native network encryption and strong authentication, encryption, and
integrity algorithms, for use with thin clients.

Oracle Database provides the following features for Thin JDBC:

• Strong Authentication

• Data encryption

• Data integrity checking

• Secure connections from Thin JDBC clients to the Oracle RDBMS

• Ability for developers to build applets that transmit data over a secure
communication channel

• Secure connections from middle tier servers with Java Server Pages (JSP) to the
Oracle RDBMS

• Secure connections from the current release of Oracle Database to older versions
of Oracle databases

The Oracle JDBC Thin driver supports the Oracle Database SSL implementation and
third-party authentication methods such as RADIUS and Kerberos. Thin JDBC support
for authentication methods like RADIUS, Kerberos, and SSL were introduced in Oracle
Database 11g release 1 (11.1).

Chapter 17
Java Database Connectivity Support

17-2

The Oracle Database native network encryption and strong authentication Java
implementation provides Java versions of the following encryption algorithms:

• AES256: AES 256-bit key

• AES192: AES 192-bit key

• AES128: AES 128-bit key

Note:

In the preceding list of algorithms, CBC refers to the Cipher Block Chaining
mode.

Thin JDBC support for the Advanced Encryption Standard (AES) was introduced in
Oracle Database 12c Release 1 (12.1).

In addition, this implementation provides data integrity checking for Thin JDBC using
Secure Hash Algorithm (SHA1) and Message Digest 5 (MD5). Thin JDBC support for
SHA1 was introduced in Oracle Database 11g release 1 (11.1).

See Also:

Oracle Database JDBC Developer’s Guide for details on configuring
authentication, encryption, and integrity for thin JDBC clients.

Implementation Overview
On the server side, the negotiation of algorithms and the generation of keys function
exactly the same as Oracle Database native encryption.

This feature enables backward and forward compatibility of clients and servers.

On the client side, the algorithm negotiation and key generation occur in exactly the
same manner as OCI clients. The client and server negotiate encryption algorithms,
generate random numbers, use Diffie-Hellman to exchange session keys, and use the
Oracle Password Protocol, in the same manner as the traditional Oracle Net clients.
Thin JDBC contains a complete implementation of an Oracle Net client in pure Java.

Obfuscation of the Java Cryptography Code
The obfuscation of the Java cryptography code protects Java classes and methods
that contain encryption and decryption capabilities with obfuscation software.

Java byte code obfuscator is a process frequently used to protect intellectual property
written in the form of Java programs. It mixes up Java symbols found in the code. The
process leaves the original program structure intact, letting the program run correctly
while changing the names of the classes, methods, and variables in order to hide the
intended behavior. Although it is possible to decompile and read non-obfuscated Java

Chapter 17
Implementation Overview

17-3

code, obfuscated Java code is sufficiently difficult to decompile to satisfy U.S.
government export controls.

Configuration Parameters for the Thin JDBC Network
Implementation

The Thin JDBC network implementation for the client provides parameters to control
encryption, integrity, and the authentication service.

• About the Thin JDBC Network Implementation Configuration Parameters
The JDBC network implementation configuration parameters control network
settings such as the level of security used between client and server connections.

• Client Encryption Level Parameter
The CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL parameter defines the
level of security that the client uses to negotiate with the server.

• Client Encryption Selected List Parameter
The CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES parameter defines the
encryption algorithm to be used.

• Client Integrity Level Parameter
The CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL parameter defines the level
of security to negotiate with the server for data integrity.

• Client Integrity Selected List Parameter
The CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES parameter defines the data
integrity algorithm to be used.

• Client Authentication Service Parameter
The CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERVICES parameter
determines the authentication service to be used.

• AnoServices Constants
The oracle.net.ano.AnoServices interface includes the names of the encryption,
authentication, and checksum algorithms that the JDBC Thin driver supports.

About the Thin JDBC Network Implementation Configuration
Parameters

The JDBC network implementation configuration parameters control network settings
such as the level of security used between client and server connections.

A properties class object containing several configuration parameters is passed to the
Oracle Database native network encryption and strong authentication interface.

All JDBC connection properties including the ones pertaining to Oracle Database are
defined as constants in the oracle.jdbc.OracleConnection interface. The following
list enumerates some of these connection properties:

Chapter 17
Configuration Parameters for the Thin JDBC Network Implementation

17-4

See Also:

Oracle Database JDBC Developer’s Guide for detailed information on
configuration parameters and configuration examples

Client Encryption Level Parameter
The CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL parameter defines the level
of security that the client uses to negotiate with the server.

Table 17-1 describes the attributes of this parameter.

Table 17-1 CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL
Attributes

Attribute Description

Parameter Type String

Parameter Class Static

Permitted Values REJECTED; ACCEPTED; REQUESTED; REQUIRED

Default Value ACCEPTED

Syntax prop.setProperty(OracleConnection.CONNECTION_PROPE
RTY_THIN_NET_ENCRYPTION_LEVEL,level);

where prop is an object of the Properties class

Example prop.setProperty(OracleConnection.CONNECTION_PROPE
RTY_THIN_NET_ENCRYPTION_LEVEL,"REQUIRED");

where prop is an object of the Properties class

Client Encryption Selected List Parameter
The CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES parameter defines the
encryption algorithm to be used.

Table 17-2 describes attributes of this parameter.

Table 17-2 CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES
Attributes

Attribute Description

Parameter Type String

Parameter Class Static

Permitted Values AES256 (AES 256-bit key), AES192 (AES 192-bit key),
AES128 (AES 128-bit key),

Syntax prop.setProperty(OracleConnection.CONNECTION_PROPE
RTY_THIN_NET_ENCRYPTION_TYPES,algorithm);

where prop is an object of the Properties class

Chapter 17
Configuration Parameters for the Thin JDBC Network Implementation

17-5

Table 17-2 (Cont.)
CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES Attributes

Attribute Description

Example prop.setProperty(OracleConnection.CONNECTION_PROPE
RTY_THIN_NET_ENCRYPTION_TYPES, "(AES256,
AES192)");

where prop is an object of the Properties class

Client Integrity Level Parameter
The CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL parameter defines the level of
security to negotiate with the server for data integrity.

Table 17-3 describes the attributes of this parameter.

Table 17-3 CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL
Attributes

Attribute Description

Parameter Type String

Parameter Class Static

Permitted Values REJECTED; ACCEPTED; REQUESTED; REQUIRED

Default Value ACCEPTED

Syntax prop.setProperty(OracleConnection.CONNECTION_PROPE
RTY_THIN_NET_CHECKSUM_LEVEL,level);

where prop is an object of the Properties class

Example prop.setProperty(OracleConnection.CONNECTION_PROPE
RTY_THIN_NET_CHECKSUM_LEVEL,"REQUIRED");

where prop is an object of the Properties class

Client Integrity Selected List Parameter
The CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES parameter defines the data
integrity algorithm to be used.

Table 17-4 describes this parameter's attributes.

Table 17-4 CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES
Attributes

Attribute Description

Parameter Type String

Parameter Class Static

Permitted Values SHA1

Chapter 17
Configuration Parameters for the Thin JDBC Network Implementation

17-6

Table 17-4 (Cont.) CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES
Attributes

Attribute Description

Syntax prop.setProperty(OracleConnection.CONNECTION_PROPE
RTY_THIN_NET_CHECKSUM_TYPES, algorithm);

where prop is an object of the Properties class

Example prop.setProperty(OracleConnection.CONNECTION_PROPE
RTY_THIN_NET_CHECKSUM_TYPES,"(MD5, SHA1)");

where prop is an object of the Properties class

Client Authentication Service Parameter
The CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERVICES parameter
determines the authentication service to be used.

Table 17-5 describes this parameter's attributes.

Table 17-5 CONNECTION_PROPERTY_THIN_NET_AUTHENTICATION_SERVIC
ES Attributes

Attribute Description

Parameter Type String

Parameter Class Static

Permitted Values RADIUS, KERBEROS, SSL

Syntax prop.setProperty(OracleConnection.CONNECTION_PROPE
RTY_THIN_NET_AUTHENTICATION_SERVICES,authenticatio
n);

where prop is an object of the Properties class

Example prop.setProperty(OracleConnection.CONNECTION_PROPE
RTY_THIN_NET_AUTHENTICATION_SERVICES,"(RADIUS,
KERBEROS, SSL)");

where prop is an object of the Properties class

AnoServices Constants
The oracle.net.ano.AnoServices interface includes the names of the encryption,
authentication, and checksum algorithms that the JDBC Thin driver supports.

The following constants are in the oracle.net.ano.AnoServices interface:

// ---- SUPPORTED ENCRYPTION ALG -----
public static final String ENCRYPTION_RC4_40 = "RC4_40";
public static final String ENCRYPTION_RC4_56 = "RC4_56";
public static final String ENCRYPTION_RC4_128 = "RC4_128";
public static final String ENCRYPTION_RC4_256 = "RC4_256";
public static final String ENCRYPTION_DES40C = "DES40C";
public static final String ENCRYPTION_DES56C = "DES56C";
public static final String ENCRYPTION_3DES112 = "3DES112";

Chapter 17
Configuration Parameters for the Thin JDBC Network Implementation

17-7

public static final String ENCRYPTION_3DES168 = "3DES168";
public static final String ENCRYPTION_AES128 = "AES128";
public static final String ENCRYPTION_AES192 = "AES192";
public static final String ENCRYPTION_AES256 = "AES256";
// ---- SUPPORTED INTEGRITY ALG ----
public static final String CHECKSUM_MD5 = "MD5";
public static final String CHECKSUM_SHA1 = "SHA1";
// ---- SUPPORTED AUTHENTICATION ADAPTORS ----
public static final String AUTHENTICATION_RADIUS = "RADIUS";
public static final String AUTHENTICATION_KERBEROS = "KERBEROS";

You can use these constants to set the encryption, integrity, and authentication
parameters. Example 17-1 illustrates one such scenario.

Example 17-1 Using AnoServices Constants in JDBC Client Code

import java.sql.*;
import java.util.Properties;import oracle.jdbc.*;
import oracle.net.ano.AnoServices;
/**
 * JDBC thin driver demo: new security features in 11gR1.
 *
 * This program attempts to connect to the database using the JDBC thin
 * driver and requires the connection to be encrypted with either AES256 or AES192
 * and the data integrity to be verified with SHA1.
 *
 * In order to activate encryption and checksumming in the database you need to
 * modify the sqlnet.ora file. For example:
 *
 * SQLNET.ENCRYPTION_TYPES_SERVER = (AES256,AES192,AES128)
 * SQLNET.ENCRYPTION_SERVER = accepted
 * SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER= (SHA1)
 * SQLNET.CRYPTO_CHECKSUM_SERVER = accepted
 *
 * This output of this program is:
 * Connection created! Encryption algorithm is: AES256, data integrity algorithm
 * is: SHA1
 *
 */
public class DemoAESAndSHA1
{
 static final String USERNAME= "hr";
 static final String PASSWORD= "hr";
 static final String URL =
"jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=somehost.us.example.com)
(PORT=5561))"
+"(CONNECT_DATA=(SERVICE_NAME=itydemo.regress.rdbms.dev.us.example.com)))";

 public static final void main(String[] argv)
 {
 DemoAESAndSHA1 demo = new DemoAESAndSHA1();
 try
 {
 demo.run();
 }catch(SQLException ex)
 {
 ex.printStackTrace();
 }
 }
 void run() throws SQLException
 {

Chapter 17
Configuration Parameters for the Thin JDBC Network Implementation

17-8

 OracleDriver dr = new OracleDriver();
 Properties prop = new Properties();
 // We require the connection to be encrypted with either AES256 or AES192.
 // If the database doesn't accept such a security level, then the connection
 // attempt will fail.
 prop.setProperty(

OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_LEVEL,AnoServices.ANO_REQUIR
ED);
 prop.setProperty(
 OracleConnection.CONNECTION_PROPERTY_THIN_NET_ENCRYPTION_TYPES, "(" +
AnoServices.ENCRYPTION_AES256 + "," +AnoServices.ENCRYPTION_AES192 + ")");
 // We also require the use of the SHA1 algorithm for data integrity checking.
 prop.setProperty(

OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_LEVEL,AnoServices.ANO_REQUIRED
);
 prop.setProperty(
 OracleConnection.CONNECTION_PROPERTY_THIN_NET_CHECKSUM_TYPES, "(" +
AnoServices.CHECKSUM_SHA1 + ")");

 prop.setProperty("user",DemoAESAndSHA1.USERNAME);
 prop.setProperty("password",DemoAESAndSHA1.PASSWORD);
 OracleConnection oraConn =
 (OracleConnection)dr.connect(DemoAESAndSHA1.URL,prop);

 System.out.println("Connection created! Encryption algorithm is:
"+oraConn.getEncryptionAlgorithmName() +", data integrity algorithm is:
"+oraConn.getDataIntegrityAlgorithmName());

 oraConn.close();
 }

}

Chapter 17
Configuration Parameters for the Thin JDBC Network Implementation

17-9

Part V
Managing Strong Authentication

Part V describes how to manage strong authentication.

• Introduction to Strong Authentication
Strong authentication supports tools such as Secure Sockets Layer (SSL) to verify
the identities of users who log in to the database.

• Strong Authentication Administration Tools
You can use a set of strong authentication administration tools for native network
encryption and public key infrastructure credentials.

• Configuring Kerberos Authentication
Kerberos is a trusted third-party authentication system that relies on shared
secrets and presumes that the third party is secure.

• Configuring Secure Sockets Layer Authentication
You can configure Oracle Database to use Secure Sockets Layer authentication.

• Configuring RADIUS Authentication
RADIUS is a client/server security protocol widely used to enable remote
authentication and access.

• Customizing the Use of Strong Authentication
You can configure multiple authentication methods under Oracle Database native
network encryption and strong authentication.

18
Introduction to Strong Authentication

Strong authentication supports tools such as Secure Sockets Layer (SSL) to verify the
identities of users who log in to the database.

• What Is Strong Authentication?
You use authentication to prove the identities of users who are attempting to log
into the database.

• Centralized Authentication and Single Sign-On
Single sign-on enables users to access multiple accounts and applications with a
single password.

• How Centralized Network Authentication Works
A centralized network authentication system works with an Oracle server, an
authentication server, and users who connect to the Oracle server.

• Supported Strong Authentication Methods
Oracle Database supports industry-standard authentication methods.

• Oracle Database Native Network Encryption/Strong Authentication Architecture
The Oracle Database native network encryption and strong authentication
architecture complements an Oracle database server or client installations.

• System Requirements for Strong Authentication
Kerberos, RADIUS, and Secure Sockets Layer (SSL) have a set of system
requirements for strong authentication.

• Oracle Database Native Network Encryption and Strong Authentication
Restrictions
Oracle applications support Oracle Database native network encryption and strong
authentication.

What Is Strong Authentication?
You use authentication to prove the identities of users who are attempting to log into
the database.

Authenticating user identity is imperative in distributed environments, without which
there can be little confidence in network security. Passwords are the most common
means of authentication. Oracle Database enables strong authentication with Oracle
authentication adapters that support various third-party authentication services,
including SSL with digital certificates.

Figure 18-1 shows user authentication with an Oracle database instance configured to
use a third-party authentication server. Having a central facility to authenticate all
members of the network (clients to servers, servers to servers, users to both clients
and servers) is one effective way to address the threat of network nodes falsifying their
identities.

18-1

Figure 18-1 Strong Authentication with Oracle Authentication Adapters

Authentication

Server

Client

Intranet

Database

Centralized Authentication and Single Sign-On
Single sign-on enables users to access multiple accounts and applications with a
single password.

Centralized authentication also provides the benefit of single sign-on (SSO) for users.

In single sign-on, a user only needs to login once and can then automatically connect
to any other service without having to giving user name and password again. Single
sign-on eliminates the need for the user to remember and administer multiple
passwords, reducing the time spent logging into multiple services.

How Centralized Network Authentication Works
A centralized network authentication system works with an Oracle server, an
authentication server, and users who connect to the Oracle server.

Figure 18-2 shows how a centralized network authentication service typically operates.

Chapter 18
Centralized Authentication and Single Sign-On

18-2

Figure 18-2 How a Network Authentication Service Authenticates a User

Authentication

Server

User Oracle

Server

1

2

3

4

6

. . .

5

The following steps describe how centralized Network Authentication Process works.

1. A user (client) requests authentication services and provides identifying
information, such as a token or password.

2. The authentication server validates the user's identity and passes a ticket or
credentials back to the client, which may include an expiration time.

3. The client passes these credentials to the Oracle server concurrent with a service
request, such as connection to a database.

4. The server sends the credentials back to the authentication server for
authentication.

5. The authentication server checks the credentials and notifies the Oracle server.

6. If the credentials were accepted by the authentication server, then the Oracle
server authenticates the user. If the authentication server rejected the credentials,
then authentication fails, and the service request is denied.

Supported Strong Authentication Methods
Oracle Database supports industry-standard authentication methods.

Chapter 18
Supported Strong Authentication Methods

18-3

• About Kerberos
Oracle Database support for Kerberos provides the benefits of single sign-on and
centralized authentication of Oracle users.

• About Remote Authentication Dial-In User Service (RADIUS)
RADIUS is a client/server security protocol that is most widely known for enabling
remote authentication and access.

• About Secure Sockets Layer
Secure Sockets Layer (SSL) is an industry standard protocol for securing network
connections.

About Kerberos
Oracle Database support for Kerberos provides the benefits of single sign-on and
centralized authentication of Oracle users.

Kerberos is a trusted third-party authentication system that relies on shared secrets. It
presumes that the third party is secure, and provides single sign-on capabilities,
centralized password storage, database link authentication, and enhanced PC
security. It does this through a Kerberos authentication server. Refer to Configuring
Kerberos Authentication for information about configuring and using this adapter.

Note:

Oracle authentication for Kerberos provides database link authentication
(also called proxy authentication). Kerberos is also an authentication method
that is supported with Enterprise User Security.

About Remote Authentication Dial-In User Service (RADIUS)
RADIUS is a client/server security protocol that is most widely known for enabling
remote authentication and access.

Oracle Database uses this standard in a client/server network environment to enable
use of any authentication method that supports the RADIUS protocol. RADIUS can be
used with a variety of authentication mechanisms, including token cards and smart
cards.

• Smart Cards. A RADIUS-compliant smart card is a credit card-like hardware
device which has memory and a processor. It is read by a smart card reader
located at the client workstation.

• Token Cards. Token cards (Secure ID or RADIUS-compliant) can improve ease
of use through several different mechanisms. Some token cards dynamically
display one-time passwords that are synchronized with an authentication service.
The server can verify the password provided by the token card at any given time
by contacting the authentication service. Other token cards have a keypad and
operate on a challenge-response basis. In this case, the server offers a challenge
(a number) that the user enters into a token card. The token card provides a
response (another number cryptographically derived from the challenge) that the
user enters and sends to the server.

You can use SecurID tokens through the RADIUS adapter.

Chapter 18
Supported Strong Authentication Methods

18-4

Related Topics

• Configuring RADIUS Authentication
RADIUS is a client/server security protocol widely used to enable remote
authentication and access.

About Secure Sockets Layer
Secure Sockets Layer (SSL) is an industry standard protocol for securing network
connections.

SSL provides authentication, data encryption, and data integrity.

The SSL protocol is the foundation of a public key infrastructure (PKI). For
authentication, SSL uses digital certificates that comply with the X.509v3 standard and
a public and private key pair.

You can use the Oracle Database SSL can be used to secure communications
between any client and any server. You can configure SSL to provide authentication
for the server only, the client only, or both client and server. You can also configure
SSL features in combination with other authentication methods supported by Oracle
Database (database user names and passwords, RADIUS, and Kerberos).

To support your PKI implementation, Oracle Database includes the following features
in addition to SSL:

• Oracle wallets, where you can store PKI credentials

• Oracle Wallet Manager, which you can use to manage your Oracle wallets

• Certificate validation with certificate revocation lists (CRLs)

• Hardware security module support

Related Topics

• Configuring Secure Sockets Layer Authentication
You can configure Oracle Database to use Secure Sockets Layer authentication.

• Customizing the Use of Strong Authentication
You can configure multiple authentication methods under Oracle Database native
network encryption and strong authentication.

Oracle Database Native Network Encryption/Strong
Authentication Architecture

The Oracle Database native network encryption and strong authentication architecture
complements an Oracle database server or client installations.

Figure 18-3 shows the this architecture within an Oracle networking environment.

Chapter 18
Oracle Database Native Network Encryption/Strong Authentication Architecture

18-5

Figure 18-3 Oracle Native Network Encryption and Strong Authentication
Architecture

Oracle Database supports authentication through adapters that are similar to the
existing Oracle protocol adapters. As shown in Figure 18-4, authentication adapters
integrate the Oracle Net interface, and allow existing applications to take advantage of
new authentication systems transparently, without any changes to the application.

Chapter 18
Oracle Database Native Network Encryption/Strong Authentication Architecture

18-6

Figure 18-4 Oracle Net Services with Authentication Adapters

See Also:

Oracle Database Net Services Administrator's Guide for more information
about stack communications in an Oracle networking environment

System Requirements for Strong Authentication
Kerberos, RADIUS, and Secure Sockets Layer (SSL) have a set of system
requirements for strong authentication.

Table 18-1 lists the SSL system requirements for strong authentication.

Table 18-1 Authentication Methods and System Requirements

Authentication Method System Requirements

Kerberos • MIT Kerberos Version 5, release 1.8 or above.
• The Kerberos authentication server must be installed on a

physically secure system.

RADIUS • A RADIUS server that is compliant with the standards in the
Internet Engineering Task Force (IETF) RFC #2138, Remote
Authentication Dial In User Service (RADIUS) and RFC
#2139 RADIUS Accounting.

• To enable challenge-response authentication, you must run
RADIUS on an operating system that supports the Java
Native Interface as specified in release 1.1 of the Java
Development Kit from JavaSoft.

SSL • A wallet that is compatible with the Oracle Wallet Manager
10g release. Wallets created in earlier releases of the Oracle
Wallet Manager are not forward compatible.

Chapter 18
System Requirements for Strong Authentication

18-7

Oracle Database Native Network Encryption and Strong
Authentication Restrictions

Oracle applications support Oracle Database native network encryption and strong
authentication.

However, because Oracle Database native network encryption and strong
authentication requires Oracle Net Services to transmit data securely, these external
authentication features are not supported by some parts of Oracle Financial, Human
Resource, and Manufacturing Applications when they are running on Microsoft
Windows.

The portions of these products that use Oracle Display Manager (ODM) do not take
advantage of Oracle Database native network encryption and strong authentication,
because ODM does not use Oracle Net Services.

Chapter 18
Oracle Database Native Network Encryption and Strong Authentication Restrictions

18-8

19
Strong Authentication Administration Tools

You can use a set of strong authentication administration tools for native network
encryption and public key infrastructure credentials.

• About the Configuration and Administration Tools
The configuration and administration tools manage the encryption, integrity
(checksumming), and strong authentication methods for Oracle Net Services.

• Native Network Encryption and Strong Authentication Configuration Tools
Oracle Net Services can encrypt data using standard encryption algorithms, and
for strong authentication methods, such as Kerberos, RADIUS, and SSL.

• Public Key Infrastructure Credentials Management Tools
The security provided by a public key infrastructure (PKI) depends on how
effectively you store, manage, and validate your PKI credentials.

• Duties of Strong Authentication Administrators
Most of the tasks of a security administrator involve ensuring that the connections
to and from Oracle databases are secure.

About the Configuration and Administration Tools
The configuration and administration tools manage the encryption, integrity
(checksumming), and strong authentication methods for Oracle Net Services.

Strong authentication method configuration can include third-party software, as is the
case for Kerberos or RADIUS, or it may entail configuring and managing a public key
infrastructure for using digital certificates with Secure Sockets Layer (SSL).

Native Network Encryption and Strong Authentication
Configuration Tools

Oracle Net Services can encrypt data using standard encryption algorithms, and for
strong authentication methods, such as Kerberos, RADIUS, and SSL.

• About Oracle Net Manager
Oracle Net Manager configures Oracle Net Services for an Oracle home on a local
client or server host.

• Kerberos Adapter Command-Line Utilities
The Kerberos adapter provides command-line utilities that obtain, cache, display,
and remove Kerberos credentials.

About Oracle Net Manager
Oracle Net Manager configures Oracle Net Services for an Oracle home on a local
client or server host.

19-1

Although you can use Oracle Net Manager, a graphical user interface tool, to configure
Oracle Net Services, such as naming, listeners, and general network settings, it also
enables you to configure the following features, which use the Oracle Net protocol:

• Strong authentication (Kerberos, RADIUS, and Secure Sockets Layer)

• Native network encryption (RC4, DES, Triple-DES, and AES)

• Checksumming for data integrity (MD5, SHA-1, SHA-2)

Kerberos Adapter Command-Line Utilities
The Kerberos adapter provides command-line utilities that obtain, cache, display, and
remove Kerberos credentials.

The following table briefly describes these utilities.

Table 19-1 Kerberos Adapter Command-Line Utilities

Utility Name Description

okinit Obtains Kerberos tickets from the Key Distribution Center (KDC)
and caches them in the user's credential cache

oklist Displays a list of Kerberos tickets in the specified credential
cache

okdstry Removes Kerberos credentials from the specified credential
cache

okcreate Automates the creation of keytabs from either the KDC or a
service endpoint

Note:

The Cybersafe adapter is not supported beginning with this release. You
should use Oracle's Kerberos adapter in its place. Kerberos authentication
with the Cybersafe KDC (Trust Broker) continues to be supported when
using the Kerberos adapter.

Related Topics

• Utilities for the Kerberos Authentication Adapter
The Oracle Kerberos authentication adapter utilities are designed for an Oracle
client with Oracle Kerberos authentication support installed.

Public Key Infrastructure Credentials Management Tools
The security provided by a public key infrastructure (PKI) depends on how effectively
you store, manage, and validate your PKI credentials.

• About Oracle Wallet Manager
Wallet owners and security administrators use Oracle Wallet Manager to manage
and edit the security credentials in their Oracle wallets.

Chapter 19
Public Key Infrastructure Credentials Management Tools

19-2

• About the orapki Utility
The orapki utility manages certificate revocation lists (CRLs), creates and
manages Oracle wallets, and creates signed certificates.

About Oracle Wallet Manager
Wallet owners and security administrators use Oracle Wallet Manager to manage and
edit the security credentials in their Oracle wallets.

A wallet is a password-protected container that is used to store authentication and
signing credentials, including private keys, certificates, and trusted certificates needed
by SSL. You can use Oracle Wallet Manager to perform the following tasks:

• Create public and private key pairs

• Store and manage user credentials

• Generate certificate requests

• Store and manage certificate authority certificates (root key certificate and
certificate chain)

• Upload and download wallets to and from an LDAP directory

• Create wallets to store hardware security module credentials

Note:

In previous releases of Oracle Database, you could use Oracle Wallet
Manager to configure wallets for Transparent Data Encryption. In this
release, you can use the ADMINISTER KEY MANAGEMENT SQL statement
instead. For more information, see Oracle Database Advanced Security
Guide.

About the orapki Utility
The orapki utility manages certificate revocation lists (CRLs), creates and manages
Oracle wallets, and creates signed certificates.

The basic syntax for this command-line utility is as follows:

orapki module command -option_1 argument ... -option_n argument

For example, the following command lists all CRLs in the CRL subtree in an instance
of Oracle Internet Directory that is installed on machine1.us.example.com and that
uses port 389:

orapki crl list -ldap machine1.us.example.com:389

Note:

The use of orapki to configure Transparent Data Encryption has been
deprecated. Instead, use the ADMINISTER KEY MANAGEMENT SQL statement.

Chapter 19
Public Key Infrastructure Credentials Management Tools

19-3

See Also:

• Certificate Revocation List Management for information about how to use
orapki to manage CRLs in the directory

• Managing Public Key Infrastructure (PKI) Elements for reference
information on all available orapki commands

• Oracle Database Advanced Security Guide for information about using
the ADMINISTER KEY MANAGEMENT SQL statement

Duties of Strong Authentication Administrators
Most of the tasks of a security administrator involve ensuring that the connections to
and from Oracle databases are secure.

The following table describes the primary tasks of security administrators who are
responsible for strong authentication, the tools used to perform the tasks, and links to
where the tasks are documented.

Table 19-2 Common Security Administrator/DBA Configuration and Administrative Tasks

Task Tools Used See Also

Configure encrypted Oracle Net
connections between database servers
and clients

Oracle Net Manager Configuring Encryption on the Client
and the Server

Configure checksumming on Oracle Net
connections between database servers
and clients

Oracle Net Manager Configuring Integrity on the Client and
the Server

Configure database clients to accept
RADIUS authentication

Oracle Net Manager Step 1A: Configure RADIUS on the
Oracle Client

Configure a database to accept RADIUS
authentication

Oracle Net Manager Step 1B: Configure RADIUS on the
Oracle Database Server

Create a RADIUS user and grant them
access to a database session

SQL*Plus Step 2: Create a User and Grant
Access

Configure Kerberos authentication on a
database client and server

Oracle Net Manager Step 6: Configure Kerberos
Authentication

Create a Kerberos database user • kadmin.local
• Oracle Net Manager

• Step 7: Create a Kerberos User
• Step 8: Create an Externally

Authenticated Oracle User

Manage Kerberos credentials in the
credential cache

• okinit
• oklist
• okdstry
• okcreate

• okinit Utility Options for Obtaining
the Initial Ticket

• oklist Utility Options for Displaying
Credentials

• okdstry Utility Options for
Removing Credentials from the
Cache File

Create a wallet for a database client or
server

Oracle Wallet Manager Oracle Database Enterprise User
Security Administrator's Guide

Chapter 19
Duties of Strong Authentication Administrators

19-4

Table 19-2 (Cont.) Common Security Administrator/DBA Configuration and Administrative
Tasks

Task Tools Used See Also

Request a user certificate from a
certificate authority (CA) for SSL
authentication

Oracle Wallet Manager • Oracle Database Enterprise User
Security Administrator's Guide to
add a certificate request

• Oracle Database Enterprise User
Security Administrator's Guide to
import a user certificate into an
Oracle wallet

Import a user certificate and its
associated trusted certificate (CA
certificate) into a wallet

Oracle Wallet Manager • Oracle Database Enterprise User
Security Administrator's Guide to
import a trusted certificate

• Oracle Database Enterprise User
Security Administrator's Guide to
import a user certificate into an
Oracle wallet

Configuring SSL connections for a
database client

Oracle Net Manager Step 2: Configure Secure Sockets
Layer on the Client

Configuring SSL connections for a
database server

Oracle Net Manager Step 1: Configure Secure Sockets
Layer on the Server

Enabling certificate validation with a
certificate revocation list (CRL)

Oracle Net Manager Configuring Certificate Validation with
Certificate Revocation Lists

Chapter 19
Duties of Strong Authentication Administrators

19-5

20
Configuring Kerberos Authentication

Kerberos is a trusted third-party authentication system that relies on shared secrets
and presumes that the third party is secure.

• Enabling Kerberos Authentication
To enable Kerberos authentication for Oracle Database, you must first install it,
and then follow a set of configuration steps.

• Utilities for the Kerberos Authentication Adapter
The Oracle Kerberos authentication adapter utilities are designed for an Oracle
client with Oracle Kerberos authentication support installed.

• Connecting to an Oracle Database Server Authenticated by Kerberos
After Kerberos is configured, you can connect to an Oracle database server
without using a user name or password.

• Configuring Interoperability with a Windows 2008 Domain Controller KDC
You can configure Oracle Database to interoperate with a Microsoft Windows
2008 domain controller key distribution center (KDC).

• Configuring Kerberos Authentication Fallback Behavior
You can configure fallback behavior (password-based authentication) in case the
Kerberos authentication fails.

• Troubleshooting the Oracle Kerberos Authentication Configuration
Oracle provides guidance for common Kerberos configuration problems.

Enabling Kerberos Authentication
To enable Kerberos authentication for Oracle Database, you must first install it, and
then follow a set of configuration steps.

• Step 1: Install Kerberos
You should install Kerberos Version 5.

• Step 2: Configure a Service Principal for an Oracle Database Server
You must create a service principal for Oracle Database before the server can
validate the identity of clients that authenticate themselves using Kerberos.

• Step 3: Extract a Service Key Table from Kerberos
Next, you are ready to extract the service key table from Kerberos and copy it to
the Oracle database server/Kerberos client system.

• Step 4: Install an Oracle Database Server and an Oracle Client
After you extract a service key table from Kerberos, you are ready to install the
Oracle Database server and an Oracle client.

• Step 5: Configure Oracle Net Services and Oracle Database
After you install the Oracle Database server and client, you can configure Oracle
Net Services on the server and client.

20-1

• Step 6: Configure Kerberos Authentication
You must set the required parameters in the Oracle database server and client
sqlnet.ora files.

• Step 7: Create a Kerberos User
You must create the Kerberos user on the Kerberos authentication server where
the administration tools are installed.

• Step 8: Create an Externally Authenticated Oracle User
Next, you are ready to create an externally authenticated Oracle user.

• Step 9: Get an Initial Ticket for the Kerberos/Oracle User
Before you can connect to the database, you must ask the Key Distribution Center
(KDC) for an initial ticket.

See Also:

Oracle Database Enterprise User Security Administrator's Guide for
information on migrating Kerberos users to Kerberos-authenticated
enterprise users

Step 1: Install Kerberos
You should install Kerberos Version 5.

The source distribution for notes about building and installing Kerberos provide details.
After you install Kerberos, if you are using IBM AIX on POWER systems (64-bit), you
should ensure that Kerboros 5 is the preferred authentication method.

1. Install Kerberos on the system that functions as the authentication server.

Note:

After upgrading from a 32-bit version of Oracle Database, the first use of
the Kerberos authentication adapter causes an error message:
ORA-01637: Packet receive failed.

Workaround: After upgrading to the 64-bit version of the database and
before using Kerberos external authentication method, check for a file
named /usr/tmp/oracle_service_name.RC on your computer, and
remove it.

2. For IBM AIX on POWER systems (64-bit), check the authentication method.

For example:

/usr/bin/lsauthent

Output similar to the following may appear:

Standard Aix

3. Configure Kerberos 5 as the preferred method.

For example:

Chapter 20
Enabling Kerberos Authentication

20-2

/usr/bin/chauthent -k5 -std

This command sets Kerberos 5 as the preferred authentication method (k5) and
Standard AIX as the second (std).

4. To ensure that Kerberos 5 is now the preferred method, check the new
configuration.

/usr/bin/lsauthent

Kerberos 5
Standard Aix

Step 2: Configure a Service Principal for an Oracle Database Server
You must create a service principal for Oracle Database before the server can validate
the identity of clients that authenticate themselves using Kerberos.

1. Decide on a name for the service principal, using the following format:

kservice/kinstance@REALM

Each of the fields in the service principal specify the following values:

Service Principal Field Description

kservice A case-sensitive string that represents the Oracle service.
This can be the same as the database service name.

kinstance Typically the fully qualified DNS name of the system on
which Oracle Database is running.

REALM The name of the Kerberos realm with which the service
principal is registered. REALM must always be uppercase and
is typically the DNS domain name.

The utility names in this section are executable programs. However, the Kerberos
user name krbuser and the realm EXAMPLE.COM are examples only.

For example, suppose kservice is oracle, the fully qualified name of the system
on which Oracle Database is running is dbserver.example.com and the realm is
EXAMPLE.COM. The principal name then is:

oracle/dbserver.example.com@EXAMPLE.COM

2. Run kadmin.local to create the service principal. On UNIX, run this command as
the root user, by using the following syntax:

cd /kerberos-install-directory/sbin
./kadmin.local

For example, to add a principal named oracle/
dbserver.example.com@EXAMPLE.COM to the list of server principals known by
Kerberos, you can enter the following:

kadmin.local:addprinc -randkey oracle/dbserver.example.com@EXAMPLE.COM

Chapter 20
Enabling Kerberos Authentication

20-3

Step 3: Extract a Service Key Table from Kerberos
Next, you are ready to extract the service key table from Kerberos and copy it to the
Oracle database server/Kerberos client system.

For example, to extract a service key table for dbserver.example.com:

1. Enter the following to extract the service key table:

kadmin.local: ktadd -k /tmp/keytab oracle/dbserver.example.com
Entry for principal oracle/dbserver.example.com with kvno 2,
encryption type AES-256 CTS mode with 96-bit SHA-1 HMAC added to keytab WRFILE:
WRFILE:/tmp/keytab

kadmin.local: exit

2. To check the service key table, enter the following command:

oklist -k -t /tmp/keytab

3. After the service key table has been extracted, verify that the new entries are in
the table in addition to the old ones.

If they are not, or you need to add more, use kadmin.local to append to them.

If you do not enter a realm when using ktadd, it uses the default realm of the
Kerberos server. kadmin.local is connected to the Kerberos server running on the
localhost.

4. If the Kerberos service key table is on the same system as the Kerberos client,
you can move it. If the service key table is on a different system from the Kerberos
client, you must transfer the file with a program such as FTP. If using FTP, transfer
the file in binary mode.

The following example shows how to move the service key table on a UNIX
platform:

mv /tmp/keytab /etc/v5srvtab

The default name of the service file is /etc/v5srvtab.

5. Verify that the owner of the Oracle database server executable can read the
service key table (/etc/v5srvtab in the previous example).

To do so, set the file owner to the Oracle user, or make the file readable by the
group to which Oracle belongs.

Do not make the file readable to all users. This can cause a security breach.

Step 4: Install an Oracle Database Server and an Oracle Client
After you extract a service key table from Kerberos, you are ready to install the Oracle
Database server and an Oracle client.

• See the Oracle Database operating system-specific installation documentation for
instructions on installing the Oracle database server and client software.

Chapter 20
Enabling Kerberos Authentication

20-4

Step 5: Configure Oracle Net Services and Oracle Database
After you install the Oracle Database server and client, you can configure Oracle Net
Services on the server and client.

• See the following documentation for information on configuring Oracle Net
Services on the Oracle database server and client.

– Oracle Database operating system-specific installation documentation

– Oracle Database Net Services Administrator's Guide

Step 6: Configure Kerberos Authentication
You must set the required parameters in the Oracle database server and client
sqlnet.ora files.

Note:

Be aware that in a multitenant environment, the settings in the sqlnet.ora
file apply to all pluggable databases (PDBs). However, this does not mean
that all PDBs must authenticate with one KDC if using Kerberos; the settings
in the sqlnet.ora file and Kerberos configuration files can support multiple
KDCs.

• Step 6A: Configure Kerberos on the Client and on the Database Server
First, you must configure Kerberos authentication service parameters on the client
and on the database server.

• Step 6B: Set the Initialization Parameters
Next, you are ready to set the OS_AUTHENT_PREFIX initialization parameter.

• Step 6C: Set sqlnet.ora Parameters (Optional)
You can set optional sqlnet.ora parameters, in addition to the required
parameters, for better security.

Step 6A: Configure Kerberos on the Client and on the Database Server
First, you must configure Kerberos authentication service parameters on the client and
on the database server.

1. Start Oracle Net Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command at the
command line:

netmgr

• (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration
and Migration Tools, then Net Manager.

2. Expand Oracle Net Configuration, and from Local, select Profile.

3. From the Naming list, select Network Security.

The Network Security tabbed window appears.

Chapter 20
Enabling Kerberos Authentication

20-5

4. Select the Authentication tab.

5. From the Available Methods list, select KERBEROS5.

6. Move KERBEROS5 to the Selected Methods list by clicking the right arrow (>).

7. Arrange the selected methods in order of use.

To do so, select a method in the Selected Methods list, then click Promote or
Demote to position it in the list. For example, if you want KERBEROS5 to be the first
service used, move it to the top of the list.

8. Select the Other Params tab.

9. From the Authentication Service list, select KERBEROS(V5).

10. Type Kerberos into the Service field.

Chapter 20
Enabling Kerberos Authentication

20-6

This field defines the name of the service Oracle Database uses to obtain a
Kerberos service ticket. When you provide the value for this field, the other fields
are enabled.

11. Optionally enter values for the following fields:

• Credential Cache File

• Configuration File

• Realm Translation File

• Key Table

• Clock Skew

See the Oracle Net Manager online Help, and Step 6C: Set sqlnet.ora Parameters
(Optional), for more information about the fields and the parameters they
configure.

12. From the File menu, select Save Network Configuration.

The sqlnet.ora file is updated with the following entries in addition to any optional
choices that you may have made in the previous step:

SQLNET.AUTHENTICATION_SERVICES=(KERBEROS5)
SQLNET.AUTHENTICATION_KERBEROS5_SERVICE=kservice

Step 6B: Set the Initialization Parameters
Next, you are ready to set the OS_AUTHENT_PREFIX initialization parameter.

Chapter 20
Enabling Kerberos Authentication

20-7

1. Locate the init.ora file.

By default, the init.ora file is located in the ORACLE_HOME/dbs directory (or the
same location of the data files) on Linux and UNIX systems, and in the
ORACLE_HOME\database directory on Windows.

2. In the init.ora file, set the value of OS_AUTHENT_PREFIX to null in the init.ora
initialization parameter file.

For example:

OS_AUTHENT_PREFIX=""

Set this value to null because Kerberos user names can be long, and Oracle user
names are limited to 30 characters. Setting this parameter to null overrides the
default value of OPS$.

Note:

You can create external database users that have Kerberos user names of
more than 30 characters. See Step 8: Create an Externally Authenticated
Oracle User for more information.

Step 6C: Set sqlnet.ora Parameters (Optional)
You can set optional sqlnet.ora parameters, in addition to the required parameters,
for better security.

• Optionally, set the parameters listed in the following table on both the client and
the Oracle database server.

Chapter 20
Enabling Kerberos Authentication

20-8

Table 20-1 Kerberos-Specific sqlnet.ora Parameters

Parameter Description

SQLNET.KERBEROS5_CC_NAME=pathname
_to_credentials_cache_file|
OS_MEMORY

Specifies the complete path name to the Kerberos credentials cache
(CC) file. The default value is operating system-dependent. For UNIX,
it is /tmp/krb5cc_userid.

Using the OS_MEMORY option indicates that an OS-managed memory
credential cache is used for the credential cache file. The only value
currently supported for this is OSMSFT (for Microsoft Windows).

You can use the following formats to specify a value for
SQLNET.KERBEROS5_CC_NAME:

• SQLNET.KERBEROS5_CC_NAME=complete_path_to_cc_file

For example:

SQLNET.KERBEROS5_CC_NAME=/tmp/kcache

SQLNET.KERBEROS5_CC_NAME=D:\tmp\kcache
• SQLNET.KERBEROS5_CC_NAME=FILE:complete_path_to_cc_

file

For example:

SQLNET.KERBEROS5_CC_NAME=FILE:/tmp/kcache
• SQLNET.KERBEROS5_CC_NAME=OSMSFT:

Use this value if you are running Windows and using a Microsoft
KDC.

You can also set this parameter by using the KRB5CCNAME
environment variable, but the value set in the sqlnet.ora file takes
precedence over the value set in KRB5CCNAME.

For example:

SQLNET.KERBEROS5_CC_NAME=/usr/tmp/krbcache

SQLNET.KERBEROS5_CLOCKSKEW=number
_of_seconds_accepted_as_network_d
elay

This parameter specifies how many seconds can pass before a
Kerberos credential is considered out-of-date. It is used when a
credential is actually received by either a client or a database server.
An Oracle database server also uses it to decide if a credential needs
to be stored to protect against a replay attack. The default is 300
seconds.

For example:

SQLNET.KERBEROS5_CLOCKSKEW=1200

SQLNET.KERBEROS5_CONF=pathname_to
_Kerberos_configuration_file|
AUTO_DISCOVER

This parameter specifies the complete path name to the Kerberos
configuration file. The configuration file contains the realm for the
default KDC (key distribution center) and maps realms to KDC hosts.
The default is operating system-dependent. For UNIX, it is /krb5/
krb.conf.

Using the AUTO_DISCOVER option in place of the configuration file
enables Kerberos clients to auto-discover the KDC.

For example:

SQLNET.KERBEROS5_CONF=/krb/krb.conf
SQLNET.KERBEROS5_CONF=AUTO_DISCOVER

Chapter 20
Enabling Kerberos Authentication

20-9

Table 20-1 (Cont.) Kerberos-Specific sqlnet.ora Parameters

Parameter Description

SQLNET.KERBEROS5_CONF_LOCATION=pa
th_to_Kerberos_configuration_dire
ctory

This parameter indicates that the Kerberos configuration file is created
by the system, and does not need to be specified by the client. The
configuration file uses DNS lookup to obtain the realm for the default
KDC, and maps realms to KDC hosts.

For example:

SQLNET.KERBEROS5_CONF_LOCATION=/krb

SQLNET.KERBEROS5_KEYTAB=path_to_K
erberos_principal/key_table

This parameter specifies the complete path name to the Kerberos
principal/secret key mapping file. It is used by the Oracle database
server to extract its key and decrypt the incoming authentication
information from the client. The default is operating system-
dependent. For UNIX, it is /etc/v5srvtab.

For example:

SQLNET.KERBEROS5_KEYTAB=/etc/v5srvtab

SQLNET.KERBEROS5_REALMS=path_to_K
erberos_realm_translation_file

This parameter specifies the complete path name to the Kerberos
realm translation file. The translation file provides a mapping from a
host name or domain name to a realm. The default is operating
system-dependent. For UNIX, it is /etc/krb.realms.

For example:

SQLNET.KERBEROS5_REALMS=/krb5/krb.realms

Step 7: Create a Kerberos User
You must create the Kerberos user on the Kerberos authentication server where the
administration tools are installed.

The realm must already exist.

Note:

The utility names in this section are executable programs. However, the
Kerberos user name krbuser and realm EXAMPLE.COM are examples only.
They can vary among systems.

• Run /krb5/admin/kadmin.local as root to create a new Kerberos user, such as
krbuser.

For example, to create a Kerberos user is UNIX-specific:

/krb5/admin/kadmin.local
kadmin.local: addprinc krbuser
Enter password for principal: "krbuser@example.com": (password does not display)
Re-enter password for principal: "krbuser@example.com": (password does not
display)
kadmin.local: exit

Chapter 20
Enabling Kerberos Authentication

20-10

Step 8: Create an Externally Authenticated Oracle User
Next, you are ready to create an externally authenticated Oracle user.

1. Log in to SQL*Plus as a user who has the CREATE USER privilege.

sqlplus sec_admin - Or, CONNECT sec_admin@hrpdb
Enter password: password

2. Ensure that the OS_AUTHENT_PREFIX is set to null ("").

3. Create an Oracle Database user account that corresponds to the Kerberos user.
Enter the Oracle user name in uppercase and enclose it in double quotation
marks.

For example:

CREATE USER "KRBUSER@EXAMPLE.COM" IDENTIFIED EXTERNALLY;
GRANT CREATE SESSION TO "KRBUSER@EXAMPLE.COM";

If the user's Kerberos principal name is longer than 30 characters, and up to 1024
characters, then create the user by using the following syntax:

CREATE USER db_user_name IDENTIFIED EXTERNALLY AS 'kerberos_principal_name';

For example:

CREATE USER KRBUSER IDENTIFIED EXTERNALLY AS 'KerberosUser@example.com';

Note:

The database administrator should ensure that two database users are not
identified externally by the same Kerberos principal name.

Step 9: Get an Initial Ticket for the Kerberos/Oracle User
Before you can connect to the database, you must ask the Key Distribution Center
(KDC) for an initial ticket.

• To request an initial ticket, run the following command on the client:

% okinit username

If you want to enable credentials that can be used across database links, then
include the -f option and provide the Kerberos password when prompted.

% okinit -f
Password for krbuser@EXAMPLE.COM:(password does not display)

Utilities for the Kerberos Authentication Adapter
The Oracle Kerberos authentication adapter utilities are designed for an Oracle client
with Oracle Kerberos authentication support installed.

• okinit Utility Options for Obtaining the Initial Ticket
The okinit utility obtains and caches Kerberos tickets.

Chapter 20
Utilities for the Kerberos Authentication Adapter

20-11

• oklist Utility Options for Displaying Credentials
The oklist utility displays the list of tickets held.

• okdstry Utility Options for Removing Credentials from the Cache File
The okdstry (okdestroy) utility removes credentials from the cache file.

• okcreate Utility Options for Automatic Keytab Creation
The okcreate utility automates the creation of keytabs from either the KDC or a
service endpoint.

okinit Utility Options for Obtaining the Initial Ticket
The okinit utility obtains and caches Kerberos tickets.

This utility is typically used to obtain the ticket-granting ticket, using a password
entered by the user to decrypt the credential from the key distribution center (KDC).
The ticket-granting ticket is then stored in the user's credential cache.

The following table lists the options available with okinit. To use the functionality that
is described in this table, you must set the sqlnet.ora SQLNET.KERBEROS5_CONF_MIT
parameter to TRUE. (Note that SQLNET.KERBEROS5_CONF_MIT is deprecated, but is
retained for backward compatibility for okinit.)

Table 20-2 Options for the okinit Utility

Option Description

-f | -F Requests forwardable or non-forwardable tickets. This option is
necessary to follow database links.

-l lifetime Specifies the lifetime of the ticket-granting ticket and all subsequent
tickets. By default, the ticket-granting ticket is good for eight (8) hours,
but shorter or longer-lived credentials may be desired. The KDC can
ignore this option or put site-configured limits on what can be specified.
The lifetime value is a string that consists of a number qualified by w
(weeks), d (days), h (hours), m (minutes), or s (seconds), as in the
following example:

okinit -l 2wld6h20m30s

The example requests a ticket-granting ticket that has a lifetime of 2
weeks, 1 day, 6 hours, 20 minutes, and 30 seconds.

-s start_time Specifies the duration of the delay before the ticket can become valid.
Tickets are issued with the invalid flag set.

-r renewable_life Requests renewable tickets with a total lifetime of renewable_life

-p | -P Requests proxiable or non-proxiable tickets

-a Requests tickets that are restricted to the local address of the host

-A Requests tickets not restricted by address

-E Treats the principal name as an enterprise name

-v Requests that the ticket-granting ticket in the cache be passed to the
KDC for validation. If the ticket is within the requested time range, then
the cache is replaced with the validated ticket.

-R Requests renewal of the ticket-granting ticket

Chapter 20
Utilities for the Kerberos Authentication Adapter

20-12

Table 20-2 (Cont.) Options for the okinit Utility

Option Description

-k [-t
keytab_file]

Requests a ticket, which is obtained from a key in the local host’s
keytab

-n Requests anonymous processing

-C Requests canonicalization of the principal name, and enables the KDC
to reply with a different client principal from the one that was requested

-c cache_name Specifies the name of a cache as a cache location. For UNIX, the
default is /tmp/krb5cc_uid. You can also specify the alternate
credential cache by using the SQLNET.KERBEROS5_CC_NAME parameter
in the sqlnet.ora file.

-I input_cache Specifies the name of a credential cache that already contains a ticket.
When it obtains that ticket, if the information about how the ticket was
obtained is stored in cache, then the same information will be used to
affect how new credentials are obtained.

-T armor_cache If supported by the KDC, this cache is used to armor the request,
preventing offline dictionary attacks and enabling the use of additional
pre-authentication mechanisms.

-X
attribute[=value

Specifies a pre-authentication attribute and value. Specifies one of the
following values:
• X509_user_identity=value specifies where to find the user’s

X509 identity information
• X509_anchors=value specifies where to find trusted X509 anchor

information
• flag_RSA_PROTOCOL[=yes] specifies the use of RSA rather than

the default Diffie-Hellman protocol

-e Specifies a number representing the Kerberos encryption type to use.

This option can be used to request a particular Kerberos encryption
type key for the session. If you specify more than one encryption type,
then the KDC chooses the common and strongest encryption type from
the list.

The following values are allowed:

• 1 for DES-CBC-CRC
• 3 for DES-CBC-MD5
• 16 for DES3-CBC-SHA1
• 18 for AES256-CTS
• 23 for RC4-HMAC
The following example requests for the AES256-CTS encryption type:

okinit -e 1 -e 18 krbuser@REALM

Note that you can repeat the option to request multiple encryption types.

-? List command line options.

Chapter 20
Utilities for the Kerberos Authentication Adapter

20-13

oklist Utility Options for Displaying Credentials
The oklist utility displays the list of tickets held.

The following table lists the available oklist options. To use the functionality that is
described in this table, you must set the sqlnet.ora SQLNET.KERBEROS5_CONF_MIT
parameter to TRUE. (Note that SQLNET.KERBEROS5_CONF_MIT is deprecated, but is
retained for backward compatibility for oklist.)

Table 20-3 Options for the oklist Utility

Option Description

-f Show flags with credentials. Relevant flags are:

• I, credential is a ticket-granting ticket
• F, credential is forwardable
• f, credential is forwarded.

-c Specify an alternative credential cache. In UNIX, the default is /tmp/
krb5cc_uid. The alternate credential cache can also be specified by
using the SQLNET.KERBEROS5_CC_NAME parameter in the
sqlnet.ora file.

-k List the entries in the service table (default /etc/v5srvtab) on UNIX.
The alternate service table can also be specified by using the
SQLNET.KERBEROS5_KEYTAB parameter in the sqlnet.ora file.

-e Displays the encryption types of the session key and the ticket for each
credential in the credential cache, or each key in the keytab file.

-l If a cache collection is available, displays a table summarizing the
caches present in the collection.

-A If a cache collection is available, displays the contents of all of the
caches in the collection

-s Runs utility without producing output. Utility will exit with status 1 if the
cache cannot be read or is expired, else with status 0

-a Displays a list of addresses in the credential

-n Shows numeric addresses instead of reverse-resolving addresses

-C Lists configuration data that has been stored in the credentials cache
when klist encounters it. By default, configuration data is not listed.

-t Displays the time entry timestamps for each keytab entry in the keytab
file

-K Displays the value of the encryption key in each keytab entry in the
keytab file

-V Displays the Kerberos version number and exit.

The show flag option (-f) displays additional information, as shown in the following
example:

% oklist -f
04-Aug-2015 21:57:51 28-Aug-2015 05:58:14
krbtgt/EXAMPLE.COM@EXAMPLE.COM
Flags: FI

Chapter 20
Utilities for the Kerberos Authentication Adapter

20-14

okdstry Utility Options for Removing Credentials from the Cache File
The okdstry (okdestroy) utility removes credentials from the cache file.

The following table lists the available okdstry options. To use the functionality that is
described in this table, you must set the sqlnet.ora SQLNET.KERBEROS5_CONF_MIT
parameter to TRUE. (Note that SQLNET.KERBEROS5_CONF_MIT is deprecated, but is
retained for backward compatibility for okdstry.)

Table 20-4 Options for the okdstry Utility

Option Description

—A Destroys all caches in the collection, if a cache collection is available

—q Runs quietly. Normally okdstry beeps if it fails to destroy the user’s
tickets. This flag suppresses this behavior.

—c cache_name Uses cache_name as the credentials (ticket) cache name and location.
For UNIX, the default is /tmp/krb5cc_uid. You can also specify the
alternate credential cache by using the SQLNET.KERBEROS5_CC_NAME
parameter in the sqlnet.ora file.

okcreate Utility Options for Automatic Keytab Creation
The okcreate utility automates the creation of keytabs from either the KDC or a
service endpoint.

The following table lists the available okcreate options.

Table 20-5 okcreate Utility Options for Automatic Keytab Creation

Option Description

-name service_name Specifies the service name of the kerberized service for which to
get a keytab.The default is oracle.

—hosts path-
to_hosts_list

Specifies either a comma-separated list of hosts for which to get
the keytab, or the path to a text file that contains a list of the hosts.
The default is none.

—out path_to_output Specifies the output path to store the resulting keytabs. The default
is the current directory.

Ensure that this directory is readable only by the root user. Never
send keytabs over the network in clear text.

—k For use if the operation is performed on the KDC. Do not use this
option if you are using —s.

—s For use if the operation is performed on a Kerberized service. Do
not use this option if you are using —k.

-u KDC_username Specifies the user name for the KDC. Only use this setting on a
Kerberized service endpoint.

If you specify the —s and omit this setting, then okcreate prompts
for the KDCuser@KDCmachine.

-r Specifies the Kerberos realm

Chapter 20
Utilities for the Kerberos Authentication Adapter

20-15

Table 20-5 (Cont.) okcreate Utility Options for Automatic Keytab Creation

Option Description

—p Specifies the Kerberos principal

-q Specifies the Kerberos query

—d Specifies the KDC database name

—e Specifies the salt list to be used for any new keys that are created

—m Specifies to prompt for the KDC master password

Connecting to an Oracle Database Server Authenticated by
Kerberos

After Kerberos is configured, you can connect to an Oracle database server without
using a user name or password.

• Use the following syntax to connect to the database without using a user name or
password:

$ sqlplus /@net_service_name

In this specification, net_service_name is an Oracle Net Services service name. For
example:

$ sqlplus /@oracle_dbname

See Also:

Oracle Database Heterogeneous Connectivity User's Guide for information
about external authentication

Configuring Interoperability with a Windows 2008 Domain
Controller KDC

You can configure Oracle Database to interoperate with a Microsoft Windows 2008
domain controller key distribution center (KDC).

• About Configuring Interoperability with a Windows 2008 Domain Controller KDC
Oracle Database complies with MIT Kerberos.

• Step 1: Configure Oracle Kerberos Client for Windows 2008 Domain Controller
You can configure the Oracle Kerberos client to interoperate with a Microsoft
Windows 2008 Domain Controller KDC.

• Step 2: Configure a Windows 2008 Domain Controller KDC for the Oracle Client
Next, you are ready to configure a Microsoft Windows 2008 Domain Controller
KDC to interoperate with an Oracle Client.

Chapter 20
Connecting to an Oracle Database Server Authenticated by Kerberos

20-16

• Step 3: Configure Oracle Database for a Windows 2008 Domain Controller KDC
You must configure the Oracle database for the domain controller on the host
computer where the Oracle database is installed.

• Step 4: Obtain an Initial Ticket for the Kerberos/Oracle User
Before a client can connect to the database, the client must request an initial
ticket.

About Configuring Interoperability with a Windows 2008 Domain
Controller KDC

Oracle Database complies with MIT Kerberos.

This enables Oracle Database to interoperate with tickets that are issued by a
Kerberos Key Distribution Center (KDC) on a Windows 2008 domain controller. This
process enables Kerberos authentication with an Oracle database.

Step 1: Configure Oracle Kerberos Client for Windows 2008 Domain
Controller

You can configure the Oracle Kerberos client to interoperate with a Microsoft Windows
2008 Domain Controller KDC.

• Step 1A: Create the Client Kerberos Configuration Files
You must configure a set of client Kerberos configuration files that refer to the
Windows 2008 domain controller as the Kerberos KDC.

• Step 1B: Specify the Oracle Configuration Parameters in the sqlnet.ora File
The sqlnet.ora file has Kerbose 5–specific parameters.

• Step 1C: Specify the Listening Port Number
The Windows 2008 domain controller KDC listens on UDP/TCP port 88.

Step 1A: Create the Client Kerberos Configuration Files
You must configure a set of client Kerberos configuration files that refer to the
Windows 2008 domain controller as the Kerberos KDC.

• Create the krb.conf and krb5.realms files. Oracle Database provides a default
krb5.conf file, which you must modify for your site.

The krb5.conf file is located in the location indicated by the
SQLNET.KERBEROS_CONF parameter.

For example, assuming that the Windows 2008 domain controller is running on a node
named sales3854.us.example.com:

• krb.conf file

For example:

SALES3854.US.EXAMPLE.COM
SALES3854.US.EXAMPLE.COM
sales3854.us.example.com admin server

• krb5.conf file

Chapter 20
Configuring Interoperability with a Windows 2008 Domain Controller KDC

20-17

For example:

[libdefaults]
default_realm=SALES.US.EXAMPLE.COM
[realms]
SALES.US.EXAMPLE.COM= { kdc=sales3854.us.example.com:88 }
[domain_realm]
.us.example.com=SALES.US.EXAMPLE.COM

• krb5.realms file

For example:

us.example.com SALES.US.EXAMPLE.COM

Step 1B: Specify the Oracle Configuration Parameters in the sqlnet.ora File
The sqlnet.ora file has Kerbose 5–specific parameters.

Configuring an Oracle client to interoperate with a Windows 2008 domain controller
KDC uses the same sqlnet.ora file parameters that are used for Kerberos on the
client and on the database server. These parameters are described in Step 6A:
Configure Kerberos on the Client and on the Database Server.

• Set the following parameters in the sqlnet.ora file on the client:

SQLNET.KERBEROS5_CONF=pathname_to_Kerberos_configuration_file
SQLNET.KERBEROS5_CONF_MIT=TRUE
SQLNET.AUTHENTICATION_KERBEROS5_SERVICE=Kerberos_service_name
SQLNET.AUTHENTICATION_SERVICES=(BEQ,KERBEROS5)

Note:

• The SQLNET.KERBEROS5_CONF_MIT parameter has been deprecated, but
is retained for backward compatibility for the okint, oklist, and okdstry
utilities.

• Ensure that the SQLNET.KERBEROS5_CONF_MIT parameter is set to TRUE
because the Windows 2008 operating system is designed to interoperate
only with security services that are based on MIT Kerberos version 5.

Step 1C: Specify the Listening Port Number
The Windows 2008 domain controller KDC listens on UDP/TCP port 88.

• Ensure that the system file entry for kerberos5 is set to UDP/TCP port 88.

For the UNIX environment, ensure that the first kerberos5 entry in the /etc/
services file is set to 88.

Step 2: Configure a Windows 2008 Domain Controller KDC for the
Oracle Client

Next, you are ready to configure a Microsoft Windows 2008 Domain Controller KDC to
interoperate with an Oracle Client.

Chapter 20
Configuring Interoperability with a Windows 2008 Domain Controller KDC

20-18

• Step 2A: Create the User Account
You must create a user account for the Microsoft Windows 2008 Domain
Controller KDC.

• Step 2B: Create the Oracle Database Principal User Account and Keytab
After you create the user account, you are ready to create the Oracle Database
principal user account.

See Also:

Microsoft documentation for information about how to create users in Active
Directory.

Step 2A: Create the User Account
You must create a user account for the Microsoft Windows 2008 Domain Controller
KDC.

• On the Windows 2008 domain controller, create a new user account for the Oracle
client in Microsoft Active Directory.

Step 2B: Create the Oracle Database Principal User Account and Keytab
After you create the user account, you are ready to create the Oracle Database
principal user account.

After you create this account on the Windows 2008 domain controller, you must use
the okcreate utility to register it with the principal keytab. You can run this utilty on the
same KDC to create all the service keytabs rather than creating them individually, or
you can run okcreate from a service endpoint that connects to the KDC, run the
ncessary commands, and then copy the resulting keytab back to the service endpoint.

1. Create a new user account for the Oracle database in Microsoft Active Directory.

For example, if the Oracle database runs on the host sales3854.us.example.com,
then use Active Directory to create a user with the user name
sales3854.us.example.com.

Do not create a user as host/hostname.dns.com, such as oracle/
sales3854.us.example.com, in Active Directory. Microsoft's KDC does not support
multipart names like an MIT KDC does. An MIT KDC allows multipart names to be
used for service principals because it treats all principals as user names. However,
Microsoft’s KDC does not.

2. Run the okcreate command to create a keytab that will use this user account. The
syntax is as follows:

okcreate (-s [-u KDCuser@KDCmachine] | -k)
 [-name service_name] [-hosts path_to_host_list]
 [-out path_to_output] [-r realm] [-p principal]
 [-q query] [-d dbname] [-e enc:salt...] [-m]
 [-x db_args]

For example:

Chapter 20
Configuring Interoperability with a Windows 2008 Domain Controller KDC

20-19

okcreate -s -u kdcuser1@kdcmachine1 -name oracle
 -hosts sales3854.us.example.com
 -out /OSsecured/keytablocation

3. Copy the extracted keytab file to the host computer where the Oracle database is
installed.

For example, the keytab that was created in the previous step can be copied to /
krb5/v5svrtab.

Step 3: Configure Oracle Database for a Windows 2008 Domain
Controller KDC

You must configure the Oracle database for the domain controller on the host
computer where the Oracle database is installed.

• Step 3A: Set Configuration Parameters in the sqlnet.ora File
You must first set configuration parameters for the database.

• Step 3B: Create an Externally Authenticated Oracle User
After you set the configuration parameters, you are ready to create an externally
authenticated Oracle user.

Step 3A: Set Configuration Parameters in the sqlnet.ora File
You must first set configuration parameters for the database.

• Specify values for the following parameters in the sqlnet.ora file for the database
server:

SQLNET.KERBEROS5_CONF=pathname_to_Kerberos_configuration_file
SQLNET.KERBEROS5_KEYTAB=pathname_to_Kerberos_principal/key_table
SQLNET.KERBEROS5_CONF_MIT=TRUE
SQLNET.AUTHENTICATION_KERBEROS5_SERVICE=Kerberos_service_name
SQLNET.AUTHENTICATION_SERVICES=(BEQ,KERBEROS5)

Note:

• The SQLNET.KERBEROS5_CONF_MIT parameter has been deprecated, but
is retained for backward compatibility for the okint, oklist, and okdstry
utilities.

• Ensure that the SQLNET.KERBEROS5_CONF_MIT parameter is set to TRUE
because the Windows 2008 operating system is designed to interoperate
only with security services that are based on MIT Kerberos version 5.

• Be aware that in a multitenant environment, the settings in the
sqlnet.ora file apply to all PDBs. However, this does not mean that all
PDBs must authenticate with one KDC if using Kerberos; the settings in
the sqlnet.ora file and Kerberos configuration files can support multiple
KDCs.

Chapter 20
Configuring Interoperability with a Windows 2008 Domain Controller KDC

20-20

Step 3B: Create an Externally Authenticated Oracle User
After you set the configuration parameters, you are ready to create an externally
authenticated Oracle user.

• Follow the procedure under Step 8: Create an Externally Authenticated Oracle
User to create an externally authenticated Oracle user.

Ensure that you create the username in all uppercase characters (for example,
ORAKRB@SALES.US.EXAMPLE.COM).

See Also:

Step 6: Configure Kerberos Authentication for information about using Oracle
Net Manager to set the sqlnet.ora file parameters.

Step 4: Obtain an Initial Ticket for the Kerberos/Oracle User
Before a client can connect to the database, the client must request an initial ticket.

• To request an initial ticket, follow the task information for Step 9: Get an Initial
Ticket for the Kerberos/Oracle User.

Note:

The user does not need to explicitly request for an initial ticket, using the
okinit command, when using the Windows native cache.

If the Oracle client is running on Microsoft Windows 2008 or later, the
Kerberos ticket is automatically retrieved when the user logs in to Windows.

See Also:

Microsoft documentation for details about the Kerbtray.exe utility, which can
be used to display Kerberos ticket information for a system

Configuring Kerberos Authentication Fallback Behavior
You can configure fallback behavior (password-based authentication) in case the
Kerberos authentication fails.

After you have configured Kerberos authentication for Oracle clients to use Kerberos
authentication to authenticate to an Oracle database, there are cases where you may
want to fall back to password-based authentication. An example would be if you have
fixed user database links in the Oracle database.

Chapter 20
Configuring Kerberos Authentication Fallback Behavior

20-21

• To enable Kerberos authentication to fall back to password-based authentication,
set the SQLNET.FALLBACK_AUTHENTICATION parameter to TRUE in the sqlnet.ora
files on both the client and server.

The default of this parameter is FALSE. This means that by default, the connection
fails when Kerberos authentication fails.

See Also:

Oracle Database Net Services Reference for more information about the
SQLNET.FALLBACK_AUTHENTICATION parameter

Troubleshooting the Oracle Kerberos Authentication
Configuration

Oracle provides guidance for common Kerberos configuration problems.

Common problems are as follows:

• If you cannot get your ticket-granting ticket using okinit:

– Ensure that the default realm is correct by examining the krb.conf file.

– Ensure that the KDC is running on the host specified for the realm.

– Ensure that the KDC has an entry for the user principal and that the
passwords match.

– Ensure that the krb.conf and krb.realms files are readable by Oracle.

– Ensure that the TNS_ADMIN environment variable is pointing to the directory
containing the sqlnet.ora configuration file.

• If you have an initial ticket but still cannot connect:

– After trying to connect, check for a service ticket.

– Check that the sqlnet.ora file on the database server side has a service
name that corresponds to a service known by Kerberos.

– Check that the clocks on all systems involved are set to times that are within a
few minutes of each other or change the SQLNET.KERBEROS5_CLOCKSKEW
parameter in the sqlnet.ora file.

• If you have a service ticket and you still cannot connect:

– Check the clocks on the client and database server.

– Check that the v5srvtab file exists in the correct location and is readable by
Oracle. Remember to set the sqlnet.ora parameters.

– Check that the v5srvtab file has been generated for the service named in the
sqlnet.ora file on the database server side.

• If everything seems to work fine, but then you issue another query and it fails:

– Check that the initial ticket is forwardable. You must have obtained the initial
ticket by running the okinit utility.

Chapter 20
Troubleshooting the Oracle Kerberos Authentication Configuration

20-22

– Check the expiration date on the credentials. If the credentials have expired,
then close the connection and run okinit to get a new initial ticket.

Chapter 20
Troubleshooting the Oracle Kerberos Authentication Configuration

20-23

21
Configuring Secure Sockets Layer
Authentication

You can configure Oracle Database to use Secure Sockets Layer authentication.

• Secure Sockets Layer and Transport Layer Security
Netscape Communications Corporation designed Secure Sockets Layer (SSL) to
secure network connections.

• How Oracle Database Uses Secure Sockets Layer for Authentication
Secure Sockets Layer works with the core Oracle Database features such as
encryption and data access controls.

• How Secure Sockets Layer Works in an Oracle Environment: The SSL Handshake
When a network connection over Secure Sockets Layer is initiated, the client and
server perform an SSL handshake before performing the authentication.

• Public Key Infrastructure in an Oracle Environment
A public key infrastructure (PKI) is a substrate of network components that provide
a security underpinning, based on trust assertions, for an entire organization.

• Secure Sockets Layer Combined with Other Authentication Methods
You can configure Oracle Database to use SSL concurrently with database user
names and passwords, RADIUS, and Kerberos.

• Secure Sockets Layer and Firewalls
Oracle Database supports two application proxy-based and stateful packet
inspection of firewalls.

• Secure Sockets Layer Usage Issues
You should be aware of SSL usage issues, such as communication with other
Oracle products and types of supported authentication and encryption methods.

• Enabling Secure Sockets Layer
You must configure Secure Sockets Layer on the server, and then the client.

• Troubleshooting the Secure Sockets Layer Configuration
Common errors may occur while you use the Oracle Database SSL adapter.

• Certificate Validation with Certificate Revocation Lists
Oracle provides tools that enable you to validate certificates using certificate
revocation lists.

• Configuring Your System to Use Hardware Security Modules
Oracle Database supports hardware security modules that use APIs that conform
to the RSA Security, Inc., PKCS #11 specification.

Secure Sockets Layer and Transport Layer Security
Netscape Communications Corporation designed Secure Sockets Layer (SSL) to
secure network connections.

21-1

• The Difference Between Secure Sockets Layer and Transport Layer Security
Transport Layer Security (TLS) is an incremental version of Secure Sockets Layer
(SSL) version 3.0.

• Using Transport Layer Security in a Multitenant Environment
Transport Layer Security (TLS) can be used in a multitenant environment for
application containers.

The Difference Between Secure Sockets Layer and Transport Layer
Security

Transport Layer Security (TLS) is an incremental version of Secure Sockets Layer
(SSL) version 3.0.

Although SSL was primarily developed by Netscape Communications Corporation, the
Internet Engineering Task Force (IETF) took over development of it, and renamed it
Transport Layer Security (TLS).

Note:

To simplify discussion, this documentation uses the term SSL where either
SSL or TLS may be appropriate because SSL is the most widely recognized
term. However, where distinctions occur between how you use or configure
these protocols, this chapter specifies what is appropriate for either SSL or
TLS.

Using Transport Layer Security in a Multitenant Environment
Transport Layer Security (TLS) can be used in a multitenant environment for
application containers.

If you want to use Transport Layer Security (TLS) in a multitenant environment for an
application container, then you must ensure that each PDB is able to use its own
wallet with its own certificates for TLS authentication.

• Because there is no individual sqlnet.ora file for each PDB, place the wallet in a
subdirectory of the wallet directory where the name of the subdirectory is the
GUID of the PDB that uses the wallet.

For example, suppose the WALLET_LOCATION parameter in sqlnet.ora is set as
follows:

(SOURCE=(METHOD=FILE)(METHOD_DATA=
 (DIRECTORY=/home/oracle/wallet)))

Place each PDB’s wallet in the /home/oracle/wallet directory. You can find the
existing PDBs and their GUIDs by querying the DBA_PDBS data dictionary view.

Chapter 21
Secure Sockets Layer and Transport Layer Security

21-2

If the WALLET_LOCATION parameter is not specified, then you must place the PDB
wallet in a subdirectory of the default wallet path where the name of the
subdirectory is the GUID of the PDB. For example:

$ORACLE_BASE/admin/db_unique_name/wallet/PDB_GUID

Or if the ORACLE_BASE environment variable is not set, then you can use the Oracle
home:

$ORACLE_HOME/admin/db_unique_name/wallet/PDB_GUID

These default locations correspond to the default that is used by Oracle Enterprise
User Security to locate wallets for authentication to LDAP.

How Oracle Database Uses Secure Sockets Layer for
Authentication

Secure Sockets Layer works with the core Oracle Database features such as
encryption and data access controls.

By using Oracle Database SSL functionality to secure communications between
clients and servers, you can

• Use SSL to encrypt the connection between clients and servers

• Authenticate any client or server, such as Oracle Application Server 10g, to any
Oracle database server that is configured to communicate over SSL

You can use SSL features by themselves or in combination with other authentication
methods supported by Oracle Database. For example, you can use the encryption
provided by SSL in combination with the authentication provided by Kerberos. SSL
supports any of the following authentication modes:

• Only the server authenticates itself to the client

• Both client and server authenticate themselves to each other

• Neither the client nor the server authenticates itself to the other, thus using the
SSL encryption feature by itself

See Also:

The SSL Protocol, version 3.0, published by the Internet Engineering
Task Force, for a more detailed discussion of SSL

How Secure Sockets Layer Works in an Oracle
Environment: The SSL Handshake

When a network connection over Secure Sockets Layer is initiated, the client and
server perform an SSL handshake before performing the authentication.

Chapter 21
How Oracle Database Uses Secure Sockets Layer for Authentication

21-3

The handshake process is as follows:

1. The client and server establish which cipher suites to use. This includes which
encryption algorithms are used for data transfers.

2. The server sends its certificate to the client, and the client verifies that the server's
certificate was signed by a trusted CA. This step verifies the identity of the server.

3. Similarly, if client authentication is required, the client sends its own certificate to
the server, and the server verifies that the client's certificate was signed by a
trusted CA.

4. The client and server exchange key information using public key cryptography.
Based on this information, each generates a session key. All subsequent
communications between the client and the server is encrypted and decrypted by
using this session key and the negotiated cipher suite.

The authentication process is as follows:

1. On a client, the user initiates an Oracle Net connection to the server by using SSL.

2. SSL performs the handshake between the client and the server.

3. If the handshake is successful, then the server verifies that the user has the
appropriate authorization to access the database.

Public Key Infrastructure in an Oracle Environment
A public key infrastructure (PKI) is a substrate of network components that provide a
security underpinning, based on trust assertions, for an entire organization.

• About Public Key Cryptography
Traditional private-key or symmetric-key cryptography requires a single, secret key
shared by two or more parties to establish a secure communication.

• Public Key Infrastructure Components in an Oracle Environment
Public key infrastructure (PKI) components in an Oracle environment include a
certificate authority, certificates, certificate revocation lists, and wallets.

About Public Key Cryptography
Traditional private-key or symmetric-key cryptography requires a single, secret key
shared by two or more parties to establish a secure communication.

This key is used to both encrypt and decrypt secure messages sent between the
parties, requiring prior, secure distribution of the key to each party. The problem with
this method is that it is difficult to securely transmit and store the key.

Public-key cryptography provides a solution to this problem, by employing public and
private key pairs and a secure method for key distribution. The freely available public
key is used to encrypt messages that can only be decrypted by the holder of the
associated private key. The private key is securely stored, together with other security
credentials, in an encrypted container called a wallet.

Public-key algorithms can guarantee the secrecy of a message, but they do not
necessarily guarantee secure communications because they do not verify the
identities of the communicating parties. To establish secure communications, it is
important to verify that the public key used to encrypt a message does in fact belong to
the target recipient. Otherwise, a third party can potentially eavesdrop on the

Chapter 21
Public Key Infrastructure in an Oracle Environment

21-4

communication and intercept public key requests, substituting its own public key for a
legitimate key (the man-in-the-middle attack).

In order to avoid such an attack, it is necessary to verify the owner of the public key, a
process called authentication. Authentication can be accomplished through a
certificate authority (CA), which is a third party that is trusted by both of the
communicating parties.

The CA issues public key certificates that contain an entity's name, public key, and
certain other security credentials. Such credentials typically include the CA name, the
CA signature, and the certificate effective dates (From Date, To Date).

The CA uses its private key to encrypt a message, while the public key is used to
decrypt it, thus verifying that the message was encrypted by the CA. The CA public
key is well known and does not have to be authenticated each time it is accessed.
Such CA public keys are stored in wallets.

Public Key Infrastructure Components in an Oracle Environment
Public key infrastructure (PKI) components in an Oracle environment include a
certificate authority, certificates, certificate revocation lists, and wallets.

• Certificate Authority
A certificate authority (CA) is a trusted third party that certifies the identity of
entities, such as users, databases, administrators, clients, and servers.

• Certificates
A certificate is created when an entity's public key is signed by a trusted certificate
authority (CA).

• Certificate Revocation Lists
When a CA signs a certificate binding a public key pair to a user identity, the
certificate is valid for a specified time.

• Wallets
A wallet is a container that stores authentication and signing credentials, including
private keys, certificates, and trusted certificates SSL needs.

• Hardware Security Modules
The hardware security modules for SSL include devices to handle various
functions and hardware devices to store cryptographic information.

Certificate Authority
A certificate authority (CA) is a trusted third party that certifies the identity of entities,
such as users, databases, administrators, clients, and servers.

When an entity requests certification, the CA verifies its identity and grants a
certificate, which is signed with the CA's private key.

Different CAs may have different identification requirements when issuing certificates.
Some CAs may verify a requester's identity with a driver's license, some may verify
identity with the requester's fingerprints, while others may require that requesters have
their certificate request form notarized.

The CA publishes its own certificate, which includes its public key. Each network entity
has a list of trusted CA certificates. Before communicating, network entities exchange
certificates and check that each other's certificate is signed by one of the CAs on their
respective trusted CA certificate lists.

Chapter 21
Public Key Infrastructure in an Oracle Environment

21-5

Network entities can obtain their certificates from the same or different CAs. By
default, Oracle Database automatically installs trusted certificates from VeriSign, RSA,
Entrust, and GTE CyberTrust when you create a new wallet.

Related Topics

• Wallets
A wallet is a container that stores authentication and signing credentials, including
private keys, certificates, and trusted certificates SSL needs.

Certificates
A certificate is created when an entity's public key is signed by a trusted certificate
authority (CA).

A certificate ensures that an entity's identification information is correct and that the
public key actually belongs to that entity.

A certificate contains the entity's name, public key, and an expiration date, as well as a
serial number and certificate chain information. It can also contain information about
the privileges associated with the certificate.

When a network entity receives a certificate, it verifies that it is a trusted certificate,
that is, one that has been issued and signed by a trusted certificate authority. A
certificate remains valid until it expires or until it is revoked.

Certificate Revocation Lists
When a CA signs a certificate binding a public key pair to a user identity, the certificate
is valid for a specified time.

However, certain events, such as user name changes or compromised private keys,
can render a certificate invalid before the validity period expires. When this happens,
the CA revokes the certificate and adds its serial number to a Certificate Revocation
List (CRL). The CA periodically publishes CRLs to alert the user population when it is
no longer acceptable to use a particular public key to verify its associated user identity.

When servers or clients receive user certificates in an Oracle environment, they can
validate the certificate by checking its expiration date, signature, and revocation status.
Certificate revocation status is checked by validating it against published CRLs. If
certificate revocation status checking is turned on, then the server searches for the
appropriate CRL depending on how this feature has been configured. The server
searches for CRLs in the following locations in this order:

1. Local file system

2. Oracle Internet Directory

3. CRL Distribution Point, a location specified in the CRL Distribution Point (CRL DP)
X.509, version 3, certificate extension when the certificate is issued.

Chapter 21
Public Key Infrastructure in an Oracle Environment

21-6

Note:

To use CRLs with other Oracle products, refer to the specific product
documentation. This implementation of certificate validation with CRLs is
only available in the Oracle Database 12c release 1 (12.1) and later SSL
adapter.

Related Topics

• Certificate Validation with Certificate Revocation Lists
Oracle provides tools that enable you to validate certificates using certificate
revocation lists.

Wallets
A wallet is a container that stores authentication and signing credentials, including
private keys, certificates, and trusted certificates SSL needs.

In an Oracle environment, every entity that communicates over SSL must have a
wallet containing an X.509 version 3 certificate, private key, and list of trusted
certificates, with the exception of Diffie-Hellman.

Security administrators use Oracle Wallet Manager to manage security credentials on
the server. Wallet owners use it to manage security credentials on clients. Specifically,
you use Oracle Wallet Manager to do the following:

• Generate a public-private key pair and create a certificate request

• Store a user certificate that matches with the private key

• Configure trusted certificates

See Also:

– Oracle Database Enterprise User Security Administrator's Guide for
information about Oracle Wallet Manager

– Oracle Database Enterprise User Security Administrator's Guide for
information about creating a new Oracle wallet

– Oracle Database Enterprise User Security Administrator's Guide for
information about managing trusted certificates in Oracle wallets

Hardware Security Modules
The hardware security modules for SSL include devices to handle various functions
and hardware devices to store cryptographic information.

Oracle Database uses these devices for the following functions:

• Store cryptographic information, such as private keys

• Perform cryptographic operations to off load RSA operations from the server,
freeing the CPU to respond to other transactions

Chapter 21
Public Key Infrastructure in an Oracle Environment

21-7

Cryptographic information can be stored on two types of hardware devices:

• (Server-side) Hardware boxes where keys are stored in the box, but managed by
using tokens.

• (Client-side) Smart card readers, which support storing private keys on tokens.

An Oracle environment supports hardware devices using APIs that conform to the
RSA Security, Inc., Public-Key Cryptography Standards (PKCS) #11 specification.

Note:

Currently, SafeNET and nCipher devices are certified with Oracle Database

Related Topics

• Configuring Your System to Use Hardware Security Modules
Oracle Database supports hardware security modules that use APIs that conform
to the RSA Security, Inc., PKCS #11 specification.

Secure Sockets Layer Combined with Other Authentication
Methods

You can configure Oracle Database to use SSL concurrently with database user
names and passwords, RADIUS, and Kerberos.

• Architecture: Oracle Database and Secure Sockets Layer
It is important to understand the architecture of how Oracle Database works with
SSL.

• How Secure Sockets Layer Works with Other Authentication Methods
Secure Sockets Layer can be used with other authentication methods that Oracle
Database supports.

Architecture: Oracle Database and Secure Sockets Layer
It is important to understand the architecture of how Oracle Database works with SSL.

Figure 18-4 , which displays the Oracle Database implementation of Secure Sockets
Layer architecture, shows that Oracle Databases operates at the session layer on top
of SSL and uses TCP/IP at the transport layer.

This separation of functionality lets you employ SSL concurrently with other supported
protocols.

See Also:

Oracle Database Net Services Administrator's Guide for information about
stack communications in an Oracle networking environment

Chapter 21
Secure Sockets Layer Combined with Other Authentication Methods

21-8

How Secure Sockets Layer Works with Other Authentication Methods
Secure Sockets Layer can be used with other authentication methods that Oracle
Database supports.

Figure 21-1 illustrates a configuration in which Secure Sockets Layer is used in
combination with another authentication method.

Figure 21-1 Secure Sockets Layer in Relation to Other Authentication Methods

2

3

5

1

Oracle

Client Oracle Server

Wallet

Authentication Server

4

In this example, Secure Sockets Layer is used to establish the initial handshake
(server authentication), and an alternative authentication method is used to
authenticate the client. The process is as follows:

1. The client seeks to connect to the Oracle database server.

2. Secure Sockets Layer performs a handshake during which the server
authenticates itself to the client and both the client and server establish which
cipher suite to use.

3. Once the Secure Sockets Layer handshake is successfully completed, the user
seeks access to the database.

4. The Oracle database server authenticates the user with the authentication server
using a non-SSL authentication method such as Kerberos or RADIUS.

5. Upon validation by the authentication server, the Oracle database server grants
access and authorization to the user, and then the user can access the database
securely by using SSL.

Related Topics

• How Secure Sockets Layer Works in an Oracle Environment: The SSL Handshake
When a network connection over Secure Sockets Layer is initiated, the client and
server perform an SSL handshake before performing the authentication.

Secure Sockets Layer and Firewalls
Oracle Database supports two application proxy-based and stateful packet inspection
of firewalls.

These firewalls are as follows:

• Application proxy-based firewalls: Examples are Network Associates Gauntlet,
or Axent Raptor.

Chapter 21
Secure Sockets Layer and Firewalls

21-9

• Stateful packet inspection firewalls: Examples are Check Point Firewall-1, or
Cisco PIX Firewall.

When you enable SSL, stateful inspection firewalls behave like application proxy
firewalls because they do not decrypt encrypted packets.

Firewalls do not inspect encrypted traffic. When a firewall encounters data addressed
to an SSL port on an intranet server, it checks the target IP address against its access
rules and lets the SSL packet pass through to permitted SSL ports, rejecting all others.

With the Oracle Net Firewall Proxy kit, a product offered by some firewall vendors,
firewall applications can provide specific support for database network traffic. If the
proxy kit is implemented in the firewall, then the following processing takes place:

• The Net Proxy (a component of the Oracle Net Firewall Proxy kit) determines
where to route its traffic.

• The database listener requires access to a certificate in order to participate in the
SSL handshake. The listener inspects the SSL packet and identifies the target
database, returning the port on which the target database listens to the client. This
port must be designated as an SSL port.

• The client communicates on this server-designated port in all subsequent
connections.

Secure Sockets Layer Usage Issues
You should be aware of SSL usage issues, such as communication with other Oracle
products and types of supported authentication and encryption methods.

Consider the following issues when using SSL:

• SSL use enables secure communication with other Oracle products, such as
Oracle Internet Directory.

• Because SSL supports both authentication and encryption, the client/server
connection is somewhat slower than the standard Oracle Net TCP/IP transport
(using native encryption).

• Each SSL authentication mode requires configuration settings.

Note:

If you configure SSL encryption, you must disable non-SSL encryption. To
disable such encryption, refer to Disabling Strong Authentication and Native
Network Encryption .

Related Topics

• Configuring Your System to Use Hardware Security Modules
Oracle Database supports hardware security modules that use APIs that conform
to the RSA Security, Inc., PKCS #11 specification.

Enabling Secure Sockets Layer
You must configure Secure Sockets Layer on the server, and then the client.

Chapter 21
Secure Sockets Layer Usage Issues

21-10

• Step 1: Configure Secure Sockets Layer on the Server
During installation, Oracle sets defaults on the Oracle database server and the
Oracle client for SSL parameters, except the Oracle wallet location.

• Step 2: Configure Secure Sockets Layer on the Client
When you configure SSL on the client, you configure the server DNs and use
TCP/IP with SSL on the client.

• Step 3: Log in to the Database Instance
After you have completed the configuration, you are ready to log in to the
database.

Step 1: Configure Secure Sockets Layer on the Server
During installation, Oracle sets defaults on the Oracle database server and the Oracle
client for SSL parameters, except the Oracle wallet location.

• Step 1A: Confirm Wallet Creation on the Server
Before proceeding to the next step, confirm that a wallet has been created and
that it has a certificate.

• Step 1B: Specify the Database Wallet Location on the Server
Next, you are ready to specify a location on the server for the wallet.

• Step 1C: Set the Secure Sockets Layer Cipher Suites on the Server (Optional)
Optionally, you can set the Secure Sockets Layer cipher suites.

• Step 1D: Set the Required Secure Sockets Layer Version on the Server (Optional)
The SSL_VERSION parameter defines the version of SSL that must run on the
systems with which the server communicates.

• Step 1E: Set SSL Client Authentication on the Server (Optional)
The SSL_CLIENT_AUTHENTICATION parameter controls whether the client is
authenticated using SSL.

• Step 1F: Set SSL as an Authentication Service on the Server (Optional)
The SQLNET.AUTHENTICATION_SERVICES parameter in the sqlnet.ora file sets the
SSL authentication service.

• Step 1G: Disable SSLv3 on the Server and Client (Optional)
SSLv3 refers to Secure Sockets Layer version 3.

• Step 1H: Create a Listening Endpoint that Uses TCP/IP with SSL on the Server
You can configure a listening endpoint to use TCP/IP with SSL on the server.

Step 1A: Confirm Wallet Creation on the Server
Before proceeding to the next step, confirm that a wallet has been created and that it
has a certificate.

1. Start Oracle Wallet Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command:

owm

• (Windows) Select Start, Programs, Oracle-HOME_NAME, Integrated
Management Tools, Wallet Manager

2. From the Wallet menu, select Open.

Chapter 21
Enabling Secure Sockets Layer

21-11

The wallet should contain a certificate with a status of Ready and auto-login turned
on. If auto-login is not on, then select it from the Wallet menu and save the wallet
again. This turns auto-login on.

See Also:

Oracle Database Enterprise User Security Administrator's Guide for
information about creating a new Oracle wallet

Step 1B: Specify the Database Wallet Location on the Server
Next, you are ready to specify a location on the server for the wallet.

1. Start Oracle Net Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command at the
command line:

netmgr

• (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration
and Migration Tools, then Net Manager.

2. Expand Oracle Net Configuration, and from Local, select Profile.

3. From the Naming list, select Network Security.

The Network Security tabbed window appears.

4. Select the SSL tab and then select Configure SSL for: Server.

5. In the Wallet Directory box, enter the directory in which the Oracle wallet is
located or click Browse to find it by searching the file system.

Note that if you are configuring the database-to-directory SSL connection for
Enterprise User Security, then Database Configuration Assistant automatically
creates a database wallet while registering the database with the directory. You
must use that wallet to store the database PKI credentials for SSL-authenticated
Enterprise User Security.

Important:

• Use Oracle Wallet Manager to create the wallet. See Oracle Database
Enterprise User Security Administrator's Guide for information about creating a
new Oracle wallet.

• Use Oracle Net Manager to set the wallet location in the sqlnet.ora file. Be
aware that in a multitenant environment, the settings in the sqlnet.ora file
apply to all pluggable databases (PDBs).

Ensure that you enter the same wallet location when you create it and when you
set the location in the sqlnet.ora file.

6. From the File menu, select Save Network Configuration.

The sqlnet.ora and listener.ora files are updated with the following entries:

wallet_location =
 (SOURCE=
 (METHOD=File)

Chapter 21
Enabling Secure Sockets Layer

21-12

 (METHOD_DATA=
 (DIRECTORY=wallet_location)))

Note:

The listener uses the wallet defined in the listener.ora file. It can use any
database wallet. When SSL is configured for a server using Net Manager,
the wallet location is entered into the listener.ora and the sqlnet.ora files.
The listener.ora file is not relevant to the Oracle client.

To change the listener wallet location so that the listener has its own wallet,
you can edit listener.ora to enter the new location.

Step 1C: Set the Secure Sockets Layer Cipher Suites on the Server (Optional)
Optionally, you can set the Secure Sockets Layer cipher suites.

• About the Secure Sockets Layer Cipher Suites
A cipher suite is a set of authentication, encryption, and data integrity algorithms
used for exchanging messages between network entities.

• SSL Cipher Suite Authentication, Encryption, Integrity, and TLS Versions
Oracle Database supports a set of cipher suites that are set by default when you
install Oracle Database.

• Specifying Secure Sockets Cipher Suites for the Database Server
First, you must specify the Secure Sockets cipher suites for the database server.

About the Secure Sockets Layer Cipher Suites
A cipher suite is a set of authentication, encryption, and data integrity algorithms used
for exchanging messages between network entities.

During a Secure Sockets Layer handshake, two entities negotiate to see which cipher
suite they will use when transmitting messages back and forth.

When you install Oracle Database, the Secure Sockets Layer cipher suites listed in
Table 21-1 are set for you by default and negotiated in the order they are listed. You
can override the default order by setting the SSL_CIPHER_SUITES parameter. Ensure
that you enclose the SSL_CIPHER_SUITES parameter setting in parentheses (for
example, SSL_CIPHER_SUITES=(ssl_rsa_with_aes_128_cbc_sha256)). Otherwise, the
cipher suite setting will not parse correctly.

You can prioritize the cipher suites. When the client negotiates with servers regarding
which cipher suite to use, it follows the prioritization you set. When you prioritize the
cipher suites, consider the following:

• Compatibility. Server and client must be configured to use compatible cipher
suites for a successful connection.

• Cipher priority and strength. Prioritize cipher suites starting with the strongest
and moving to the weakest to ensure the highest level of security possible.

• The level of security you want to use.

• The impact on performance.

Chapter 21
Enabling Secure Sockets Layer

21-13

Note:

Regarding Diffie-Hellman anonymous authentication:

– If you set the server to employ this cipher suite, then you must also
set the same cipher suite on the client. Otherwise, the connection
fails.

– If you use a cipher suite employing Diffie-Hellman anonymous, then
you must set the SSL_CLIENT_AUTHENTICATION parameter to FALSE.
For more information, refer to Step 1E: Set SSL Client Authentication
on the Server (Optional).

– There is a known bug in which an OCI client requires a wallet even
when using a cipher suite with DH_ANON, which does not
authenticate the client.

SSL Cipher Suite Authentication, Encryption, Integrity, and TLS Versions
Oracle Database supports a set of cipher suites that are set by default when you install
Oracle Database.

Table 21-1 lists the authentication, encryption, and data integrity types each cipher
suite uses.

Table 21-1 Secure Sockets Layer Cipher Suites

Cipher Suites Authenticatio
n

Encryption Data
Integrity

TLS
Compatibili
ty

SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA25
6

ECDHE_ECDS
A

AES 128 GCM SHA256
(SHA-2)

TLS 1.2 only

SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA ECDHE_ECDS
A

AES 128 CBC SHA-1 TLS 1.0 and
later

SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA25
6

ECDHE_ECDS
A

AES 128 CBC SHA256
(SHA-2)

TLS 1.2 only

SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA ECDHE_ECDS
A

AES 256 CBC SHA-1 TLS 1.0 and
later

SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA38
4

ECDHE_ECDS
A

AES 256 CBC SHA384
(SHA-2)

TLS 1.2 only

SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA38
4

ECDHE_ECDS
A

AES 256 GCM SHA384
(SHA-2)

TLS 1.2 only

SSL_RSA_WITH_AES_128_CBC_SHA256 RSA AES 128 CBC SHA256
(SHA-2)

TLS 1.2 only

SSL_RSA_WITH_AES_128_GCM_SHA256 RSA AES 128 GCM SHA256
(SHA-2)

TLS 1.2 only

SSL_RSA_WITH_AES_128_CBC_SHA RSA AES 128 CBC SHA-1 TLS 1.0 only

SSL_RSA_WITH_AES_256_CBC_SHA RSA AES 256 CBC SHA-1 TLS 1.0 and
later

Chapter 21
Enabling Secure Sockets Layer

21-14

Table 21-1 (Cont.) Secure Sockets Layer Cipher Suites

Cipher Suites Authenticatio
n

Encryption Data
Integrity

TLS
Compatibili
ty

SSL_RSA_WITH_AES_256_CBC_SHA256 RSA AES 256 CBC SHA256
(SHA-2)

TLS 1.2 only

SSL_RSA_WITH_AES_256_GCM_SHA384 RSA AES 256 GCM SHA384
(SHA-2)

TLS 1.2 only

Table 21-2 lists cipher suites that you can use, but be aware that they do not the
provide authentication of the communicating parties, and hence can be vulnerable to
man-in-the-middle attacks. Oracle recommends that you do not use these cipher
suites to protect sensitive data. However, they are useful if the communicating parties
want to remain anonymous or simply do not want the overhead caused by mutual
authentication.

Table 21-2 SSL_DH Secure Sockets Layer Cipher Suites

Cipher Suites Authenticatio
n

Encryption Data
Integrity

TLS
Compatibili
ty

SSL_DH_anon_WITH_3DES_EDE_CBC_SHA DH anon 3DES EDE CBC SHA-1 TLS 3.0 and
later

Specifying Secure Sockets Cipher Suites for the Database Server
First, you must specify the Secure Sockets cipher suites for the database server.

1. Start Oracle Net Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command at the
command line:

netmgr

• (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration
and Migration Tools, then Net Manager.

2. Expand Oracle Net Configuration, and from Local, select Profile.

3. From the Naming list, select Network Security.

The Network Security tabbed window appears.

4. Select the SSL tab and then select Configure SSL for: Server.

5. In the Cipher Suite Configuration area, click Add.

A dialog box displays available cipher suites. To see the US domestic cipher
suites, click the Show US Domestic Cipher Suits check box.

6. Select a suite and click OK.

The Cipher Suite Configuration list is updated:

Chapter 21
Enabling Secure Sockets Layer

21-15

7. Use the up and down arrows to prioritize the cipher suites.

8. From the File menu, select Save Network Configuration.

The sqlnet.ora file is updated with the following entry:

SSL_CIPHER_SUITES= (SSL_cipher_suite1 [,SSL_cipher_suite2])

Step 1D: Set the Required Secure Sockets Layer Version on the Server
(Optional)

The SSL_VERSION parameter defines the version of SSL that must run on the systems
with which the server communicates.

Optionally, you can set the SSL_VERSION parameter in the sqlnet.ora or the
listener.ora file.

You can require these systems to use any valid version. The default setting for this
parameter in sqlnet.ora is undetermined, which is set by selecting Any from the list
in the SSL tab of the Network Security window.

1. In the Require SSL Version list, the default is Any.

Accept this default or select the SSL version you want to use.

Chapter 21
Enabling Secure Sockets Layer

21-16

2. From the File menu, select Save Network Configuration.

If you chose Any, then the sqlnet.ora file is updated with the following entry:

SSL_VERSION=UNDETERMINED

Note:

SSL 2.0 is not supported on the server side.

See Also:

Oracle Database Net Services Reference for more information about the
SSL_VERSION parameter

Step 1E: Set SSL Client Authentication on the Server (Optional)
The SSL_CLIENT_AUTHENTICATION parameter controls whether the client is
authenticated using SSL.

You must set this parameter in the sqlnet.ora file on the server. The default value of
SSL_CLIENT_AUTHENTICATION parameter is TRUE.

You can set the SSL_CLIENT_AUTHENTICATION to FALSE if you are using a cipher suite
that contains Diffie-Hellman anonymous authentication (DH_anon).

Also, you can set this parameter to FALSE for the client to authenticate itself to the
server by using any of the non-SSL authentication methods supported by Oracle
Database, such as Kerberos or RADIUS.

Note:

There is a known bug in which an OCI client requires a wallet even when
using a cipher suite with DH_ANON, which does not authenticate the client.

To set SSL_CLIENT_AUTHENTICATION to FALSE on the server:

1. In the SSL page Oracle Net Manager, deselect Require Client Authentication.

Chapter 21
Enabling Secure Sockets Layer

21-17

2. From the File menu, select Save Network Configuration.

The sqlnet.ora file is updated with the following entry:

SSL_CLIENT_AUTHENTICATION=FALSE

Step 1F: Set SSL as an Authentication Service on the Server (Optional)
The SQLNET.AUTHENTICATION_SERVICES parameter in the sqlnet.ora file sets the SSL
authentication service.

Set this parameter if you want to use SSL authentication in conjunction with another
authentication method supported by Oracle Database. For example, use this
parameter if you want the server to authenticate itself to the client by using SSL and
the client to authenticate itself to the server by using Kerberos.

• To set the SQLNET.AUTHENTICATION_SERVICES parameter on the server, add
TCP/IP with SSL (TCPS) to this parameter in the sqlnet.ora file by using a text
editor. For example, if you want to use SSL authentication in conjunction with
RADIUS authentication, set this parameter as follows:

 SQLNET.AUTHENTICATION_SERVICES = (TCPS, radius)

Chapter 21
Enabling Secure Sockets Layer

21-18

If you do not want to use SSL authentication in conjunction with another authentication
method, then do not set this parameter.

Step 1G: Disable SSLv3 on the Server and Client (Optional)
SSLv3 refers to Secure Sockets Layer version 3.

Applications that support Secure Sockets Layer version 3 (SSLv3) are vulnerable to
Padding Oracle On Downgraded Legacy Encryption (POODLE) attacks, even if they
use the most recent version of Transport Layer Security (TLS). To prevent POODLE
attacks, you should set the ADD_SSLV3_TO_DEFAULT sqlnet.ora parameter to FALSE on
both the server and the client. ADD_SSLV3_TO_DEFAULT only applies if the SSL_VERSION
parameter is not set. (which means that you are using the default list of SSL versions).

1. Log in to the database server or the client server.

2. Edit the sqlnet.ora parameter file, which by default is located in
the $ORACLE_HOME/network/admin directory, to include the ADD_SSLV3_TO_DEFAULT
parameter, as follows:

ADD_SSLV3_TO_DEFAULT=false

ADD_SSLV3_TO_DEFAULT defaults to FALSE, and has no effect if SSL_VERSION is
explicitly set. So, by default, without SSL_VERSION explicitly set, SSLv3 connections
will not be allowed. Setting ADD_SSLV3_TO_DEFAULT to TRUE would allow SSLv3
connections to continue working by default.

Step 1H: Create a Listening Endpoint that Uses TCP/IP with SSL on the Server
You can configure a listening endpoint to use TCP/IP with SSL on the server.

• Configure the listener in the listener.ora file. Oracle recommends using port
number 2484 for typical Oracle Net clients.

See Also:

Oracle Database Net Services Reference for detailed information about
configuring the listener.ora file

Step 2: Configure Secure Sockets Layer on the Client
When you configure SSL on the client, you configure the server DNs and use TCP/IP
with SSL on the client.

• Step 2A: Confirm Client Wallet Creation
You must confirm that a wallet has been created on the client and that the client
has a valid certificate.

• Step 2B: Configure Server DN Matching and Use TCP/IP with SSL on the Client
Next, you are ready to configure server DN matching and use TCP/IP with Secure
Sockets Layer (SSL) on the client.

• Step 2C: Specify Required Client SSL Configuration (Wallet Location)
You can use Oracle Net Manager to specify the required client SSL configuration.

Chapter 21
Enabling Secure Sockets Layer

21-19

• Step 2D: Set the Client Secure Sockets Layer Cipher Suites (Optional)
Optionally, you can set the SSL cipher suites. Oracle Database provides default
cipher suite settings.

• Step 2E: Set the Required SSL Version on the Client (Optional)
The SSL_VERSION parameter defines the version of SSL that must run on the
systems with which the client communicates.

• Step 2F: Set SSL as an Authentication Service on the Client (Optional)
The SQLNET.AUTHENTICATION_SERVICES parameter in the sqlnet.ora file sets the
SSL authentication service.

• Step 2G: Specify the Certificate to Use for Authentication on the Client (Optional)
If you have multiple certificates, then you can set the
SQLNET.SSL_EXTENDED_KEY_USAGE parameter in the sqlnet.ora file to specify the
correct certificate.

Step 2A: Confirm Client Wallet Creation
You must confirm that a wallet has been created on the client and that the client has a
valid certificate.

• Use Oracle Wallet Manager to check that the wallet has been created. See Step
1A: Confirm Wallet Creation on the Server for information about checking a wallet.

Note:

Oracle recommends that you use Oracle Wallet Manager to remove the
trusted certificate in your Oracle wallet that is associated with each certificate
authority that you do not use.

See Also:

• Oracle Database Enterprise User Security Administrator's Guide for
general information about wallets

• Oracle Database Enterprise User Security Administrator's Guide for
information about opening an existing wallet

• Oracle Database Enterprise User Security Administrator's Guide for
information about creating a new wallet

Step 2B: Configure Server DN Matching and Use TCP/IP with SSL on the
Client

Next, you are ready to configure server DN matching and use TCP/IP with Secure
Sockets Layer (SSL) on the client.

Chapter 21
Enabling Secure Sockets Layer

21-20

• About Configuring the Server DN Matching and Using TCP/IP with SSL on the
Client
In addition to validating the server certificate's certificate chain, you can perform an
extra check through server DN matching.

• Configuring the Server DN Matching and Using TCP/IP with SSL on the Client
You must edit the tnsnames.ora and listener.ora files to configure the server
DN matching and user TCP/IP with SSL on the client.

About Configuring the Server DN Matching and Using TCP/IP with SSL on the Client
In addition to validating the server certificate's certificate chain, you can perform an
extra check through server DN matching.

You can configure the Oracle Net Service name to include server DN matching and to
use TCP/IP with SSL on the client. To accomplish this, you must specify the server's
distinguished name (DN) and TCPS as the protocol in the client network configuration
files to enable server DN matching and TCP/IP with SSL connections. Server DN
matching is optional, but Oracle recommends it because it adds a layer of security to
the client: the client can then perform this check against the server.

You can configure either partial DN matching or full DN matching. After you set the
SSL_SERVER_DN_MATCH parameter to TRUE, then partial DN matching is performed
automatically. The client will then check the server certificate for the DN information.
Full DN matching enables the client to match against the complete DN of the server. If
you want to perform a full DN match, then you must specify the server's DN in the
SSL_SERVER_CERT_DN parameter.

The ability to use either partial or full DN matching enables more flexibility based on
how you create and manage host certificates. For example, suppose the client tries to
connect to a server with hostname=finance.us.example.com. With partial DN
matching, the client checks the server's certificate to verify that CN=finance is the
server's DN. Also for partial DN matching, only the host name (finance) is checked,
not the fully qualified domain name (finance.us.example.com). For both full and
partial DN matching, you must set the SSL_SERVER_DN_MATCH parameter TRUE.

You must manually edit the tnsnames.ora client network configuration file to specify
the server's DN and the TCP/IP with SSL protocol. The tnsnames.ora file can be
located on the client or in the LDAP directory. If it is located on the server, then it
typically resides in the same directory as the listener.ora file. The tnsnames.ora file
is typically located in the setting specified by the TNS_ADMIN environment variable. If
TNS_ADMIN is not set, then tnsnames.ora resides in the following directory locations:

• (UNIX) $ORACLE_HOME/network/admin/

• (Windows) ORACLE_BASE\ORACLE_HOME\network\admin\

Configuring the Server DN Matching and Using TCP/IP with SSL on the Client
You must edit the tnsnames.ora and listener.ora files to configure the server DN
matching and user TCP/IP with SSL on the client.

1. In the client tnsnames.ora file, search for the SSL_SERVER_CERT_DN parameter and
do the following:

• If you want to use full DN matching, then set SSL_SERVER_CERT_DN to the
complete DN, similar to the following:

Chapter 21
Enabling Secure Sockets Layer

21-21

(SECURITY=
(SSL_SERVER_CERT_DN="finance,cn=OracleContext,c=us,o=example"))

The client uses this information to obtain the list of DNs it expects for each of
the servers, enforcing the server's DN to match its service name. The
following example shows an entry for the finance database in the
tnsnames.ora file.

finance=
(DESCRIPTION=
(ADDRESS_LIST=
(ADDRESS= (PROTOCOL = tcps) (HOST = finance) (PORT = 1575)))
(CONNECT_DATA=
(SERVICE_NAME= finance.us.example.com))
(SECURITY=
(SSL_SERVER_CERT_DN="cn=finance,cn=OracleContext,c=us,o=example"))

By default, the tnsnames.ora and listener.ora files are in the $ORACLE_HOME/
network/admin directory on UNIX systems and in ORACLE_HOME\network
\admin on Windows.

• If you plan to use partial DN matching, then do not include the
SSL_SERVER_CERT_DN parameter in tnsnames.ora.

2. In the client tnsnames.ora file, enter tcps as the PROTOCOL in the ADDRESS
parameter.

This specifies that the client will use TCP/IP with SSL to connect to the database
that is identified in the SERVICE_NAME parameter. The following also shows an entry
that specifies TCP/IP with SSL as the connecting protocol in the tnsnames.ora file.

LISTENER=
(DESCRIPTION_LIST=
(DESCRIPTION=
(ADDRESS= (PROTOCOL = tcps) (HOST = finance) (PORT = 1575))))

3. In the listener.ora file, enter tcps as the PROTOCOL in the ADDRESS parameter.

Step 2C: Specify Required Client SSL Configuration (Wallet Location)
You can use Oracle Net Manager to specify the required client SSL configuration.

1. Start Oracle Net Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command at the
command line:

netmgr

• (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration
and Migration Tools, then Net Manager.

2. Expand Oracle Net Configuration, and from Local, select Profile.

3. From the Naming list, select Network Security.

The Network Security tabbed window appears.

4. Select the SSL tab.

5. Select Configure SSL for: Client.

Chapter 21
Enabling Secure Sockets Layer

21-22

6. In the Wallet Directory box, enter the directory in which the Oracle wallet is
located, or click Browse to find it by searching the file system.

7. From the Match server X.509 name list, select one of the following options:

• Yes: Requires that the server's distinguished name (DN) match its service
name. SSL ensures that the certificate is from the server and connections
succeed only if there is a match.

This check can be made only when RSA ciphers are selected, which is the
default setting.

• No (default): SSL checks for a match between the DN and the service name,
but does not enforce it. Connections succeed regardless of the outcome but
an error is logged if the match fails.

• Let Client Decide: Enables the default.

The following alert is displayed when you select No:

Security Alert
Not enforcing the server X.509 name match allows a server to potentially
fake its identity. Oracle recommends selecting YES for this option so that
connections are refused when there is a mismatch.

8. From the File menu, select Save Network Configuration.

Chapter 21
Enabling Secure Sockets Layer

21-23

The sqlnet.ora file on the client is updated with the following entries:

SSL_CLIENT_AUTHENTICATION =TRUE
wallet_location =
 (SOURCE=
 (METHOD=File)
 (METHOD_DATA=
 (DIRECTORY=wallet_location)))

SSL_SERVER_DN_MATCH=(ON/OFF)

See Also:

For information about the server match parameters:

• Secure Sockets Layer X.509 Server Match Parameters

For information about using Oracle Net Manager to configure TCP/IP with
SSL:

• Oracle Database Net Services Administrator's Guide

• Oracle Database Net Services Reference

Step 2D: Set the Client Secure Sockets Layer Cipher Suites (Optional)
Optionally, you can set the SSL cipher suites. Oracle Database provides default cipher
suite settings.

• About Setting the Client Secure Sockets Layer Cipher Suites
A cipher suite is a set of authentication, encryption, and data integrity algorithms
used for exchanging messages between network entities.

• Setting the Client Secure Sockets Layer Cipher Suites
You can use Oracle Net Manager to set the client SSL cipher suites.

About Setting the Client Secure Sockets Layer Cipher Suites
A cipher suite is a set of authentication, encryption, and data integrity algorithms used
for exchanging messages between network entities.

During an SSL handshake, two entities negotiate to see which cipher suite they will
use when transmitting messages back and forth.

When you install Oracle Database, the SSL cipher suites listed in Table 21-1 are set
for you by default. This table lists them in the order they are tried when two entities are
negotiating a connection. You can override the default by setting the
SSL_CIPHER_SUITES parameter. For example, if you use Oracle Net Manager to add
the cipher suite SSL_RSA_WITH_RC4_128_SHA, all other cipher suites in the default
setting are ignored.

You can prioritize the cipher suites. When the client negotiates with servers regarding
which cipher suite to use, it follows the prioritization you set. When you prioritize the
cipher suites, consider the following:

• The level of security you want to use. For example, triple-DES encryption is
stronger than DES.

Chapter 21
Enabling Secure Sockets Layer

21-24

• The impact on performance. For example, triple-DES encryption is slower than
DES. Refer to Configuring Your System to Use Hardware Security Modules for
information about using SSL hardware accelerators with Oracle Database.

• Administrative requirements. The cipher suites selected for a client must be
compatible with those required by the server. For example, in the case of an
Oracle Call Interface (OCI) user, the server requires the client to authenticate
itself. You cannot, in this case, use a cipher suite employing Diffie-Hellman
anonymous authentication, which disallows the exchange of certificates.

You typically prioritize cipher suites starting with the strongest and moving to the
weakest.

Table 21-1 lists the currently supported Secure Sockets Layer cipher suites. These
cipher suites are set by default when you install Oracle Database. The table also lists
the authentication, encryption, and data integrity types each cipher suite uses.

Note:

If the SSL_CLIENT_AUTHENTICATION parameter is set to true in the
sqlnet.ora file, then disable all cipher suites that use Diffie-Hellman
anonymous authentication. Otherwise, the connection fails.

Setting the Client Secure Sockets Layer Cipher Suites
You can use Oracle Net Manager to set the client SSL cipher suites.

1. Start Oracle Net Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command at the
command line:

netmgr

• (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration
and Migration Tools, then Net Manager.

2. Expand Oracle Net Configuration, and from Local, select Profile.

3. From the Naming list, select Network Security.

The Network Security tabbed window appears.

4. Select the SSL tab.

5. In the Cipher Suite Configuration region, click Add.

A dialog box displays available cipher suites.

6. Select a suite and click OK.

The Cipher Suite Configuration list is updated as shown as follows:

Chapter 21
Enabling Secure Sockets Layer

21-25

7. Use the up and down arrows to prioritize the cipher suites.

8. From the File menu, select Save Network Configuration.

The sqlnet.ora file is updated with the following entry:

SSL_CIPHER_SUITES= (SSL_cipher_suite1 [,SSL_cipher_suite2])

Step 2E: Set the Required SSL Version on the Client (Optional)
The SSL_VERSION parameter defines the version of SSL that must run on the systems
with which the client communicates.

You must set the SSL_VERSION parameter in the sqlnet.ora file. You can require these
systems to use any valid version.

The default setting for this parameter in sqlnet.ora is undetermined, which is set by
selecting Any from the list in the SSL tab of the Network Security window. When Any
is selected, TLS 1.0 is tried first, then SSL 3.0, and SSL 2.0 are tried in that order.
Ensure that the client SSL version is compatible with the version the server uses.

1. In the Require SSL Version list, select the SSL version that you want to
configure.

The default setting is Any.

2. From the File menu, select, Save Network Configuration.

Chapter 21
Enabling Secure Sockets Layer

21-26

The sqlnet.ora file is updated. If you selected Any, then it is updated with the
following entry:

SSL_VERSION=UNDETERMINED

Step 2F: Set SSL as an Authentication Service on the Client (Optional)
The SQLNET.AUTHENTICATION_SERVICES parameter in the sqlnet.ora file sets the SSL
authentication service.

• About the SQLNET.AUTHENTICATION_SERVICES Parameter
The SQLNET.AUTHENTICATION_SERVICES parameter enables SSL authentication in
conjunction with another authentication method supported by Oracle Database.

• Setting the SQLNET.AUTHENTICATION_SERVICES Parameter
You can set the SQLNET.AUTHENTICATION_SERVICES parameter in the sqlnet.ora
file.

About the SQLNET.AUTHENTICATION_SERVICES Parameter
The SQLNET.AUTHENTICATION_SERVICES parameter enables SSL authentication in
conjunction with another authentication method supported by Oracle Database.

For example, use this parameter if you want the server to authenticate itself to the
client by using SSL and the client to authenticate itself to the server by using RADIUS.

To set the SQLNET.AUTHENTICATION_SERVICES parameter, you must edit the
sqlnet.ora file, which is located in the same directory as the other network
configuration files.

Depending on the platform, the sqlnet.ora file is in the following directory location:

• (UNIX) $ORACLE_HOME/network/admin

• (Windows) ORACLE_BASE\ORACLE_HOME\network\admin\

Setting the SQLNET.AUTHENTICATION_SERVICES Parameter
You can set the SQLNET.AUTHENTICATION_SERVICES parameter in the sqlnet.ora file.

• To set the client SQLNET.AUTHENTICATION_SERVICES parameter, add TCP/IP with
SSL (TCPS) to this parameter in the sqlnet.ora file by using a text editor.

For example, if you want to use SSL authentication in conjunction with RADIUS
authentication, then set this parameter as follows:

 SQLNET.AUTHENTICATION_SERVICES = (TCPS, radius)

If you do not want to use SSL authentication in conjunction with another authentication
method, then do not set this parameter.

Step 2G: Specify the Certificate to Use for Authentication on the Client
(Optional)

If you have multiple certificates, then you can set the
SQLNET.SSL_EXTENDED_KEY_USAGE parameter in the sqlnet.ora file to specify the
correct certificate.

Chapter 21
Enabling Secure Sockets Layer

21-27

• About the SQLNET.SSL_EXTENDED_KEY_USAGE Parameter
The SQLNET.SSL_EXTENDED_KEY_USAGE parameter in the sqlnet.ora file specifies
which certificate to use in authenticating to the database server

• Setting the SQLNET.SSL_EXTENDED_KEY_USAGE Parameter
You can set the SQLNET.SSL_EXTENDED_KEY_USAGE to set the client authentication.

About the SQLNET.SSL_EXTENDED_KEY_USAGE Parameter
The SQLNET.SSL_EXTENDED_KEY_USAGE parameter in the sqlnet.ora file specifies which
certificate to use in authenticating to the database server

You should set the SQLNET.SSL_EXTENDED_KEY_USAGE parameter if you have multiple
certificates in the security module, but there is only one certificate with extended key
usage field of client authentication, and this certificate is exactly the one you want
to use to authenticate to the database.

For example, use this parameter if you have multiple certificates in a smart card, only
one of which has an extended key usage field of client authentication, and you
want to use this certificate C to authenticate to the database. By setting this parameter
on a Windows client to client authentication, the MSCAPI certificate selection box
will not appear, and the certificate C is automatically used for the SSL authentication of
the client to the server.

Setting the SQLNET.SSL_EXTENDED_KEY_USAGE Parameter
You can set the SQLNET.SSL_EXTENDED_KEY_USAGE to set the client authentication.

• To set the client SQLNET.SSL_EXTENDED_KEY_USAGE parameter, edit the sqlnet.ora
file to have the following line:

SQLNET.SSL_EXTENDED_KEY_USAGE = "client authentication"

If you do not want to use the certificate filtering, then remove the
SQLNET.SSL_EXTENDED_KEY_USAGE parameter setting from the sqlnet.ora file.

Step 3: Log in to the Database Instance
After you have completed the configuration, you are ready to log in to the database.

• Start SQL*Plus and then enter one of the following connection commands:

– If you are using SSL authentication for the client
(SSL_CLIENT_AUTHENTICATION=true in the sqlnet.ora file):

CONNECT/@net_service_name

– If you are not using SSL authentication (SSL_CLIENT_AUTHENTICATION=false
in the sqlnet.ora file):

CONNECT username@net_service_name
Enter password: password

Related Topics

• Certificate Validation with Certificate Revocation Lists
Oracle provides tools that enable you to validate certificates using certificate
revocation lists.

Chapter 21
Enabling Secure Sockets Layer

21-28

Troubleshooting the Secure Sockets Layer Configuration
Common errors may occur while you use the Oracle Database SSL adapter.

It may be necessary to enable Oracle Net tracing to determine the cause of an error.
For information about setting tracing parameters to enable Oracle Net tracing, refer to
Oracle Database Net Services Administrator's Guide.

ORA-28759: Failure to Open File
Cause: The system could not open the specified file. Typically, this error occurs
because the wallet cannot be found.

Action: Check the following:

• Ensure that the correct wallet location is specified in the sqlnet.ora file. This
should be the same directory location where you saved the wallet.

• Enable Oracle Net tracing to determine the name of the file that cannot be
opened and the reason.

• Ensure that auto-login was enabled when you saved the wallet. See Oracle
Database Enterprise User Security Administrator's Guide.

ORA-28786: Decryption of Encrypted Private Key Failure
Cause: An incorrect password was used to decrypt an encrypted private key.
Frequently, this happens because an auto-login wallet is not being used.

Action: Use Oracle Wallet Manager to turn the auto-login feature on for the wallet.
Then save the wallet again. See Oracle Database Enterprise User Security
Administrator's Guide
If the auto-login feature is not being used, then enter the correct password.

ORA-28858: SSL Protocol Error
Cause: This is a generic error that can occur during SSL handshake negotiation
between two processes.

Action: Enable Oracle Net tracing and attempt the connection again to produce trace
output. Then contact Oracle customer support with the trace output.

ORA-28859 SSL Negotiation Failure
Cause: An error occurred during the negotiation between two processes as part of the
SSL protocol. This error can occur when two sides of the connection do not support a
common cipher suite.

Action: Check the following:

• Use Oracle Net Manager to ensure that the SSL versions on both the client and
the server match, or are compatible. For example, if the server accepts only SSL
3.0 and the client accepts only TLS 1.0, then the SSL connection will fail.

• Use Oracle Net Manager to check what cipher suites are configured on the client
and the server, and ensure that compatible cipher suites are set on both.

If the error still persists, then enable Oracle Net tracing and attempt the
connection again. Contact Oracle customer support with the trace output.

Chapter 21
Troubleshooting the Secure Sockets Layer Configuration

21-29

See Also:

Step 2D: Set the Client Secure Sockets Layer Cipher Suites (Optional)
for details about setting compatible cipher suites on the client and the
server

Note:

If you do not configure any cipher suites, then all available cipher suites
are enabled.

ORA-28862: SSL Connection Failed
Cause: This error occurred because the peer closed the connection.

Action: Check the following:

• Ensure that the correct wallet location is specified in the sqlnet.ora file so the
system can find the wallet.

• Use Oracle Net Manager to ensure that cipher suites are set correctly in the
sqlnet.ora file. Sometimes this error occurs because the sqlnet.ora has been
manually edited and the cipher suite names are misspelled. Ensure that case
sensitive string matching is used with cipher suite names.

• Use Oracle Net Manager to ensure that the SSL versions on both the client and
the server match or are compatible. Sometimes this error occurs because the
SSL version specified on the server and client do not match. For example, if the
server accepts only SSL 3.0 and the client accepts only TLS 1.0, then the SSL
connection will fail.

• For more diagnostic information, enable Oracle Net tracing on the peer.

ORA-28865: SSL Connection Closed
Cause: The SSL connection closed because of an error in the underlying transport
layer, or because the peer process quit unexpectedly.

Action: Check the following:

• Use Oracle Net Manager to ensure that the SSL versions on both the client and
the server match, or are compatible. Sometimes this error occurs because the
SSL version specified on the server and client do not match. For example, if the
server accepts only SSL 3.0 and the client accepts only TLS 1.0, then the SSL
connection will fail.

• If you are using a Diffie-Hellman anonymous cipher suite and the
SSL_CLIENT_AUTHENTICATION parameter is set to true in the server's
listener.ora file, then the client does not pass its certificate to the server. When
the server does not receive the client's certificate, it (the server) cannot
authenticate the client so the connection is closed. To resolve this use another
cipher suite, or set this listener.ora parameter to false.

• Enable Oracle Net tracing and check the trace output for network errors.

Chapter 21
Troubleshooting the Secure Sockets Layer Configuration

21-30

• For details, refer to Actions listed for ORA-28862: SSL Connection Failed

ORA-28868: Peer Certificate Chain Check Failed
Cause: When the peer presented the certificate chain, it was checked and that check
failed. This failure can be caused by a number of problems, including:

• One of the certificates in the chain has expired.

• A certificate authority for one of the certificates in the chain is not recognized as a
trust point.

• The signature in one of the certificates cannot be verified.

Action: See Oracle Database Enterprise User Security Administrator's Guide to use
Oracle Wallet Manager to open your wallet and check the following:

• Ensure that all of the certificates installed in your wallet are current (not expired).

• Ensure that a certificate authority's certificate from your peer's certificate chain is
added as a trusted certificate in your wallet. See Oracle Database Enterprise User
Security Administrator's Guide to use Oracle Wallet Manager to import a trusted
certificate.

ORA-28885: No certificate with the required key usage found.
Cause: Your certificate was not created with the appropriate X.509 version 3 key
usage extension.

Action: Use Oracle Wallet Manager to check the certificate's key usage. See Oracle
Database Enterprise User Security Administrator's Guide for information about key
usage values.

ORA-29024: Certificate Validation Failure
Cause: The certificate sent by the other side could not be validated. This may occur if
the certificate has expired, has been revoked, or is invalid for any other reason.

Action: Check the following:

• Check the certificate to determine whether it is valid. If necessary, get a new
certificate, inform the sender that her certificate has failed, or resend.

• Check to ensure that the server's wallet has the appropriate trust points to
validate the client's certificate. If it does not, then use Oracle Wallet Manager to
import the appropriate trust point into the wallet. See Oracle Database Enterprise
User Security Administrator's Guide for details about importing a trusted
certificate.

• Ensure that the certificate has not been revoked and that certificate revocation list
(CRL) checking is turned on. For details, refer to Configuring Certificate Validation
with Certificate Revocation Lists

ORA-29223: Cannot Create Certificate Chain
Cause: A certificate chain cannot be created with the existing trust points for the
certificate being installed. Typically, this error is returned when the peer does not give
the complete chain and you do not have the appropriate trust points to complete it.

Action: Use Oracle Wallet Manager to install the trust points that are required to
complete the chain. See Oracle Database Enterprise User Security Administrator's
Guide for details about importing a trusted certificate.

Chapter 21
Troubleshooting the Secure Sockets Layer Configuration

21-31

Certificate Validation with Certificate Revocation Lists
Oracle provides tools that enable you to validate certificates using certificate
revocation lists.

• About Certificate Validation with Certificate Revocation Lists
The process of determining whether a given certificate can be used in a given
context is referred to as certificate validation.

• What CRLs Should You Use?
You should have CRLs for all of the trust points that you honor.

• How CRL Checking Works
Oracle Database checks the certificate revocation status against CRLs.

• Configuring Certificate Validation with Certificate Revocation Lists
You can edit the sqlnet.ora file to configure certificate validation with certificate
revocation lists.

• Certificate Revocation List Management
Certificate revocation list management entails ensuring that the CRLs are the
correct format before you enable certificate revocation checking.

• Troubleshooting CRL Certificate Validation
To determine whether certificates are being validated against CRLs, you can
enable Oracle Net tracing.

• Oracle Net Tracing File Error Messages Associated with Certificate Validation
Oracle generates trace messages that are relevant to certificate validation.

About Certificate Validation with Certificate Revocation Lists
The process of determining whether a given certificate can be used in a given context
is referred to as certificate validation.

Certificate validation includes determining that the following takes place:

• A trusted certificate authority (CA) has digitally signed the certificate

• The certificate's digital signature corresponds to the independently-calculated
hash value of the certificate itself and the certificate signer's (CA's) public key

• The certificate has not expired

• The certificate has not been revoked

The SSL network layer automatically performs the first three validation checks, but you
must configure certificate revocation list (CRL) checking to ensure that certificates
have not been revoked. CRLs are signed data structures that contain a list of revoked
certificates. They are usually issued and signed by the same entity who issued the
original certificate. (See certificate revocation list (CRL).)

What CRLs Should You Use?
You should have CRLs for all of the trust points that you honor.

The trust points are the trusted certificates from a third party identity that is qualified
with a level of trust.

Chapter 21
Certificate Validation with Certificate Revocation Lists

21-32

Typically, the certificate authorities you trust are called trust points.

How CRL Checking Works
Oracle Database checks the certificate revocation status against CRLs.

These CRLs are located in file system directories, Oracle Internet Directory, or
downloaded from the location specified in the CRL Distribution Point (CRL DP)
extension on the certificate.

Typically, CRL definitions are valid for a few days. If you store your CRLs on the local
file system or in the directory, then you must update them regularly. If you use a CRL
Distribution Point (CRL DP), then CRLs are downloaded each time a certificate is
used, so there is no need to regularly refresh the CRLs.

The server searches for CRLs in the following locations in the order listed. When the
system finds a CRL that matches the certificate CA's DN, it stops searching.

1. Local file system

The system checks the sqlnet.ora file for the SSL_CRL_FILE parameter first,
followed by the SSL_CRL_PATH parameter. If these two parameters are not
specified, then the system checks the wallet location for any CRLs.

Note: if you store CRLs on your local file system, then you must use the orapki
utility to periodically update them. For more information, refer to Renaming CRLs
with a Hash Value for Certificate Validation.

2. Oracle Internet Directory

If the server cannot locate the CRL on the local file system and directory
connection information has been configured in an ldap.ora file, then the server
searches in the directory. It searches the CRL subtree by using the CA's
distinguished name (DN) and the DN of the CRL subtree.

The server must have a properly configured ldap.ora file to search for CRLs in
the directory. It cannot use the Domain Name System (DNS) discovery feature of
Oracle Internet Directory. Also note that if you store CRLs in the directory, then
you must use the orapki utility to periodically update them. For details, refer to
Uploading CRLs to Oracle Internet Directory

3. CRL DP

If the CA specifies a location in the CRL DP X.509, version 3, certificate extension
when the certificate is issued, then the appropriate CRL that contains revocation
information for that certificate is downloaded. Currently, Oracle Database supports
downloading CRLs over LDAP.

Note the following:

• For performance reasons, only user certificates are checked.

• Oracle recommends that you store CRLs in the directory rather than the local
file system.

Configuring Certificate Validation with Certificate Revocation Lists
You can edit the sqlnet.ora file to configure certificate validation with certificate
revocation lists.

Chapter 21
Certificate Validation with Certificate Revocation Lists

21-33

• About Configuring Certificate Validation with Certificate Revocation Lists
The SSL_CERT_REVOCATION parameter must be set to REQUIRED or REQUESTED in the
sqlnet.ora file to enable certificate revocation status checking.

• Enabling Certificate Revocation Status Checking for the Client or Server
You can enable certificate the revocation status checking for a client or a server.

• Disabling Certificate Revocation Status Checking
You can disable certificate revocation status checking.

About Configuring Certificate Validation with Certificate Revocation Lists
The SSL_CERT_REVOCATION parameter must be set to REQUIRED or REQUESTED in the
sqlnet.ora file to enable certificate revocation status checking.

The SSL_CERT_REVOCATION parameter must be set to REQUIRED or REQUESTED in the
sqlnet.ora file to enable certificate revocation status checking.

By default this parameter is set to NONE indicating that certificate revocation status
checking is turned off.

Note:

If you want to store CRLs on your local file system or in Oracle Internet
Directory, then you must use the command line utility, orapki, to rename
CRLs in your file system or upload them to the directory.

Related Topics

• Certificate Revocation List Management
Certificate revocation list management entails ensuring that the CRLs are the
correct format before you enable certificate revocation checking.

Enabling Certificate Revocation Status Checking for the Client or Server
You can enable certificate the revocation status checking for a client or a server.

1. Start Oracle Net Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command at the
command line:

netmgr

• (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration
and Migration Tools, then Net Manager.

2. Expand Oracle Net Configuration, and from Local, select Profile.

3. From the Naming list, select Network Security.

The Network Security tabbed window appears.

4. Select the SSL tab.

5. Select one of the following options from the Revocation Check list:

Chapter 21
Certificate Validation with Certificate Revocation Lists

21-34

• Required: Requires certificate revocation status checking. The SSL
connection is rejected if a certificate is revoked or no CRL is found. SSL
connections are accepted only if it can be verified that the certificate has not
been revoked.

• Requested: Performs certificate revocation status checking if a CRL is
available. The SSL connection is rejected if a certificate is revoked. SSL
connections are accepted if no CRL is found or if the certificate has not been
revoked.

For performance reasons, only user certificates are checked for revocation.

6. (Optional) If CRLs are stored on your local file system, then set one or both of the
following fields that specify where they are stored. These fields are available only
when Revocation Check is set to Required or REQUESTED.

• Certificate Revocation Lists Path: Enter the path to the directory where
CRLs are stored or click Browse to find it by searching the file system.
Specifying this path sets the SSL_CRL_PATH parameter in the sqlnet.ora file. If

Chapter 21
Certificate Validation with Certificate Revocation Lists

21-35

a path is not specified for this parameter, then the default is the wallet
directory. Both DER-encoded (binary format) and PEM-encoded (BASE64)
CRLs are supported.

• Certificate Revocation Lists File: Enter the path to a comprehensive CRL
file (where PEM-encoded (BASE64) CRLs are concatenated in order of
preference in one file) or click Browse to find it by searching the file system.
Specifying this file sets the SSL_CRL_FILE parameter in the sqlnet.ora file. If
this parameter is set, then the file must be present in the specified location, or
else the application will error out during startup.

If you want to store CRLs in a local file system directory by setting the
Certificate Revocation Lists Path, then you must use the orapki utility to
rename them so the system can locate them.

7. (Optional) If CRLs are fetched from Oracle Internet Directory, then directory server
and port information must be specified in an ldap.ora file.

When configuring your ldap.ora file, you should specify only a non-SSL port for
the directory. CRL download is done as part of the SSL protocol, and making an
SSL connection within an SSL connection is not supported.

Oracle Database CRL functionality will not work if the Oracle Internet Directory
non-SSL port is disabled.

8. Select File, Save Network Configuration. The sqlnet.ora file is updated.

Related Topics

• Renaming CRLs with a Hash Value for Certificate Validation
When the system validates a certificate, it must locate the CRL issued by the CA
who created the certificate.

Disabling Certificate Revocation Status Checking
You can disable certificate revocation status checking.

1. Start Oracle Net Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command at the
command line:

netmgr

• (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration
and Migration Tools, then Net Manager.

2. Expand Oracle Net Configuration, and from Local, select Profile.

3. From the Naming list, select Network Security.

The Network Security tabbed window appears.

4. Select the SSL tab.

5. Select NONE from the Revocation Check list.

6. From the File menu, select Save Network Configuration.

The sqlnet.ora file is updated with the following entry:

SSL_CERT_REVOCATION=NONE

Chapter 21
Certificate Validation with Certificate Revocation Lists

21-36

Related Topics

• Troubleshooting CRL Certificate Validation
To determine whether certificates are being validated against CRLs, you can
enable Oracle Net tracing.

Certificate Revocation List Management
Certificate revocation list management entails ensuring that the CRLs are the correct
format before you enable certificate revocation checking.

• About Certificate Revocation List Management
Oracle Database provides a command-line utility, orapki, that you can use to
manage certificates.

• Displaying orapki Help for Commands That Manage CRLs
You can display all the orapki commands that are available for managing CRLs.

• Renaming CRLs with a Hash Value for Certificate Validation
When the system validates a certificate, it must locate the CRL issued by the CA
who created the certificate.

• Uploading CRLs to Oracle Internet Directory
Publishing CRLs in the directory enables CRL validation throughout your
enterprise, eliminating the need for individual applications to configure their own
CRLs.

• Listing CRLs Stored in Oracle Internet Directory
You can display a list of all CRLs stored in the directory with orapki, which is
useful for browsing to locate a particular CRL to view or download to your local
computer.

• Viewing CRLs in Oracle Internet Directory
Oracle Internet Directory CRLS are available in a summarized format; you also
can request a listing of revoked certificates for a CRL.

• Deleting CRLs from Oracle Internet Directory
The user who deletes CRLs from the directory by using orapki must be a member
of the directory group CRLAdmins.

About Certificate Revocation List Management
Oracle Database provides a command-line utility, orapki, that you can use to manage
certificates.

Before you can enable certificate revocation status checking, you must ensure that the
CRLs you receive from the CAs you use are in a form (renamed with a hash value) or
in a location (uploaded to the directory) where your computer can use them.

You can also use LDAP command-line tools to manage CRLs in Oracle Internet
Directory.

Note:

CRLs must be updated at regular intervals (before they expire) for successful
validation. You can automate this task by using orapki commands in a script

Chapter 21
Certificate Validation with Certificate Revocation Lists

21-37

Displaying orapki Help for Commands That Manage CRLs
You can display all the orapki commands that are available for managing CRLs.

• To display all the orapki available CRL management commands and their
options, enter the following at the command line:

orapki crl help

Note:

Using the -summary, -complete, or -wallet command options is always
optional. A command will still run if these command options are not specified.

Renaming CRLs with a Hash Value for Certificate Validation
When the system validates a certificate, it must locate the CRL issued by the CA who
created the certificate.

The system locates the appropriate CRL by matching the issuer name in the certificate
with the issuer name in the CRL.

When you specify a CRL storage location for the Certificate Revocation Lists Path
field in Oracle Net Manager, which sets the SSL_CRL_PATH parameter in the
sqlnet.ora file, use the orapki utility to rename CRLs with a hash value that
represents the issuer's name. Creating the hash value enables the server to load the
CRLs.

On UNIX operating systems, orapki creates a symbolic link to the CRL. On Windows
operating systems, it creates a copy of the CRL file. In either case, the symbolic link or
the copy created by orapki are named with a hash value of the issuer's name. Then
when the system validates a certificate, the same hash function is used to calculate
the link (or copy) name so the appropriate CRL can be loaded.

• Depending on the operating system, enter one of the following commands to
rename CRLs stored in the file system:

– To rename CRLs stored in UNIX file systems:

orapki crl hash -crl crl_filename [-wallet wallet_location] -symlink
crl_directory [-summary]

– To rename CRLs stored in Windows file systems:

orapki crl hash -crl crl_filename [-wallet wallet_location] -copy
crl_directory [-summary]

In this specification, crl_filename is the name of the CRL file, wallet_location is the
location of a wallet that contains the certificate of the CA that issued the CRL, and
crl_directory is the directory where the CRL is located.

Using -wallet and -summary are optional. Specifying -wallet causes the tool to verify
the validity of the CRL against the CA's certificate prior to renaming the CRL.
Specifying the -summary option causes the tool to display the CRL issuer's name.

Chapter 21
Certificate Validation with Certificate Revocation Lists

21-38

Uploading CRLs to Oracle Internet Directory
Publishing CRLs in the directory enables CRL validation throughout your enterprise,
eliminating the need for individual applications to configure their own CRLs.

All applications can use the CRLs stored in the directory where they can be centrally
managed, greatly reducing the administrative overhead of CRL management and use.
The user who uploads CRLs to the directory by using orapki must be a member of the
directory group CRLAdmins (cn=CRLAdmins,cn=groups,%s_OracleContextDN%). This is
a privileged operation because these CRLs are accessible to the entire enterprise.
Contact your directory administrator to get added to this administrative directory group.

• To upload CRLs to the directory, enter the following at the command line:

orapki crl upload -crl crl_location -ldap hostname:ssl_port -user username [-
wallet wallet_location] [-summary]

In this specification, crl_location is the file name or URL where the CRL is
located, hostname and ssl_port (SSL port with no authentication) are for the
system on which your directory is installed, username is the directory user who has
permission to add CRLs to the CRL subtree, and wallet_location is the location
of a wallet that contains the certificate of the CA that issued the CRL.

Using -wallet and -summary are optional. Specifying -wallet causes the tool to verify
the validity of the CRL against the CA's certificate prior to uploading it to the directory.
Specifying the -summary option causes the tool to print the CRL issuer's name and the
LDAP entry where the CRL is stored in the directory.

The following example illustrates uploading a CRL with the orapki utility:

orapki crl upload -crl /home/user1/wallet/crldir/crl.txt -ldap host1.example.com:
3533 -user cn=orcladmin

Note:

• The orapki utility will prompt you for the directory password when you
perform this operation.

• Ensure that you specify the directory SSL port on which the Diffie-
Hellman-based SSL server is running. This is the SSL port that does not
perform authentication. Neither the server authentication nor the mutual
authentication SSL ports are supported by the orapki utility.

Listing CRLs Stored in Oracle Internet Directory
You can display a list of all CRLs stored in the directory with orapki, which is useful for
browsing to locate a particular CRL to view or download to your local computer.

This command displays the CA who issued the CRL (Issuer) and its location (DN) in
the CRL subtree of your directory.

• To list CRLs in Oracle Internet Directory, enter the following at the command line:

orapki crl list -ldap hostname:ssl_port

Chapter 21
Certificate Validation with Certificate Revocation Lists

21-39

where the hostname and ssl_port are for the system on which your directory is
installed. Note that this is the directory SSL port with no authentication as
described in the preceding section.

Viewing CRLs in Oracle Internet Directory
Oracle Internet Directory CRLS are available in a summarized format; you also can
request a listing of revoked certificates for a CRL.

You can view CRLs stored in Oracle Internet Directory in a summarized format or you
can request a complete listing of revoked certificates for a CRL.

A summary listing provides the CRL issuer's name and its validity period. A complete
listing provides a list of all revoked certificates contained in the CRL.

• To view a summary listing of a CRL in Oracle Internet Directory, enter the
following at the command line:

orapki crl display -crl crl_location [-wallet wallet_location] -summary

where crl_location is the location of the CRL in the directory. It is convenient to
paste the CRL location from the list that displays when you use the orapki crl
list command. See Listing CRLs Stored in Oracle Internet Directory.

To view a list of all revoked certificates contained in a specified CRL, which is stored in
Oracle Internet Directory, you can enter the following at the command line:

orapki crl display -crl crl_location [-wallet wallet_location] -complete

For example, the following orapki command:

orapki crl display -crl $T_WORK/pki/wlt_crl/nzcrl.txt -wallet $T_WORK/pki/wlt_crl -
complete

produces the following output, which lists the CRL issuer's DN, its publication date,
date of its next update, and the revoked certificates it contains:

issuer = CN=root,C=us, thisUpdate = Sun Nov 16 10:56:58 PST 2003, nextUpdate = Mon
Sep 30 11:56:58 PDT 2013, revokedCertificates = {(serialNo =
153328337133459399575438325845117876415, revocationDate - Sun Nov 16 10:56:58 PST
2003)}
CRL is valid

Using the -wallet option causes the orapki crl display command to validate the
CRL against the CA's certificate.

Depending on the size of your CRL, choosing the -complete option may take a long
time to display.

You can also use Oracle Directory Manager, a graphical user interface tool that is
provided with Oracle Internet Directory, to view CRLs in the directory. CRLs are stored
in the following directory location:

cn=CRLValidation,cn=Validation,cn=PKI,cn=Products,cn=OracleContext

Chapter 21
Certificate Validation with Certificate Revocation Lists

21-40

Deleting CRLs from Oracle Internet Directory
The user who deletes CRLs from the directory by using orapki must be a member of
the directory group CRLAdmins.

• To delete CRLs from the directory, enter the following at the command line:

orapki crl delete -issuer issuer_name -ldap host:ssl_port -user username [-
summary]

In this specification, issuer_name is the name of the CA who issued the CRL, the
hostname and ssl_port are for the system on which your directory is installed, and
username is the directory user who has permission to delete CRLs from the CRL
subtree. Ensure that this must be a directory SSL port with no authentication.

Using the -summary option causes the tool to print the CRL LDAP entry that was
deleted.

For example, the following orapki command:

orapki crl delete -issuer "CN=root,C=us" -ldap machine1:3500 -user cn=orcladmin -
summary

produces the following output, which lists the location of the deleted CRL in the
directory:

Deleted CRL at cn=root
cd45860c.rN,cn=CRLValidation,cn=Validation,cn=PKI,cn=Products,cn=OracleContext

See Also:

Uploading CRLs to Oracle Internet Directory for information about the
CRLAdmins directory administrative group and the SSL directory port

Troubleshooting CRL Certificate Validation
To determine whether certificates are being validated against CRLs, you can enable
Oracle Net tracing.

When a revoked certificate is validated by using CRLs, then you will see the following
entries in the Oracle Net tracing file without error messages logged between entry
and exit:

nzcrlVCS_VerifyCRLSignature: entry
nzcrlVCS_VerifyCRLSignature: exit

nzcrlVCD_VerifyCRLDate: entry
nzcrlVCD_VerifyCRLDate: exit

nzcrlCCS_CheckCertStatus: entry
nzcrlCCS_CheckCertStatus: Certificate is listed in CRL
nzcrlCCS_CheckCertStatus: exit

Chapter 21
Certificate Validation with Certificate Revocation Lists

21-41

Note:

Note that when certificate validation fails, the peer in the SSL handshake
sees an ORA-29024: Certificate Validation Failure. If this message
displays, refer to Oracle Net Tracing File Error Messages Associated with
Certificate Validation for information about how to resolve the error.

See Also:

Oracle Database Net Services Administrator's Guide for information about
setting tracing parameters to enable Oracle Net tracing

Oracle Net Tracing File Error Messages Associated with Certificate
Validation

Oracle generates trace messages that are relevant to certificate validation.

These trace messages may be logged between the entry and exit entries in the
Oracle Net tracing file. Oracle SSL looks for CRLs in multiple locations, so there may
be multiple errors in the trace.

You can check the following list of possible error messages for information about how
to resolve them.

CRL signature verification failed with RSA status
Cause: The CRL signature cannot be verified.

Action: Ensure that the downloaded CRL is issued by the peer's CA and that the CRL
was not corrupted when it was downloaded. Note that the orapki utility verifies the
CRL before renaming it with a hash value or before uploading it to the directory.
See Certificate Revocation List Management for information about using orapki for
CRL management.

CRL date verification failed with RSA status
Cause: The current time is later than the time listed in the next update field. You
should not see this error if CRL DP is used. The systems searches for the CRL in the
following order:

1. File system

2. Oracle Internet Directory

3. CRL DP

The first CRL found in this search may not be the latest.

Action: Update the CRL with the most recent copy.

Chapter 21
Certificate Validation with Certificate Revocation Lists

21-42

CRL could not be found
Cause: The CRL could not be found at the configured locations. This will return error
ORA-29024 if the configuration specifies that certificate validation is require.

Action: Ensure that the CRL locations specified in the configuration are correct by
performing the following steps:

1. Use Oracle Net Manager to check if the correct CRL location is configured. Refer
to Configuring Certificate Validation with Certificate Revocation Lists

2. If necessary, use the orapki utility to configure CRLs for system use as follows:

• For CRLs stored on your local file system, refer to Renaming CRLs with a
Hash Value for Certificate Validation

• CRLs stored in the directory, refer to Uploading CRLs to Oracle Internet
Directory

Oracle Internet Directory host name or port number not set
Cause: Oracle Internet Directory connection information is not set. Note that this is not
a fatal error. The search continues with CRL DP.

Action: If you want to store the CRLs in Oracle Internet Directory, then use Oracle Net
Configuration Assistant to create and configure an ldap.ora file for your Oracle home.

Fetch CRL from CRL DP: No CRLs found
Cause: The CRL could not be fetched by using the CRL Distribution Point (CRL DP).
This happens if the certificate does not have a location specified in its CRL DP
extension, or if the URL specified in the CRL DP extension is incorrect.

Action: Ensure that your certificate authority publishes the CRL to the URL that is
specified in the certificate's CRL DP extension.
Manually download the CRL. Then depending on whether you want to store it on your
local file system or in Oracle Internet Directory, perform the following steps:
If you want to store the CRL on your local file system:

1. Use Oracle Net Manager to specify the path to the CRL directory or file. Refer to
Configuring Certificate Validation with Certificate Revocation Lists

2. Use the orapki utility to configure the CRL for system use. Refer to Renaming
CRLs with a Hash Value for Certificate Validation

If you want to store the CRL in Oracle Internet Directory:

1. Use Oracle Net Configuration Assistant to create and configure an ldap.ora file
with directory connection information.

2. Use the orapki utility to upload the CRL to the directory. Refer to Uploading CRLs
to Oracle Internet Directory

Configuring Your System to Use Hardware Security
Modules

Oracle Database supports hardware security modules that use APIs that conform to
the RSA Security, Inc., PKCS #11 specification.

Typically, these hardware devices are used to securely store and manage private keys
in tokens or smart cards, or to accelerate cryptographic processing.

Chapter 21
Configuring Your System to Use Hardware Security Modules

21-43

• General Guidelines for Using Hardware Security Modules for SSL
Oracle provides a set of guidelines to follow if you are using a hardware security
module with Oracle Database.

• Configuring Your System to Use nCipher Hardware Security Modules
You can configure your system to use nCipher hardware security modules for
cryptographic processing.

• Configuring Your System to Use SafeNET Hardware Security Modules
You can configure your system to use SafeNET hardware security modules for
cryptographic processing.

• Troubleshooting Using Hardware Security Modules
Oracle provides troubleshooting advice for hardware security modules.

General Guidelines for Using Hardware Security Modules for SSL
Oracle provides a set of guidelines to follow if you are using a hardware security
module with Oracle Database.

1. Contact your hardware device vendor to obtain the necessary hardware, software,
and PKCS #11 libraries.

2. Install the hardware, software, and libraries where appropriate for the hardware
security module you are using.

3. Test your hardware security module installation to ensure that it is operating
correctly. Refer to your device documentation for instructions.

4. Create a wallet of the type PKCS11 by using Oracle Wallet Manager and specify the
absolute path to the PKCS #11 library (including the library name) if you wish to
store the private key in the token. Oracle PKCS11 wallets contain information that
points to the token for private key access.

You can use the wallet containing PKCS #11 information just as you would use any
Oracle wallet, except the private keys are stored on the hardware device and the
cryptographic operations are performed on the device as well.

See Also:

Oracle Database Enterprise User Security Administrator's Guide for
information about creating an Oracle wallet to store hardware security
module credentials

Configuring Your System to Use nCipher Hardware Security Modules
You can configure your system to use nCipher hardware security modules for
cryptographic processing.

• About Configuring Your System to Use nCipher Hardware Security Modules
Hardware security modules made by nCipher Corporation are certified to operate
with Oracle Database.

Chapter 21
Configuring Your System to Use Hardware Security Modules

21-44

• Oracle Components Required To Use an nCipher Hardware Security Module
To use an nCipher hardware security module, you must have a special set of
components.

• Directory Path Requirements for Installing an nCipher Hardware Security Module
The nCipher hardware security module uses the nCipher PKCS #11 library.

About Configuring Your System to Use nCipher Hardware Security Modules
Hardware security modules made by nCipher Corporation are certified to operate with
Oracle Database.

These modules provide a secure way to store keys and off-load cryptographic
processing. Primarily, these devices provide the following benefits:

• Off-load cryptographic processing that frees your server to respond to other
requests

• Secure private key storage on the device

• Allow key administration through the use of smart cards

Note:

You must contact your nCipher representative to obtain certified hardware
and software to use with Oracle Database.

Oracle Components Required To Use an nCipher Hardware Security Module
To use an nCipher hardware security module, you must have a special set of
components.

These components are as follows:

• nCipher Hardware Security Module

• Supporting nCipher PKCS #11 library

The following platform-specific PKCS#11 library is required:

– libcknfast.so library for UNIX 32-Bit

– libcknfast-64.so library for UNIX 64-Bit

– cknfast.dll library for Windows

Note:

You must contact your nCipher representative to have the hardware security
module or the secure accelerator installed, and to acquire the necessary
library.

These tasks must be performed before you can use an nCipher hardware
security module with Oracle Database.

Chapter 21
Configuring Your System to Use Hardware Security Modules

21-45

Directory Path Requirements for Installing an nCipher Hardware Security
Module

The nCipher hardware security module uses the nCipher PKCS #11 library.

To use the secure accelerator, you must provide the absolute path to the directory that
contains the nCipher PKCS #11 library (including the library name) when you create
the wallet by using Oracle Wallet Manager. This enables the library to be loaded at
runtime.

Typically, the nCipher card is installed at the following locations:

• /opt/nfast for UNIX

• C:\nfast for Windows

The nCipher PKCS #11 library is located at the following location for typical
installations:

• /opt/nfast/toolkits/pkcs11/libcknfast.so for UNIX 32-Bit

• /opt/nfast/toolkits/pkcs11/libcknfast-64.so for UNIX 64-Bit

• C:\nfast\toolkits\pkcs11\cknfast.dll for Windows

Note:

Use the 32-bit library version when using the 32-bit release of Oracle
Database and use the 64-bit library version when using the 64-bit release of
Oracle Database. For example, use the 64-bit nCipher PKCS #11 library for
the Oracle Database for Solaris Operating System (SPARC 64-bit).

Configuring Your System to Use SafeNET Hardware Security Modules
You can configure your system to use SafeNET hardware security modules for
cryptographic processing.

• About Configuring Your System to Use SafeNET Hardware Security Modules
Hardware security modules made by SafeNET Incorporated are certified to
operate with Oracle Database.

• Oracle Components Required for SafeNET Luna SA Hardware Security Modules
To use a SafeNET Luna SA hardware security module, you must have a special
set of components.

• Directory Path Requirements for Installing a SafeNET Hardware Security Module
The SafeNET hardware security module uses the SafeNET PKCS #11 library.

About Configuring Your System to Use SafeNET Hardware Security Modules
Hardware security modules made by SafeNET Incorporated are certified to operate
with Oracle Database.

These modules provide a secure way to store keys and off-load cryptographic
processing. Primarily, these devices provide the following benefits:

Chapter 21
Configuring Your System to Use Hardware Security Modules

21-46

• Off-load of cryptographic processing to free your server to respond to more
requests

• Secure private key storage on the device

Note:

You must contact your SafeNET representative to obtain certified hardware
and software to use with Oracle Database.

Oracle Components Required for SafeNET Luna SA Hardware Security
Modules

To use a SafeNET Luna SA hardware security module, you must have a special set of
components.

These components are as follows:

• SafeNET Luna SA Hardware Security Module

• Supporting SafeNET Luna SA PKCS #11 library

The following platform-specific PKCS#11 library is required:

– libCryptoki2.so library for UNIX

– cryptoki.dll library for Windows

Note:

You must contact your SafeNET representative to have the hardware
security module or the secure accelerator installed, and to acquire the
necessary library.

These tasks must be performed before you can use a SafeNET hardware
security module with Oracle Database.

Directory Path Requirements for Installing a SafeNET Hardware Security
Module

The SafeNET hardware security module uses the SafeNET PKCS #11 library.

To use the secure accelerator, you must provide the absolute path to the directory that
contains the SafeNET PKCS #11 library (including the library name) when you create
the wallet using Oracle Wallet Manager. This enables the library to be loaded at
runtime.

Typically, the SafeNET Luna SA client is installed at the following location:

• /usr/lunasa for UNIX

• C:\Program Files\LunaSA for Windows

Chapter 21
Configuring Your System to Use Hardware Security Modules

21-47

The SafeNET Luna SA PKCS #11 library is located at the following location for typical
installations:

• /usr/lunasa/lib/libCryptoki2.so for UNIX

• C:\Program Files\LunaSA\cryptoki2.dll for Windows

Troubleshooting Using Hardware Security Modules
Oracle provides troubleshooting advice for hardware security modules.

• Errors in the Oracle Net Trace Files
To detect whether the module is being used, you can turn on Oracle Net tracing.

• Error Messages Associated with Using Hardware Security Modules
Errors that are associated with using PKCS #11 hardware security modules can
appear.

Errors in the Oracle Net Trace Files
To detect whether the module is being used, you can turn on Oracle Net tracing.

If the wallet contains PKCS #11 information and the private key on the module is being
used, then you will see the following entries in the Oracle Net tracing file without error
messages logged between entry and exit:

nzpkcs11_Init: entry
nzpkcs11CP_ChangeProviders: entry
nzpkcs11CP_ChangeProviders: exit
nzpkcs11GPK_GetPrivateKey: entry
nzpkcs11GPK_GetPrivateKey: exit
nzpkcs11_Init: exit
...
nzpkcs11_Decrypt: entry
nzpkcs11_Decrypt: exit

nzpkcs11_Sign: entry
nzpkcs11_Sign: exit

See Also:

Oracle Database Net Services Administrator's Guide for information about
setting tracing parameters to enable Oracle Net tracing

Error Messages Associated with Using Hardware Security Modules
Errors that are associated with using PKCS #11 hardware security modules can
appear.

ORA-43000: PKCS11: library not found
Cause: The system cannot locate the PKCS #11 library at the location specified when
the wallet was created. This happens only when the library is moved after the wallet is
created.

Chapter 21
Configuring Your System to Use Hardware Security Modules

21-48

Action: Copy the PKCS #11 library back to its original location where it was when the
wallet was created.

ORA-43001: PKCS11: token not found
Cause: The smart card that was used to create the wallet is not present in the
hardware security module slot.

Action: Ensure that the smart card that was used when the wallet was created is
present in the hardware security module slot.

ORA-43002: PKCS11: passphrase is wrong
Cause: This can occur when an incorrect password is specified at wallet creation, or
the PKCS #11 device password is changed after the wallet is created and not updated
in the wallet by using Oracle Wallet Manager.

Action: Depending on the cause, take one of the following actions:
If you see this error during wallet creation, then check to ensure that you have the
correct password and reenter it.
If the password changed after wallet creation, then use Oracle Wallet Manager to
open the wallet and enter a new password.

See Also:

Oracle Database Enterprise User Security Administrator's Guide about
creating an Oracle wallet to store hardware security credentials

Note:

The nCipher log file is in the directory where the module is installed at the
following location:

/log/logfile

See Also:

nCipher and SafeNET documentation for more information about
troubleshooting nCipher and SafeNET devices

Chapter 21
Configuring Your System to Use Hardware Security Modules

21-49

22
Configuring RADIUS Authentication

RADIUS is a client/server security protocol widely used to enable remote
authentication and access.

• About Configuring RADIUS Authentication
An Oracle Database network can use any authentication method that supports the
RADIUS standard.

• RADIUS Components
RADIUS has a set of authentication components that enable you to manage
configuration settings.

• RADIUS Authentication Modes
User authentication can take place either through synchronous authentication
mode or challenge-response (asynchronous) authentication mode.

• Enabling RADIUS Authentication, Authorization, and Accounting
To enable RADIUS authentication, authorization, and accounting, you can use
Oracle Net Manager.

• Using RADIUS to Log in to a Database
You can use RADIUS to log into a database by using either synchronous
authentication mode or challenge-response mode.

• RSA ACE/Server Configuration Checklist
If you are using an RSA ACE/Server RADIUS server, check the host agent and
SecurID tokens for this server before making the initial connection.

About Configuring RADIUS Authentication
An Oracle Database network can use any authentication method that supports the
RADIUS standard.

The supported RADIUS standard includes token cards and smart cards when you
install and configure the RADIUS protocol. Oracle Database uses RADIUS in a client/
server network environment. Moreover, when you use RADIUS, you can change the
authentication method without modifying either the Oracle client or the Oracle
database server.

From an end user's perspective, the entire authentication process is transparent.
When the user seeks access to an Oracle database server, the Oracle database
server, acting as the RADIUS client, notifies the RADIUS server. The RADIUS server
then:

• Looks up the user's security information

• Passes authentication and authorization information between the appropriate
authentication server or servers and the Oracle database server

• Grants the user access to the Oracle database server

• Logs session information, including when, how often, and for how long the user
was connected to the Oracle database server

22-1

Note:

Oracle Database does not support RADIUS authentication over
database links.

Figure 22-1 illustrates the Oracle Database-RADIUS environment.

Figure 22-1 RADIUS in an Oracle Environment

Oracle Client

Radius Client

Oracle Server

Radius Server

or

RSA ACE / Server

The Oracle Database server acts as the RADIUS client, passing information between
the Oracle client and the RADIUS server. Similarly, the RADIUS server passes
information between the Oracle database server and the appropriate authentication
servers.

A RADIUS server vendor is often the authentication server vendor as well. In this case
authentication can be processed on the RADIUS server. For example, the RSA ACE/
Server is both a RADIUS server and an authentication server. It thus authenticates the
user's pass code.

Note:

SecurID, an authentication product of RSA Security, Inc., though not directly
supported by Oracle Database, has been certified as RADIUS-compliant.
You can therefore, run SecurID under RADIUS.

Refer to the RSA Security SecurID documentation for further information.

See Also:

Oracle Database Net Services Reference for information about the
sqlnet.ora file

Chapter 22
About Configuring RADIUS Authentication

22-2

RADIUS Components
RADIUS has a set of authentication components that enable you to manage
configuration settings.

Table 22-1 lists the authentication components.

Table 22-1 RADIUS Authentication Components

Component Stored Information

Oracle client Configuration setting for communicating through RADIUS.

Oracle database server/
RADIUS client

Configuration settings for passing information between the Oracle
client and the RADIUS server.

The secret key file.

RADIUS server Authentication and authorization information for all users.

Each client's name or IP address.

Each client's shared secret.

Unlimited number of menu files enabling users already
authenticated to select different login options without reconnecting.

Authentication server or
servers

User authentication information such as pass codes and PINs,
depending on the authentication method in use.

Note: The RADIUS server can also be the authentication server.

RADIUS Authentication Modes
User authentication can take place either through synchronous authentication mode or
challenge-response (asynchronous) authentication mode.

• Synchronous Authentication Mode
In the synchronous mode, RADIUS lets you use various authentication methods,
including passwords and SecurID token cards.

• Challenge-Response (Asynchronous) Authentication Mode
When the system uses the asynchronous mode, the user does not need to enter a
user name and password at the SQL*Plus CONNECT string.

Synchronous Authentication Mode
In the synchronous mode, RADIUS lets you use various authentication methods,
including passwords and SecurID token cards.

• Sequence for Synchronous Authentication Mode
The sequence of synchronous authentication mode is comprised of six steps.

• Example: Synchronous Authentication with SecurID Token Cards
With SecurID authentication, each user has a token card that displays a dynamic
number that changes every sixty seconds.

Sequence for Synchronous Authentication Mode
The sequence of synchronous authentication mode is comprised of six steps.

Chapter 22
RADIUS Components

22-3

Figure 22-2 shows the sequence in which synchronous authentication occurs.

Figure 22-2 Synchronous Authentication Sequence

Oracle

server/

RADIUS

client

Client RADIUS

Server

1

Authentication

Server

2

. . .

3

5

4

6

The following steps describe the synchronous authentication sequence:

1. A user logs in by entering a connect string, pass code, or other value. The client
system passes this data to the Oracle database server.

2. The Oracle database server, acting as the RADIUS client, passes the data from
the Oracle client to the RADIUS server.

3. The RADIUS server passes the data to the appropriate authentication server, such
as Smart Card or SecurID ACE for validation.

4. The authentication server sends either an Access Accept or an Access Reject
message back to the RADIUS server.

5. The RADIUS server passes this response to the Oracle database server/RADIUS
client.

6. The Oracle database server/RADIUS client passes the response back to the
Oracle client.

Example: Synchronous Authentication with SecurID Token Cards
With SecurID authentication, each user has a token card that displays a dynamic
number that changes every sixty seconds.

To gain access to the Oracle database server/RADIUS client, the user enters a valid
pass code that includes both a personal identification number (PIN) and the dynamic
number currently displayed on the user's SecurID card. The Oracle database server

Chapter 22
RADIUS Authentication Modes

22-4

passes this authentication information from the Oracle client to the RADIUS server,
which in this case is the authentication server for validation. Once the authentication
server (RSA ACE/Server) validates the user, it sends an accept packet to the Oracle
database server, which, in turn, passes it to the Oracle client. The user is now
authenticated and able to access the appropriate tables and applications.

See Also:

Documentation provided by RSA Security, Inc.

Challenge-Response (Asynchronous) Authentication Mode
When the system uses the asynchronous mode, the user does not need to enter a
user name and password at the SQL*Plus CONNECT string.

• Sequence for Challenge-Response (Asynchronous) Authentication Mode
The sequence for challenge-response (asynchronous) authentication mode is
comprised of 12 steps.

• Example: Asynchronous Authentication with Smart Cards
With smart card authentication, the user logs in by inserting the smart card into a
smart card reader that reads the smart card.

• Example: Asynchronous Authentication with ActivCard Tokens
One particular ActivCard token is a hand-held device with a keypad and which
displays a dynamic password.

Sequence for Challenge-Response (Asynchronous) Authentication Mode
The sequence for challenge-response (asynchronous) authentication mode is
comprised of 12 steps.

Figure 22-3 shows the sequence in which challenge-response (asynchronous)
authentication occurs.

Note:

If the RADIUS server is the authentication server, Steps 3, 4, and 5, and
Steps 9, 10, and 11 in Figure 22-3 are combined.

Chapter 22
RADIUS Authentication Modes

22-5

Figure 22-3 Asynchronous Authentication Sequence

Oracle

server/

RADIUS

client

Client RADIUS

Server

1

7

Authentication

Server

2

. . . 12

3

8

5

4

6

9

10

11

The following steps describe the asynchronous authentication sequence:

1. A user initiates a connection to an Oracle database server. The client system
passes the data to the Oracle database server.

2. The Oracle database server, acting as the RADIUS client, passes the data from
the Oracle client to the RADIUS server.

3. The RADIUS server passes the data to the appropriate authentication server, such
as a Smart Card, SecurID ACE, or token card server.

4. The authentication server sends a challenge, such as a random number, to the
RADIUS server.

5. The RADIUS server passes the challenge to the Oracle database server/RADIUS
client.

Chapter 22
RADIUS Authentication Modes

22-6

6. The Oracle database server/RADIUS client, in turn, passes it to the Oracle client.
A graphical user interface presents the challenge to the user.

7. The user provides a response to the challenge. To formulate a response, the user
can, for example, enter the received challenge into the token card. The token card
provides a dynamic password that is entered into the graphical user interface. The
Oracle client passes the user's response to the Oracle database server/RADIUS
client.

8. The Oracle database server/RADIUS client sends the user's response to the
RADIUS server.

9. The RADIUS server passes the user's response to the appropriate authentication
server for validation.

10. The authentication server sends either an Access Accept or an Access Reject
message back to the RADIUS server.

11. The RADIUS server passes the response to the Oracle database server/RADIUS
client.

12. The Oracle database server/RADIUS client passes the response to the Oracle
client.

Example: Asynchronous Authentication with Smart Cards
With smart card authentication, the user logs in by inserting the smart card into a
smart card reader that reads the smart card.

The smart card is a plastic card, like a credit card, with an embedded integrated circuit
for storing information.

The Oracle client sends the login information contained in the smart card to the
authentication server by way of the Oracle database server/RADIUS client and the
RADIUS server. The authentication server sends back a challenge to the Oracle client,
by way of the RADIUS server and the Oracle database server, prompting the user for
authentication information. The information could be, for example, a PIN as well as
additional authentication information contained on the smart card.

The Oracle client sends the user's response to the authentication server by way of the
Oracle database server and the RADIUS server. If the user has entered a valid
number, the authentication server sends an accept packet back to the Oracle client by
way of the RADIUS server and the Oracle database server. The user is now
authenticated and authorized to access the appropriate tables and applications. If the
user has entered incorrect information, the authentication server sends back a
message rejecting user's access.

Example: Asynchronous Authentication with ActivCard Tokens
One particular ActivCard token is a hand-held device with a keypad and which
displays a dynamic password.

When the user seeks access to an Oracle database server by entering a password,
the information is passed to the appropriate authentication server by way of the Oracle
database server/RADIUS client and the RADIUS server. The authentication server
sends back a challenge to the client, by way of the RADIUS server and the Oracle
database server. The user types that challenge into the token, and the token displays
a number for the user to send in response.

Chapter 22
RADIUS Authentication Modes

22-7

The Oracle client then sends the user's response to the authentication server by way
of the Oracle database server and the RADIUS server. If the user has typed a valid
number, the authentication server sends an accept packet back to the Oracle client by
way of the RADIUS server and the Oracle database server. The user is now
authenticated and authorized to access the appropriate tables and applications. If the
user has entered an incorrect response, the authentication server sends back a
message rejecting the user's access.

Enabling RADIUS Authentication, Authorization, and
Accounting

To enable RADIUS authentication, authorization, and accounting, you can use Oracle
Net Manager.

• Step 1: Configure RADIUS Authentication
To configure RADIUS authentication, you must first configure it on the Oracle
client, then the server. Afterward, you can configure additional RADIUS features.

• Step 2: Create a User and Grant Access
After you complete the RADIUS authentication, you must create an Oracle
Database user who for the RADIUS configuration.

• Step 3: Configure External RADIUS Authorization (Optional)
You must configure the Oracle server, the Oracle client, and the RADIUS server to
RADIUS users who must connect to an Oracle database.

• Step 4: Configure RADIUS Accounting
RADIUS accounting logs information about access to the Oracle database server
and stores it in a file on the RADIUS accounting server.

• Step 5: Add the RADIUS Client Name to the RADIUS Server Database
The RADIUS server that you select must comply with RADIUS standards.

• Step 6: Configure the Authentication Server for Use with RADIUS
After you add the RADIUS client name to the RADIUS server database, you can
configure the authentication server to use the RADIUS.

• Step 7: Configure the RADIUS Server for Use with the Authentication Server
After you configure the authentication server for use with RADIUS, you can
configure the RADIUS server to use the authentication server.

• Step 8: Configure Mapping Roles
If the RADIUS server supports vendor type attributes, then you can manage roles
by storing them in the RADIUS server.

Step 1: Configure RADIUS Authentication
To configure RADIUS authentication, you must first configure it on the Oracle client,
then the server. Afterward, you can configure additional RADIUS features.

Chapter 22
Enabling RADIUS Authentication, Authorization, and Accounting

22-8

Note:

Unless otherwise indicated, perform these configuration tasks by using
Oracle Net Manager or by using any text editor to modify the sqlnet.ora file.
Be aware that in a multitenant environment, the settings in the sqlnet.ora
file apply to all pluggable databases (PDBs).

• Step 1A: Configure RADIUS on the Oracle Client
You can use Oracle Net Manager to configure RADIUS on the Oracle client.

• Step 1B: Configure RADIUS on the Oracle Database Server
You must create a file to hold the RADIUS key and store this file on the Oracle
database server. Then you must configure the appropriate parameters in the
sqlnet.ora file.

• Step 1C: Configure Additional RADIUS Features
You can change the default settings, configure the challenge-response mode, and
set parameters for an alternate RADIUS server.

Step 1A: Configure RADIUS on the Oracle Client
You can use Oracle Net Manager to configure RADIUS on the Oracle client.

1. Start Oracle Net Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command at the
command line:

netmgr

• (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration
and Migration Tools, then Net Manager.

2. Expand Oracle Net Configuration, and from Local, select Profile.

3. From the Naming list, select Network Security.

The Network Security tabbed window appears.

4. Select the Authentication tab. (It should be selected by default.)

Chapter 22
Enabling RADIUS Authentication, Authorization, and Accounting

22-9

5. From the Available Methods list, select RADIUS.

6. Select the right-arrow (>) to move RADIUS to the Selected Methods list.

Move any other methods you want to use in the same way.

7. Arrange the selected methods in order of required usage by selecting a method in
the Selected Methods list, and clicking Promote or Demote to position it in the list.

For example, put RADIUS at the top of the list for it to be the first service used.

8. From the File menu, select Save Network Configuration.

The sqlnet.ora file is updated with the following entry:

SQLNET.AUTHENTICATION_SERVICES=(RADIUS)

Step 1B: Configure RADIUS on the Oracle Database Server
You must create a file to hold the RADIUS key and store this file on the Oracle
database server. Then you must configure the appropriate parameters in the
sqlnet.ora file.

• Step 1B (1): Create the RADIUS Secret Key File on the Oracle Database Server
First, you must create the RADIUS secret key file.

Chapter 22
Enabling RADIUS Authentication, Authorization, and Accounting

22-10

• Step 1B (2): Configure RADIUS Parameters on the Server (sqlnet.ora file)
After you create RADIUS secret key file, you are ready to configure the
appropriate parameters in the sqlnet.ora file.

• Step 1B (3): Set Oracle Database Server Initialization Parameters
After you configure the sqlnet.ora file, you must configure the init.ora
initialization file.

Step 1B (1): Create the RADIUS Secret Key File on the Oracle Database Server
First, you must create the RADIUS secret key file.

1. Obtain the RADIUS secret key from the RADIUS server.

For each RADIUS client, the administrator of the RADIUS server creates a shared
secret key, which must be less than or equal to 16 characters.

2. On the Oracle database server, create a directory:

• (UNIX) $ORACLE_HOME/network/security

• (Windows) ORACLE_BASE\ORACLE_HOME\network\security

3. Create the file radius.key to hold the shared secret copied from the RADIUS
server. Place the file in the directory you created in Step 2.

4. Copy the shared secret key and paste it (and nothing else) into the radius.key file
created on the Oracle database server.

5. For security purposes, change the file permission of radius.key to read only,
accessible only by the Oracle owner.

Oracle relies on the file system to keep this file secret.

See Also:

The RADIUS server administration documentation, for information about
obtaining the secret key

Step 1B (2): Configure RADIUS Parameters on the Server (sqlnet.ora file)
After you create RADIUS secret key file, you are ready to configure the appropriate
parameters in the sqlnet.ora file.

1. Start Oracle Net Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command at the
command line:

netmgr

• (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration
and Migration Tools, then Net Manager.

2. Expand Oracle Net Configuration, and from Local, select Profile.

3. From the Naming list, select Network Security.

The Network Security tabbed window appears.

4. Select the Authentication tab.

Chapter 22
Enabling RADIUS Authentication, Authorization, and Accounting

22-11

5. From the Available Methods list, select RADIUS.

6. Move RADIUS to the Selected Methods list by choosing the right-arrow (>).

7. To arrange the selected methods in order of desired use, select a method in the
Selected Methods list, and select Promote or Demote to position it in the list.

For example, if you want RADIUS to be the first service used, then put it at the top
of the list.

8. Select the Other Params tab.

9. From the Authentication Service list, select RADIUS.

10. In the Host Name field, accept the localhost as the default primary RADIUS
server, or enter another host name.

11. Ensure that the default value of the Secret File field is valid.

12. From the File menu, select Save Network Configuration.

The sqlnet.ora file is updated with the following entries:

Chapter 22
Enabling RADIUS Authentication, Authorization, and Accounting

22-12

SQLNET.AUTHENTICATION_SERVICES=RADIUS
SQLNET.RADIUS_AUTHENTICATION=RADIUS_server_{hostname|IP_address}

Note:

The IP_address can either be an Internet Protocol Version 4 (IPv4) or
Internet Protocol Version 6 (IPv6) address. The RADIUS adapter
supports both IPv4 and IPv6 based servers.

Step 1B (3): Set Oracle Database Server Initialization Parameters
After you configure the sqlnet.ora file, you must configure the init.ora initialization
file.

1. Add the following setting to the init.ora file.

OS_AUTHENT_PREFIX=""

By default, the init.ora file is located in the ORACLE_HOME/dbs directory (or the
same location of the data files) on Linux and UNIX systems, and in the
ORACLE_HOME\database directory on Windows.

2. Restart the database.

For example:

SQL> SHUTDOWN
SQL> STARTUP

See Also:

Oracle Database Reference for information about setting initialization
parameters

Step 1C: Configure Additional RADIUS Features
You can change the default settings, configure the challenge-response mode, and set
parameters for an alternate RADIUS server.

• Step 1C(1): Change Default Settings
You can use Oracle Net Manager to change the default RADIUS settings.

• Step 1C(2): Configure Challenge-Response Mode
To configure challenge-response mode, you must specify information such as a
dynamic password that you obtain from a token card.

• Step 1C(3): Set Parameters for an Alternate RADIUS Server
If you are using an alternate RADIUS server, then you must set additional
parameters.

Step 1C(1): Change Default Settings
You can use Oracle Net Manager to change the default RADIUS settings.

Chapter 22
Enabling RADIUS Authentication, Authorization, and Accounting

22-13

1. Start Oracle Net Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command at the
command line:

netmgr

• (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration
and Migration Tools, then Net Manager.

2. Expand Oracle Net Configuration, and from Local, select Profile.

3. From the Naming list, select Network Security.

The Network Security tabbed window appears.

4. Click the Other Params tab.

5. From the Authentication Service list, select RADIUS.

6. Change the default setting for any of the following fields:

• Port Number: Specifies the listening port of the primary RADIUS server. The
default value is 1645.

• Timeout (seconds): Specifies the time the Oracle database server waits for a
response from the primary RADIUS server. The default is 15 seconds.

• Number of Retries: Specifies the number of times the Oracle database server
resends messages to the primary RADIUS server. The default is three retries.
For instructions on configuring RADIUS accounting, see Step 4: Configure
RADIUS Accounting.

• Secret File: Specifies the location of the secret key on the Oracle database
server. The field specifies the location of the secret key file, not the secret key
itself. For information about specifying the secret key, see Step 1B (1): Create
the RADIUS Secret Key File on the Oracle Database Server.

7. From the File menu, select Save Network Configuration.

The sqlnet.ora file is updated with the following entries:

SQLNET.RADIUS_AUTHENTICATION_PORT=(PORT)
SQLNET.RADIUS_AUTHENTICATION_TIMEOUT=(NUMBER OF SECONDS TO WAIT FOR response)
SQLNET.RADIUS_AUTHENTICATION_RETRIES=(NUMBER OF TIMES TO RE-SEND TO RADIUS
server)
SQLNET.RADIUS_SECRET=(path/radius.key)

Step 1C(2): Configure Challenge-Response Mode
To configure challenge-response mode, you must specify information such as a
dynamic password that you obtain from a token card.

With the RADIUS adapter, this interface is Java-based to provide optimal platform
independence.

Chapter 22
Enabling RADIUS Authentication, Authorization, and Accounting

22-14

Note:

Third party vendors of authentication devices must customize this graphical
user interface to fit their particular device. For example, a smart card vendor
would customize the Java interface so that the Oracle client reads data, such
as a dynamic password, from the smart card. When the smart card receives
a challenge, it responds by prompting the user for more information, such as
a PIN.

To configure challenge-response mode:

1. If you are using JDK 1.1.7 or JRE 1.1.7, then set the JAVA_HOME environment
variable to the JRE or JDK location on the system where the Oracle client is run:

• On UNIX, enter this command at the prompt:

% setenv JAVA_HOME /usr/local/packages/jre1.1.7B

• On Windows, select Start, Settings, Control Panel, System, Environment,
and set the JAVA_HOME variable as follows:

c:\java\jre1.1.7B

This step is not required for any other JDK/JRE version.

2. Start Oracle Net Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command at the
command line:

netmgr

• (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration
and Migration Tools, then Net Manager.

3. Expand Oracle Net Configuration, and from Local, select Profile.

4. From the Naming list, select Network Security.

The Network Security tabbed window appears.

5. From the Authentication Service list, select RADIUS.

6. In the Challenge Response field, enter ON to enable challenge-response.

7. In the Default Keyword field, accept the default value of the challenge or enter a
keyword for requesting a challenge from the RADIUS server.

The keyword feature is provided by Oracle and supported by some, but not all,
RADIUS servers. You can use this feature only if your RADIUS server supports it.

By setting a keyword, you let the user avoid using a password to verify identity. If
the user does not enter a password, the keyword you set here is passed to the
RADIUS server which responds with a challenge requesting, for example, a
driver's license number or birth date. If the user does enter a password, the
RADIUS server may or may not respond with a challenge, depending upon the
configuration of the RADIUS server.

8. In the Interface Class Name field, accept the default value of
DefaultRadiusInterface or enter the name of the class you have created to
handle the challenge-response conversation.

Chapter 22
Enabling RADIUS Authentication, Authorization, and Accounting

22-15

If other than the default RADIUS interface is used, then you also must edit the
sqlnet.ora file to enter SQLNET.RADIUS_CLASSPATH=(location), where location
is the complete path name of the jar file. It defaults to $ORACLE_HOME/network/
jlib/netradius.jar: $ORACLE_HOME/JRE/lib/vt.jar

9. From the File menu, select Save Network Configuration.

The sqlnet.ora file is updated with the following entries:

SQLNET.RADIUS_CHALLENGE_RESPONSE=([ON | OFF])
SQLNET.RADIUS_CHALLENGE_KEYWORD=(KEYWORD)
SQLNET.RADIUS_AUTHENTICATION_INTERFACE=(name of interface including the package
name delimited by "/" for ".")

See Also:

Integrating Authentication Devices Using RADIUS for information about how
to customize the challenge-response user interface

Step 1C(3): Set Parameters for an Alternate RADIUS Server
If you are using an alternate RADIUS server, then you must set additional parameters.

• Set the following parameters in the sqlnet.ora file:

SQLNET.RADIUS_ALTERNATE=(hostname or ip address of alternate radius server)
SQLNET.RADIUS_ALTERNATE_PORT=(1812)
SQLNET.RADIUS_ALTERNATE_TIMEOUT=(number of seconds to wait for response)
SQLNET.RADIUS_ALTERNATE_RETRIES=(number of times to re-send to radius server)

Step 2: Create a User and Grant Access
After you complete the RADIUS authentication, you must create an Oracle Database
user who for the RADIUS configuration.

1. Start SQL*Plus and then execute these statements to create and grant access to a
user identified externally on the Oracle database server.

CONNECT system@database_name;
Enter password: password
CREATE USER username IDENTIFIED EXTERNALLY;
GRANT CREATE SESSION TO USER username;
EXIT

If you are using Windows, you can use the Security Manager tool in Oracle
Enterprise Manager.

2. Enter the same username in the RADIUS server's users file.

See Also:

Administration documentation for the RADIUS server

Chapter 22
Enabling RADIUS Authentication, Authorization, and Accounting

22-16

Step 3: Configure External RADIUS Authorization (Optional)
You must configure the Oracle server, the Oracle client, and the RADIUS server to
RADIUS users who must connect to an Oracle database.

• Step 3A: Configure the Oracle Server (RADIUS Client)
You can edit the init.ora file to configure an Oracle server for a RADIUS client.

• Step 3B: Configure the Oracle Client Where Users Log In
Next, you must configure the Oracle client where users log in.

• Step 3C: Configure the RADIUS Server
To configure the RADIUS server, you must modify the RADIUS server attribute
configuration file.

Step 3A: Configure the Oracle Server (RADIUS Client)
You can edit the init.ora file to configure an Oracle server for a RADIUS client.

To do so, you must modify the init.ora file, restart the database, and the set the
RADIUS challenge-response mode.

1. Add the OS_ROLES parameter to the init.ora file and set this parameter to TRUE as
follows:

OS_ROLES=TRUE

By default, the init.ora file is located in the ORACLE_HOME/dbs directory (or the
same location of the data files) on Linux and UNIX systems, and in the
ORACLE_HOME\database directory on Windows.

2. Restart the database so that the system can read the change to the init.ora file.

For example:

SQL> SHUTDOWN
SQL> STARTUP

3. Set the RADIUS challenge-response mode to ON for the server if you have not
already done so by following the steps listed in Step 1C(2): Configure Challenge-
Response Mode.

4. Add externally identified users and roles.

Step 3B: Configure the Oracle Client Where Users Log In
Next, you must configure the Oracle client where users log in.

• Set the RADIUS challenge-response mode to ON for the client if you have not
already done so by following the steps listed in Step 1C(2): Configure Challenge-
Response Mode.

Step 3C: Configure the RADIUS Server
To configure the RADIUS server, you must modify the RADIUS server attribute
configuration file.

1. Add the following attributes to the RADIUS server attribute configuration file:

Chapter 22
Enabling RADIUS Authentication, Authorization, and Accounting

22-17

ATTRIBUTE NAME CODE TYPE

VENDOR_SPECIFIC 26 Integer

ORACLE_ROLE 1 String

2. Assign a Vendor ID for Oracle in the RADIUS server attribute configuration file that
includes the SMI Network Management Private Enterprise Code of 111.

For example, enter the following in the RADIUS server attribute configuration file:

VALUE VENDOR_SPECIFIC ORACLE 111

3. Using the following syntax, add the ORACLE_ROLE attribute to the user profile of the
users who will use external RADIUS authorization:

ORA_databaseSID_rolename[_[A]|[D]]

In this specification.:

• ORA designates that this role is used for Oracle purposes

• databaseSID is the Oracle system identifier that is configured in the database
init.ora file.

By default, the init.ora file is located in the ORACLE_HOME/dbs directory (or
the same location of the data files) on Linux and UNIX systems, and in the
ORACLE_HOME\database directory on Windows.

• rolename is the name of role as it is defined in the data dictionary.

• A is an optional character that indicates the user has administrator's privileges
for this role.

• D is an optional character that indicates this role is to be enabled by default.

Ensure that RADIUS groups that map to Oracle roles adhere to the ORACLE_ROLE
syntax.

For example:

USERNAME USERPASSWD="user_password",
 SERVICE_TYPE=login_user,
 VENDOR_SPECIFIC=ORACLE,
 ORACLE_ROLE=ORA_ora920_sysdba

See Also:

The RADIUS server administration documentation for information about
configuring the server.

Step 4: Configure RADIUS Accounting
RADIUS accounting logs information about access to the Oracle database server and
stores it in a file on the RADIUS accounting server.

Use this feature only if both the RADIUS server and authentication server support it.

• Step 4A: Set RADIUS Accounting on the Oracle Database Server
To set RADIUS accounting on the server, you can use Oracle Net Manager.

Chapter 22
Enabling RADIUS Authentication, Authorization, and Accounting

22-18

• Step 4B: Configure the RADIUS Accounting Server
RADIUS Accounting Server resides on the same host as the RADIUS
authentication server or on a separate host.

Step 4A: Set RADIUS Accounting on the Oracle Database Server
To set RADIUS accounting on the server, you can use Oracle Net Manager.

1. Start Oracle Net Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command at the
command line:

netmgr

• (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration
and Migration Tools, then Net Manager.

2. Expand Oracle Net Configuration, and from Local, select Profile.

3. From the Naming list, select Network Security.

The Network Security tabbed window appears.

4. Select the Other Params tab.

5. From the Authentication Service list, select RADIUS.

6. In the Send Accounting field, enter ON to enable accounting or OFF to disable
accounting.

7. From the File menu, select Save Network Configuration.

The sqlnet.ora file is updated with the following entry:

SQLNET.RADIUS_SEND_ACCOUNTING= ON

Step 4B: Configure the RADIUS Accounting Server
RADIUS Accounting Server resides on the same host as the RADIUS authentication
server or on a separate host.

• See the administration documentation for the RADIUS server, for information
about configuring RADIUS accounting.

Step 5: Add the RADIUS Client Name to the RADIUS Server
Database

The RADIUS server that you select must comply with RADIUS standards.

You can use any RADIUS server that complies with the Internet Engineering Task
Force (IETF) RFC #2138, Remote Authentication Dial In User Service (RADIUS), and
RFC #2139 RADIUS Accounting standards. Because RADIUS servers vary, consult
the documentation for your particular RADIUS server for any unique interoperability
requirements.

To add the RADIUS client name to a Livingston RADIUS server:

1. Open the clients file, which is located in /etc/raddb/clients.

The following text and table appear:

Chapter 22
Enabling RADIUS Authentication, Authorization, and Accounting

22-19

@ (#) clients 1.1 2/21/96 Copyright 1991 Livingston Enterprises Inc
This file contains a list of clients which are allowed to make authentication
requests and their encryption key. The first field is a valid hostname. The
second field (separated by blanks or tabs) is the encryption key.
Client Name Key

2. In the CLIENT NAME column, enter the host name or IP address of the host on
which the Oracle database server is running.

In the KEY column, type the shared secret.

The value you enter in the CLIENT NAME column, whether it is the client's name or
IP address, depends on the RADIUS server.

3. Save and close the clients file.

See Also:

Administration documentation for the RADIUS server

Step 6: Configure the Authentication Server for Use with RADIUS
After you add the RADIUS client name to the RADIUS server database, you can
configure the authentication server to use the RADIUS.

• Refer to the authentication server documentation for instructions about configuring
the authentication servers.

Step 7: Configure the RADIUS Server for Use with the Authentication
Server

After you configure the authentication server for use with RADIUS, you can configure
the RADIUS server to use the authentication server.

• Refer to the RADIUS server documentation for instructions about configuring the
RADIUS server for use with the authentication server.

Step 8: Configure Mapping Roles
If the RADIUS server supports vendor type attributes, then you can manage roles by
storing them in the RADIUS server.

The Oracle database server downloads the roles when there is a CONNECT request
using RADIUS.To use this feature, you must configure roles on both the Oracle
database server and the RADIUS server.

1. Use a text editor to set the OS_ROLES parameter in the initialization parameters file
on the Oracle database server.

By default, the init.ora file is located in the ORACLE_HOME/dbs directory (or the
same location of the data files) on Linux and UNIX systems, and in the
ORACLE_HOME\database directory on Windows.

2. Stop and restart the Oracle database server.

Chapter 22
Enabling RADIUS Authentication, Authorization, and Accounting

22-20

For example:

SHUTDOWN
STARTUP

3. Create each role that the RADIUS server will manage on the Oracle database
server with the value IDENTIFIED EXTERNALLY.

To configure roles on the RADIUS server, use the following syntax:

ORA_DatabaseName.DatabaseDomainName_RoleName

In this specification:

• DatabaseName is the name of the Oracle database server for which the role is
being created. This is the same as the value of the DB_NAME initialization
parameter.

• DatabaseDomainName is the name of the domain to which the Oracle database
server belongs. The value is the same as the value of the DB_DOMAIN
initialization parameter.

• RoleName is name of the role created in the Oracle database server.

For example:

ORA_USERDB.US.EXAMPLE.COM_MANAGER

4. Configure RADIUS challenge-response mode.

Related Topics

• Challenge-Response (Asynchronous) Authentication Mode
When the system uses the asynchronous mode, the user does not need to enter a
user name and password at the SQL*Plus CONNECT string.

• Step 1C(2): Configure Challenge-Response Mode
To configure challenge-response mode, you must specify information such as a
dynamic password that you obtain from a token card.

Using RADIUS to Log in to a Database
You can use RADIUS to log into a database by using either synchronous
authentication mode or challenge-response mode.

• Start SQL*Plus and use one of the following ways to log in to the database:

– If you are using the synchronous authentication mode, first ensure that
challenge-response mode is not turned to ON, and then enter the following
command:

CONNECT username@database_alias
Enter password: password

– If you are using the challenge-response mode, ensure that challenge-
response mode is set to ON and then enter the following command:

CONNECT /@database_alias

Chapter 22
Using RADIUS to Log in to a Database

22-21

Note:

The challenge-response mode can be configured for all login cases.

RSA ACE/Server Configuration Checklist
If you are using an RSA ACE/Server RADIUS server, check the host agent and
SecurID tokens for this server before making the initial connection.

• Ensure that the host agent in the RSA ACE/Server is set up to send a node secret.
In version 5.0, this is done by leaving the SENT Node secret box unchecked. If the
RSA ACE/Server fails to send a node secret to the agent, then a node verification
failure message will be written to the RSA ACE/Server log.

• If you are using RSA SecurID tokens, then ensure that the token is synchronized
with the RSA ACE/Server.

See Also:

RSA ACE/Server documentation for specific information about
troubleshooting.

Chapter 22
RSA ACE/Server Configuration Checklist

22-22

23
Customizing the Use of Strong
Authentication

You can configure multiple authentication methods under Oracle Database native
network encryption and strong authentication.

• Connecting to a Database Using Strong Authentication
You can use password authentication to connect to a database that is configured
to use strong authentication.

• Disabling Strong Authentication and Native Network Encryption
You can use Oracle Net Manager to disable strong authentication and native
network encryption.

• Configuring Multiple Authentication Methods
Many networks use more than one authentication method on a single security
server.

• Configuring Oracle Database for External Authentication
You can use parameters to configure Oracle Database for network authentication.

Connecting to a Database Using Strong Authentication
You can use password authentication to connect to a database that is configured to
use strong authentication.

1. To connect to an Oracle database server using a user name and password when
an Oracle network and strong authentication method has been configured, disable
the external authentication.

You must first follow the instructions in Disabling Strong Authentication and Native
Network Encryption to disable the external authentication before you can connect
to an Oracle Database server using a user name and password when an Oracle
network and strong authentication method has been configured.

2. With the external authentication disabled, connect to the database using the
following format:

% sqlplus username@net_service_name
Enter password: password

For example:

% sqlplus hr@emp
Enter password: password

23-1

Note:

You can configure multiple authentication methods, including both externally
authenticated users and password authenticated users, on a single
database.

Disabling Strong Authentication and Native Network
Encryption

You can use Oracle Net Manager to disable strong authentication and native network
encryption.

1. Start Oracle Net Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command at the
command line:

netmgr

• (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration
and Migration Tools, then Net Manager.

2. Expand Oracle Net Configuration, and from Local, select Profile.

3. From the Naming list, select Network Security.

The Network Security tabbed window appears.

4. Select the Authentication tab (which is selected by default).

5. Sequentially move all authentication methods from the Selected Method list to the
Available Methods list by selecting a method and choosing the left arrow [<].

Chapter 23
Disabling Strong Authentication and Native Network Encryption

23-2

6. Select the Encryption tab.

7. Do the following:

• From the Encryption menu, select SERVER.

• Set Encryption Type to rejected.

• In the Encryption Seed field, enter a valid encryption seed if an encryption
seed was used.

• Under Select Methods, move any methods to the Available Methods field.

8. Repeat these steps disable native network encryption for the client, by selecting
CLIENT from the Encryption menu.

9. From the File menu, select Save Network Configuration.

The sqlnet.ora file is updated with the following entries to indicate that strong
authentication and native network encryption are disabled:

Strong authentication:

SQLNET.AUTHENTICATION_SERVICES = (NONE)

Chapter 23
Disabling Strong Authentication and Native Network Encryption

23-3

For native network encryption, you can set it individually, for the server side and
for the client side. The following examples show native network encryption being
disabled for both the server and the client:

SQLNET.ENCRYPTION_SERVER = REJECTED
SQLNET.ENCRYPTION_CLIENT = REJECTED

Be aware that in a multitenant environment, the settings in the sqlnet.ora file
apply to all pluggable databases (PDBs).

Related Topics

• About the Values for Negotiating Encryption and Integrity
Oracle Net Manager can be used to specify four possible values for the encryption
and integrity configuration parameters.

Configuring Multiple Authentication Methods
Many networks use more than one authentication method on a single security server.

Accordingly, Oracle Database lets you configure your network so that Oracle clients
can use a specific authentication method, and Oracle database servers can accept
any method specified.

You can set up multiple authentication methods on both client and server systems
either by using Oracle Net Manager, or by using any text editor to modify the
sqlnet.ora file. Use Oracle Net Manager to add authentication methods to both
clients and servers.

1. Start Oracle Net Manager.

• (UNIX) From $ORACLE_HOME/bin, enter the following command at the
command line:

netmgr

• (Windows) Select Start, Programs, Oracle - HOME_NAME, Configuration
and Migration Tools, then Net Manager.

2. Expand Oracle Net Configuration, and from Local, select Profile.

3. From the Naming list, select Network Security.

The Network Security tabbed window appears.

4. Select the Authentication tab.

5. Select a method listed in the Available Methods list.

6. Sequentially move selected methods to the Selected Methods list by clicking the
right arrow (>).

7. Arrange the selected methods in order of desired use.

To do this, select a method in the Selected Methods list, and select Promote or
Demote to position it in the list.

8. From the File menu, select Save Network Configuration.

The sqlnet.ora file is updated with the following entry, listing the selected
authentication methods:

SQLNET.AUTHENTICATION_SERVICES = (KERBEROS5, RADIUS)

Chapter 23
Configuring Multiple Authentication Methods

23-4

Note:

SecurID functionality is available through RADIUS; RADIUS support is built
into the RSA ACE/Server.

Related Topics

• Configuring RADIUS Authentication
RADIUS is a client/server security protocol widely used to enable remote
authentication and access.

Configuring Oracle Database for External Authentication
You can use parameters to configure Oracle Database for network authentication.

• Setting the SQLNET.AUTHENTICATION_SERVICES Parameter in sqlnet.ora
The SQLNET.AUTHENTICATION_SERVICES parameter defines the authentication
method and version to be used.

• Setting OS_AUTHENT_PREFIX to a Null Value
The OS_AUTHENT_PREFIX parameter specifies a prefix that Oracle Database uses to
authenticate users who attempt to connect to the server.

Setting the SQLNET.AUTHENTICATION_SERVICES Parameter in
sqlnet.ora

The SQLNET.AUTHENTICATION_SERVICES parameter defines the authentication method
and version to be used.

You must set the SQLNET.AUTHENTICATION_SERVICES parameter in the sqlnet.ora file
for all clients and servers to enable each to use a supported authentication method.

• Set the SQLNET.AUTHENTICATION_SERVICES parameter using the following syntax:

SQLNET.AUTHENTICATION_SERVICES=(oracle_authentication_method)

For example, for all clients and servers using Kerberos authentication:

SQLNET.AUTHENTICATION_SERVICES=(KERBEROS5)

By default, the sqlnet.ora file is located in the ORACLE_HOME/network/admin directory
or in the location set by the TNS_ADMIN environment variable. Ensure that you have
properly set the TNS_ADMIN variable to point to the correct sqlnet.ora file.

See Also:

SQL*Plus User's Guide and Reference for more information and examples of
setting the TNS_ADMIN variable

Chapter 23
Configuring Oracle Database for External Authentication

23-5

Setting OS_AUTHENT_PREFIX to a Null Value
The OS_AUTHENT_PREFIX parameter specifies a prefix that Oracle Database uses to
authenticate users who attempt to connect to the server.

Authentication service-based user names can be long, and Oracle user names are
limited to 30 characters. Oracle strongly recommends that you set the
OS_AUTHENT_PREFIX parameter to a null value.

• In the initialization file for the database instance, set OS_AUTHENT_PREFIX as
follows:

OS_AUTHENT_PREFIX=""

Note:

• The default value for OS_AUTHENT_PREFIX is OPS$; however, you can set it
to any string.

• If a database already has the OS_AUTHENT_PREFIX set to a value other
than NULL (" "), then do not change it, because it can inhibit previously
created, externally identified users from connecting to the Oracle server.

After you have set OS_AUTHENT_PREFIX to null, then you can create external users by
using the following syntax:

CREATE USER os_authent_prefix_username IDENTIFIED EXTERNALLY;

For example, to create the user king:

CREATE USER king IDENTIFIED EXTERNALLY;

The advantage of creating a user in this way is that you no longer need to maintain
different user names for externally identified users. This is true for all supported
authentication methods.

Chapter 23
Configuring Oracle Database for External Authentication

23-6

Part VI
Monitoring Database Activity with Auditing

Part VI describes how to monitor database activity with auditing.

• Introduction to Auditing
Auditing tracks changes that users make in the database.

• Configuring Audit Policies
Unified auditing supports custom unified audit policies, predefined unified auditing
policies, and fine-grained auditing.

• Administering the Audit Trail
Users who have been granted the AUDIT_ADMIN role can manage the audit trail,
archive the audit trail, and purge audit trail records.

24
Introduction to Auditing

Auditing tracks changes that users make in the database.

Note:

Except where noted, this part describes how to use pure unified auditing, in
which all audit records are centralized in one place.

• What Is Auditing?
Auditing is the monitoring and recording of configured database actions, from both
database users and nondatabase users.

• Why Is Auditing Used?
You typically use auditing to monitor user activity.

• Best Practices for Auditing
You should follow best practices guidelines for auditing.

• What Is Unified Auditing?
In unified auditing, the unified audit trail captures audit information from a variety of
sources.

• Benefits of the Unified Audit Trail
The benefits of a unified audit trail are many.

• Checking if Your Database Has Migrated to Unified Auditing
The V$OPTION dynamic view indicates if your database has been migrated to
unified auditing.

• Mixed Mode Auditing
Mixed mode auditing is the default auditing in a newly installed database.

• Who Can Perform Auditing?
Oracle provides two roles for users who perform auditing: AUDIT_ADMIN and
AUDIT_VIEWER.

• About Auditing in a Multitenant Environment
You can use unified auditing in a multitenant environment.

• Auditing in a Distributed Database
Auditing is site autonomous in that a database instance audits only the statements
issued by directly connected users.

Related Topics

• Guidelines for Auditing
Oracle provides guidelines for auditing.

24-1

What Is Auditing?
Auditing is the monitoring and recording of configured database actions, from both
database users and nondatabase users.

"Nondatabase users" refers to application users who are recognized in the database
using the CLIENT_IDENTIFIER attribute. To audit this type of user, you can use a
unified audit policy condition, a fine-grained audit policy, or Oracle Database Real
Application Security.

You can base auditing on individual actions, such as the type of SQL statement
executed, or on combinations of data that can include the user name, application,
time, and so on.

You can configure auditing for both successful and failed activities, and include or
exclude specific users from the audit. In a multitenant environment, you can audit
individual actions of the pluggable database (PDB) or individual actions in the entire
multitenant container database (CDB). In addition to auditing the standard activities
the database provides, auditing can include activities from Oracle Database Real
Application Security, Oracle Recovery Manager, Oracle Data Pump, Oracle Data
Mining, Oracle Database Vault, Oracle Label Security, and Oracle SQL*Loader direct
path events.

Auditing is enabled by default. All audit records are written to the unified audit trail in a
uniform format and are made available through the UNIFIED_AUDIT_TRAIL view. These
records reside in the AUDSYS schema. The audit records are stored in the SYSAUX
tablespace by default. Oracle recommends that you configure a different tablespace
for the unified audit trail. Be aware that for most Oracle Database editions except for
Enterprise Edition, you can only associate the tablespace for unified auditing once.
You should perform this association before you generate any audit records for the
unified audit trail. After you have associated the tablespace, you cannot modify it
because partitioning is only supported on Enterprise Edition.

You can configure auditing by using any of the following methods:

• Group audit settings into one unified audit policy. You can create one or more
unified audit policies that define all the audit settings that your database needs.
Auditing Activities with Unified Audit Policies and the AUDIT Statement describes
how to accomplish this.

• Use one of the default unified audit policies. Oracle Database provides three
default unified audit policies that encompass the standard audit settings that most
regulatory agencies require. See Auditing Activities with the Predefined Unified
Audit Policies.

• Create fine-grained audit policies. You can create fine-grained audit policies
that capture data such as the time an action occurred. See Auditing Specific
Activities with Fine-Grained Auditing.

Oracle recommends that you audit your databases. Auditing is an effective method of
enforcing strong internal controls so that your site can meet its regulatory compliance
requirements, as defined in the Sarbanes-Oxley Act. This enables you to monitor
business operations, and find any activities that may deviate from company policy.
Doing so translates into tightly controlled access to your database and the application
software, ensuring that patches are applied on schedule and preventing ad hoc
changes. By creating effective audit policies, you can generate an audit record for

Chapter 24
What Is Auditing?

24-2

audit and compliance personnel. Be selective with auditing and ensure that it meets
your business compliance needs.

Why Is Auditing Used?
You typically use auditing to monitor user activity.

Auditing can be used to accomplish the following:

• Enable accountability for actions. These include actions taken in a particular
schema, table, or row, or affecting specific content.

• Deter users (or others, such as intruders) from inappropriate actions based
on their accountability.

• Investigate suspicious activity. For example, if a user is deleting data from
tables, then a security administrator can audit all connections to the database and
all successful and unsuccessful deletions of rows from all tables in the database.

• Notify an auditor of the actions of an unauthorized user. For example, an
unauthorized user could be changing or deleting data, or the user has more
privileges than expected, which can lead to reassessing user authorizations.

• Monitor and gather data about specific database activities. For example, the
database administrator can gather statistics about which tables are being updated,
how many logical I/Os are performed, or how many concurrent users connect at
peak times.

• Detect problems with an authorization or access control implementation. For
example, you can create audit policies that you expect will never generate an audit
record because the data is protected in other ways. However, if these policies
generate audit records, then you will know the other security controls are not
properly implemented.

• Address auditing requirements for compliance. Regulations such as the
following have common auditing-related requirements:

– Sarbanes-Oxley Act

– Health Insurance Portability and Accountability Act (HIPAA)

– International Convergence of Capital Measurement and Capital Standards: a
Revised Framework (Basel II)

– Japan Privacy Law

– European Union Directive on Privacy and Electronic Communications

Best Practices for Auditing
You should follow best practices guidelines for auditing.

• As a general rule, design your auditing strategy to collect the amount of
information that you need to meet compliance requirements, but focus on
activities that cause the greatest security concerns. For example, auditing
every table in the database is not practical, but auditing tables with columns that
contain sensitive data, such as salaries, is. With both unified and fine-grained
auditing, there are mechanisms you can use to design audit policies that focus on
specific activities to audit.

Chapter 24
Why Is Auditing Used?

24-3

• Periodically archive and purge the audit trail data. See Purging Audit Trail
Records for more information.

Related Topics

• Guidelines for Auditing
Oracle provides guidelines for auditing.

What Is Unified Auditing?
In unified auditing, the unified audit trail captures audit information from a variety of
sources.

Unified auditing enables you to capture audit records from the following sources:

• Audit records (including SYS audit records) from unified audit policies and AUDIT
settings

• Fine-grained audit records from the DBMS_FGA PL/SQL package

• Oracle Database Real Application Security audit records

• Oracle Recovery Manager audit records

• Oracle Database Vault audit records

• Oracle Label Security audit records

• Oracle Data Mining records

• Oracle Data Pump

• Oracle SQL*Loader Direct Load

The unified audit trail, which resides in a read-only table in the AUDSYS schema in the
SYSAUX tablespace, makes this information available in a uniform format in the
UNIFIED_AUDIT_TRAIL data dictionary view, and is available in both single-instance
and Oracle Database Real Application Clusters environments. In addition to the user
SYS, users who have been granted the AUDIT_ADMIN and AUDIT_VIEWER roles can
query these views. If your users only need to query the views but not create audit
policies, then grant them the AUDIT_VIEWER role.

When the database is writeable, audit records are written to the unified audit trail. If the
database is not writable, then audit records are written to new format operating system
files in the $ORACLE_BASE/audit/$ORACLE_SID directory.

See Also:

Oracle Database Reference for detailed information about the
UNIFIED_AUDIT_TRAIL data dictionary view

Benefits of the Unified Audit Trail
The benefits of a unified audit trail are many.

For example:

Chapter 24
What Is Unified Auditing?

24-4

• After unified auditing is enabled, it does not depend on the initialization parameters
that were used in previous releases. See Table G-1 for a list of these initialization
parameters.

• The audit records, including records from the SYS audit trail, for all the audited
components of your Oracle Database installation are placed in one location and in
one format, rather than your having to look in different places to find audit trails in
varying formats. This consolidated view enables auditors to co-relate audit
information from different components. For example, if an error occurred during an
INSERT statement, standard auditing can indicate the error number and the SQL
that was executed. Oracle Database Vault-specific information can indicate
whether this error happened because of a command rule violation or realm
violation. Note that there will be two audit records with a distinct AUDIT_TYPE. With
this unification in place, SYS audit records appear with AUDIT_TYPE set to Standard
Audit.

• The management and security of the audit trail is also improved by having it in
single audit trail.

• Overall auditing performance is greatly improved. By default, the audit records are
automatically written to an internal relational table in the AUDSYS schema.

• You can create named audit policies that enable you to audit the supported
components listed at the beginning of this section, as well as SYS administrative
users. Furthermore, you can build conditions and exclusions into your policies.

• If you are using an Oracle Audit Vault and Database Firewall environment, then
the unified audit trail greatly facilitates the collection of audit data, because all of
this data will come from one location.

Checking if Your Database Has Migrated to Unified Auditing
The V$OPTION dynamic view indicates if your database has been migrated to unified
auditing.

• Query the VALUE column of the V$OPTION dynamic view as follows, entering
Unified Auditing in the case shown:

SELECT VALUE FROM V$OPTION WHERE PARAMETER = 'Unified Auditing';

PARAMETER VALUE
---------------- ----------
Unified Auditing TRUE

This output shows that unified auditing is enabled. If unified auditing has not been
enabled, then the output is FALSE.

Related Topics

• Disabling Unified Auditing
You can disable unified auditing.

Mixed Mode Auditing
Mixed mode auditing is the default auditing in a newly installed database.

• About Mixed Mode Auditing
Mixed mode auditing enables both traditional (that is, the audit facility from
releases earlier than release 12c) and the new audit facilities (unified auditing).

Chapter 24
Checking if Your Database Has Migrated to Unified Auditing

24-5

• Enablement of Unified Auditing
By default, Oracle Database uses mixed mode auditing, supporting both unified
audit and traditional audit.

• How Database Creation Determines the Type of Auditing You Have Enabled
Unified auditing uses the $ORACLE_BASE/audit directory as the location for the new
format operating system files.

• Capabilities of Mixed Mode Auditing
Mixed mode auditing provides the several capabilities.

About Mixed Mode Auditing
Mixed mode auditing enables both traditional (that is, the audit facility from releases
earlier than release 12c) and the new audit facilities (unified auditing).

When you create a new database, by default the database uses mixed mode auditing.

You can enable the database in either of these two modes: the mixed mode auditing
or pure unified auditing mode. Even though the features of unified auditing are enabled
in both these modes, there are differences between them. In mixed mode, you can use
the new unified audit facility alongside the traditional auditing facility. In pure unified
auditing, you only use the unified audit facility.

Table 24-1 summarizes the features of these two modes and how you enable them.

Table 24-1 Differences Between MIxed Mode Audting and Pure Unified
Auditing

Mode Features How to Enable

Mixed mode auditing Has both traditional and
unified auditing

Enable any unified audit policy.
There is no need to restart the
database.

Pure unified auditing Has only unified auditing Link the oracle binary with
uniaud_on, and then restart the
database. Oracle Database Upgrade
Guide describes how to enable pure
unified auditing.

Mixed mode is intended to introduce unified auditing, so that you can have a feel of
how it works and what its nuances and benefits are. Mixed mode enables you to
migrate your existing applications and scripts to use unified auditing. Once you have
decided to use pure unified auditing, you can relink the oracle binary with the unified
audit option turned on and thereby enable it as the one and only audit facility the
Oracle database runs. If you decide to revert back to mixed mode, you can.

As in previous releases, the traditional audit facility is driven by the AUDIT_TRAIL
initialization parameter. Only for mixed mode auditing, you should set this parameter to
the appropriate traditional audit trail. This traditional audit trail will then be populated
with audit records, along with the unified audit trail.

When you upgrade your database to the current release, traditional auditing is
preserved, and the new audit records are written to the traditional audit trail. After you
complete the migration, the audit records from the previous release are still available
in those audit trails. You then can archive and purge these older audit trails by using
the DBMS_AUDIT_MGMT PL/SQL procedures, based on your enterprise retention policies.

Chapter 24
Mixed Mode Auditing

24-6

See Also:

• How the Unified Auditing Migration Affects Individual Audit Features, for
a comparison of the features available in the pre-migrated and post-
migrated auditing environments

• Checking if Your Database Has Migrated to Unified Auditing

• Oracle Database Upgrade Guide for information about migrating your
databases to unified auditing, and for references to the documentation
you should use if you choose not to migrate

Enablement of Unified Auditing
By default, Oracle Database uses mixed mode auditing, supporting both unified audit
and traditional audit.

When you are ready to migrate to pure unified audit mode (which improves audit
performance), link the oracle binary with uniaud_on, and then restart the database, as
described in Oracle Database Upgrade Guide.

Related Topics

• Checking if Your Database Has Migrated to Unified Auditing
The V$OPTION dynamic view indicates if your database has been migrated to
unified auditing.

• Oracle Database Upgrade Guide

How Database Creation Determines the Type of Auditing You Have
Enabled

Unified auditing uses the $ORACLE_BASE/audit directory as the location for the new
format operating system files.

For newly created databases, mixed mode auditing is enabled by default through the
predefined policy ORA_SECURECONFIG.

To start using unified auditing, you must enable at least one unified audit policy, and to
stop using it, disable all unified audit policies.

Related Topics

• Secure Options Predefined Unified Audit Policy
The ORA_SECURECONFIG unified audit policy provides all the secure configuration
audit options.

Capabilities of Mixed Mode Auditing
Mixed mode auditing provides the several capabilities.

These capabilities are as follows:

Chapter 24
Mixed Mode Auditing

24-7

• It enables the use of all existing auditing initialization parameters: AUDIT_TRAIL,
AUDIT_FILE_DEST, AUDIT_SYS_OPERATIONS, and AUDIT_SYSLOG_LEVEL.

• It writes mandatory audit records only to the traditional audit trails.

• It bases standard audit records on the standard audit configuration, and writes
these records to the audit trail designated by the AUDIT_TRAIL initialization
parameter.

However, be aware that standard audit trail records are also generated based on
unified audit policies and only these audit records are written to the unified audit
trail. The standard audit records generated as a result of unified audit policies
follow the semantics of unified audit policy enablement.

• Administrative user sessions generate SYS audit records. These records are
written if the AUDIT_SYS_OPERATIONS initialization parameter is set to TRUE. This
process writes the records only to the traditional audit trails. However, when
unified audit policies are enabled for administrative users, these unified audit
records are also written to unified audit trail.

• The format of the audit records that are written to traditional audit trails remains
the same as in Oracle Database 11g Release 2.

• By default, Oracle Database immediately writes unified audit records to an internal
relational table in the AUDSYS schema. See Writing the Unified Audit Trail Records
to the AUDSYS Schema for more information.

• The performance cost of writing an audit record is equivalent to the sum of the
times required for generating and writing an audit record to the traditional audit trail
and the unified audit trail.

• Mixed mode auditing provides a glance of the unified audit mode features. Oracle
recommends that you migrate to unified audit mode once you are comfortable with
the new style of audit policies and audit trail. To migrate to unified auditing, see
Oracle Database Upgrade Guide.

Who Can Perform Auditing?
Oracle provides two roles for users who perform auditing: AUDIT_ADMIN and
AUDIT_VIEWER.

To perform any kind of auditing, you must be granted the AUDIT_ADMIN role. An auditor
can view audit data after being granted the AUDIT_VIEWER role.

The privileges that these roles provide are as follows:

• AUDIT_ADMIN role. This role enables you to create unified and fine-grained audit
policies, use the AUDIT and NOAUDIT SQL statements, view audit data, and
manage the audit trail administration. Grant this role only to trusted users.

• AUDIT_VIEWER role. This role enables users to view and analyze audit data. It
provides the EXECUTE privilege on the DBMS_AUDIT_UTIL PL/SQL package. The
kind of user who needs this role is typically an external auditor.

Chapter 24
Who Can Perform Auditing?

24-8

Note:

In previous releases, users were allowed to add and remove audit
configuration to objects in their own schemas without any additional
privileges. This ability is no longer allowed.

About Auditing in a Multitenant Environment
You can use unified auditing in a multitenant environment.

You can apply audit settings to individual PDBs or to the CDB, depending on the type
of policy. In a multitenant environment, each PDB, including the root, has own unified
audit trail.

See the following sections for more information:

• Unified audit policies created with the CREATE AUDIT POLICY and AUDIT
statements: You can create policies for both the root and individual PDBs.

• Fine-grained audit policies: You can create policies for individual PDBs only, not
the root.

• Purging the audit trail: You can perform purge operations for both the root and
individual PDBs.

Related Topics

• Unified Audit Policies or AUDIT Settings in a Multitenant Environment
In a multitenant environment, you can create unified audit policies for individual
PDBs and in the root.

• Creating a Fine-Grained Audit Policy
The DBMS_FGA.ADD_POLICY procedure creates a fine-grained audit policy.

• Purging Audit Trail Records
The DBMS_AUDIT_MGMT PL/SQL package can schedule automatic purge jobs,
manually purge audit records, and perform other audit trail operations.

Auditing in a Distributed Database
Auditing is site autonomous in that a database instance audits only the statements
issued by directly connected users.

A local Oracle Database node cannot audit actions that take place in a remote
database.

Chapter 24
About Auditing in a Multitenant Environment

24-9

25
Configuring Audit Policies

Unified auditing supports custom unified audit policies, predefined unified auditing
policies, and fine-grained auditing.

• Selecting an Auditing Type
You can audit general activities (such as SQL statement actions), commonly used
auditing activities, or fine-grained audit scenarios.

• Auditing Activities with Unified Audit Policies and the AUDIT Statement
You can use the CREATE AUDIT POLICY and AUDIT statements to use unified
auditing policies.

• Auditing Activities with the Predefined Unified Audit Policies
Oracle Database provides predefined unified audit policies that cover commonly
used security-relevant audit settings.

• Auditing Specific Activities with Fine-Grained Auditing
Fine-grained auditing enables you to create audit policies at the granular level.

• Audit Policy Data Dictionary Views
Data dictionary and dynamic views can be used to find detailed auditing
information.

Selecting an Auditing Type
You can audit general activities (such as SQL statement actions), commonly used
auditing activities, or fine-grained audit scenarios.

• Auditing SQL Statements, Privileges, and Other General Activities
You can audit many types of objects, from SQL statements to other Oracle
Database components, such as Oracle Database Vault..

• Auditing Commonly Used Security-Relevant Activities
Oracle Database provides a set default unified audit policies that you can choose
from for commonly used security-relevant audits.

• Auditing Specific, Fine-Grained Activities
Use fine-grained auditing if you want to audit individual columns and use event
handlers.

Auditing SQL Statements, Privileges, and Other General Activities
You can audit many types of objects, from SQL statements to other Oracle Database
components, such as Oracle Database Vault..

In addition, you can create policies that use conditions. However, if you want to audit
specific columns or use event handlers, you must use fine-grained auditing.

The general steps for performing this type of auditing are as follows:

1. In most cases, use the CREATE AUDIT POLICY statement to create an audit policy.
If you must audit application context values, then use the AUDIT statement.

25-1

See the relevant categories under Auditing Activities with Unified Audit Policies
and the AUDIT Statement.

2. If you are creating an audit policy, then use the AUDIT statement to enable it and
optionally apply (or exclude) the audit settings to one or more users, including
administrative users who log in with the SYSDBA administrative privilege (for
example, the SYS user).

AUDIT also enables you to create an audit record upon an action's success, failure,
or both.

See Enabling and Applying Unified Audit Policies to Users and Roles.

3. Query the UNIFIED_AUDIT_TRAIL view to find the generated audit records.

See also Audit Policy Data Dictionary Views for additional views.

4. Periodically archive and purge the contents of the audit trail.

See Purging Audit Trail Records.

Auditing Commonly Used Security-Relevant Activities
Oracle Database provides a set default unified audit policies that you can choose from
for commonly used security-relevant audits.

The general steps for performing this type of auditing are as follows:

1. See Auditing Activities with the Predefined Unified Audit Policies to learn about the
default audit policies.

2. Use the AUDIT statement enable the policy and optionally apply (or exclude) the
audit settings to one or more users.

See Enabling and Applying Unified Audit Policies to Users and Roles.

3. Query the UNIFIED_AUDIT_TRAIL view to find the generated audit records.

See also Audit Policy Data Dictionary Views for additional views.

4. Periodically archive and purge the contents of the audit trail.

See Purging Audit Trail Records.

Auditing Specific, Fine-Grained Activities
Use fine-grained auditing if you want to audit individual columns and use event
handlers.

This type of auditing provides all the features available in unified audit policies.

The general steps for fine-grained auditing are as follows:

1. See Auditing Specific Activities with Fine-Grained Auditing to understand more
about auditing specific activities.

2. Use the DBMS_FGA PL/SQL package to configure fine-grained auditing policies. See
Using the DBMS_FGA PL/SQL Package to Manage Fine-Grained Audit Policies.

3. Query the UNIFIED_AUDIT_TRAIL view to find the generated audit records.

See also Audit Policy Data Dictionary Views for additional views.

4. Periodically archive and purge the contents of the audit trail.

Chapter 25
Selecting an Auditing Type

25-2

See Purging Audit Trail Records.

Auditing Activities with Unified Audit Policies and the AUDIT
Statement

You can use the CREATE AUDIT POLICY and AUDIT statements to use unified auditing
policies.

• About Auditing Activities with Unified Audit Policies and AUDIT
You can audit the several types of activities, using unified audit policies and the
AUDIT SQL statement.

• Best Practices for Creating Unified Audit Policies
You can enable multiple policies at a time in the database, but ideally, limit the
number of enabled policies.

• Syntax for Creating a Unified Audit Policy
To create a unified audit policy, you must use the CREATE AUDIT POLICY
statement.

• Auditing Roles
You can use the CREATE AUDIT POLICY statement to audit database roles.

• Auditing System Privileges
You can use the CREATE AUDIT POLICY statement to audit system privileges.

• Auditing Administrative Users
You can create unified audit policies to capture the actions of administrative user
accounts, such as SYS.

• Auditing Object Actions
You can use the CREATE AUDIT POLICY statement to audit object actions.

• Auditing the READ ANY TABLE and SELECT ANY TABLE Privileges
The CREATE AUDIT POLICY statement can audit the READ ANY TABLE and SELECT
ANY TABLE privileges.

• Auditing SQL Statements and Privileges in a Multitier Environment
You can create a unified audit policy to audit the activities of a client in a multitier
environment.

• Creating a Condition for a Unified Audit Policy
You can use the CREATE AUDIT POLICY statement to create conditions for a unified
audit policy.

• Auditing Application Context Values
You can use the AUDIT statement to audit application context values.

• Auditing Oracle Database Real Application Security Events
You can use CREATE AUDIT POLICY statement to audit Oracle Database Real
Application Security events.

• Auditing Oracle Recovery Manager Events
You can use the CREATE AUDIT POLICY statement to audit Oracle Recovery
Manager events.

• Auditing Oracle Database Vault Events
In an Oracle Database Vault environment, the CREATE AUDIT POLICY statement
can audit Database Vault activities.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-3

• Auditing Oracle Label Security Events
In an Oracle Label Security environment, the CREATE AUDIT POLICY statement can
audit Oracle Label Security activities.

• Auditing Oracle Data Mining Events
You can use the CREATE AUDIT POLICY statement to audit Oracle Data Mining
events.

• Auditing Oracle Data Pump Events
You can use the CREATE AUDIT POLICY statement to audit Oracle Data Pump.

• Auditing Oracle SQL*Loader Direct Load Path Events
You can use the CREATE AUDIT POLICY statement to audit Oracle SQL*Loader
direct load path events.

• Auditing Only Top-Level Statements
A top-level statement audit refers to filtering audit records so that only a single
audit record for a specified audited statement.

• Unified Audit Policies or AUDIT Settings in a Multitenant Environment
In a multitenant environment, you can create unified audit policies for individual
PDBs and in the root.

• Altering Unified Audit Policies
You can use the ALTER AUDIT POLICY statement to modify a unified audit policy.

• Enabling and Applying Unified Audit Policies to Users and Roles
You can use the AUDIT POLICY statement to enable and apply unified audit
policies to users and roles.

• Disabling Unified Audit Policies
You can use the NOAUDIT POLICY statement to disable a unified audit policy.

• Dropping Unified Audit Policies
You can use the DROP AUDIT POLICY statement to drop a unified audit policy.

• Tutorial: Auditing Nondatabase Users
This tutorial shows how to create a unified audit policy that uses a client identifier
to audit a nondatabase user's actions.

Related Topics

• Auditing SQL Statements, Privileges, and Other General Activities
You can audit many types of objects, from SQL statements to other Oracle
Database components, such as Oracle Database Vault..

About Auditing Activities with Unified Audit Policies and AUDIT
You can audit the several types of activities, using unified audit policies and the AUDIT
SQL statement.

The kinds of activities that you can audit are as follows:

• User accounts (including administrative users who log in with the SYSDBA
administrative privilege), roles, and privileges

• Object actions, such as dropping a table or a running a procedure

• Application context values

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-4

• Activities from Oracle Database Real Application Security, Oracle Recovery
Manager, Oracle Data Mining, Oracle Data Pump, Oracle SQL*Loader direct path
events, Oracle Database Vault, and Oracle Label Security

To accomplish this, depending on what you want to audit, use the following:

• Unified audit policies. A unified audit policy is a named group of audit settings
that enable you to audit a particular aspect of user behavior in the database. To
create the policy, you use the CREATE AUDIT POLICY statement. The policy can be
as simple as auditing the activities of a single user or you can create complex
audit policies that use conditions. You can have more than one audit policy in
effect at a time in a database. An audit policy can contain both system-wide and
object-specific audit options. Most of the auditing that you will do for general
activities (including standard auditing) requires the use of audit policies.

• AUDIT and NOAUDIT SQL statements. The AUDIT and NOAUDIT SQL statements
enable you to, respectively, enable and disable an audit policy. The AUDIT
statement also lets you include or exclude specific users for the policy. The AUDIT
and NOAUDIT statements also enable you to audit application context values.

• For Oracle Recovery Manager, you do not create unified audit policies. The
UNIFIED_AUDIT_TRAIL view automatically captures commonly audited Recovery
Manager events.

Best Practices for Creating Unified Audit Policies
You can enable multiple policies at a time in the database, but ideally, limit the number
of enabled policies.

The unified audit policy syntax is designed so that you can write one policy that covers
all the audit settings that your database needs. A good practice is to group related
options into a single policy instead of creating multiple small policies. This enables you
to manage the policies much easier. As an example, the default audit policies
described in Auditing Activities with the Predefined Unified Audit Policies each contain
multiple audit settings within one unified audit policy.

Limiting the number of enabled audit policies for a user session has the following
benefits:

• It reduces the logon overhead that is associated with loading the audit policy's
details into the session's UGA memory. If the enabled policy count is less, then
less time is spent in loading the policy information.

• It reduces the session's UGA memory consumption, because a fewer number of
policies are required to be cached in UGA memory.

• It makes the internal audit check functionality more efficient, which determines
whether to generate an audit record for its associated event.

Syntax for Creating a Unified Audit Policy
To create a unified audit policy, you must use the CREATE AUDIT POLICY statement.

When you create a unified audit policy, Oracle Database stores it in a first class object
that is owned by the SYS schema, not in the schema of the user who created the
policy.

Example 25-1 shows the syntax for the CREATE AUDIT POLICY statement.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-5

Example 25-1 Syntax for the CREATE AUDIT POLICY Statement

CREATE AUDIT POLICY policy_name
 { {privilege_audit_clause [action_audit_clause] [role_audit_clause]}
 | { action_audit_clause [role_audit_clause] }
 | { role_audit_clause }
 }
 [WHEN audit_condition EVALUATE PER {STATEMENT|SESSION|INSTANCE}]
 [ONLY TOPLEVEL]
 [CONTAINER = {CURRENT | ALL}];

In this specification:

• privilege_audit_clause describes privilege-related audit options. See Auditing
System Privileges for details. The detailed syntax for configuring privilege audit
options is as follows:

privilege_audit_clause := PRIVILEGES privilege1 [, privilege2]

• action_audit_clause and standard_actions describe object action-related audit
options. See Auditing Object Actions. The syntax is as follows:

action_audit_clause := {standard_actions | component_actions}
 [, component_actions]
standard_actions :=
 ACTIONS action1 [ON {schema.obj_name
 | DIRECTORY directory_name
 | MINING MODEL schema.obj_name
 }
]
 [, action2 [ON {schema.obj_name
 | DIRECTORY directory_name
 | MINING MODEL schema.obj_name
 }
]

• component_actions enables you to create an audit policy for Oracle Label
Security, Oracle Database Real Application Security, Oracle Database Vault,
Oracle Data Pump, or Oracle SQL*Loader. See the appropriate section under
Auditing Activities with Unified Audit Policies and the AUDIT Statement for more
information. The syntax is:

component_actions :=
 ACTIONS COMPONENT=[OLS|XS] action1 [,action2] |
 ACTIONS COMPONENT=DV DV_action ON DV_object_name |
 ACTIONS COMPONENT=DATAPUMP [EXPORT | IMPORT | ALL] |
 ACTIONS COMPONENT=DIRECT_LOAD [LOAD | ALL]

• role_audit_clause enables you to audit roles. See Auditing Roles. The syntax is:

role_audit_clause := ROLES role1 [, role2]

• WHEN audit_condition EVALUATE PER enables you to specify a function to create
a condition for the audit policy and the evaluation frequency. You must include the
EVALUATE PER clause with the WHEN condition. See Creating a Condition for a
Unified Audit Policy. The syntax is:

WHEN 'audit_condition := function operation value_list'
EVALUATE PER {STATEMENT|SESSION|INSTANCE}

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-6

• ONLY TOPLEVEL allows users to audit only the top-level operations that are
performed for the actions that were configured as part of this audit policy. See
Auditing Only Top-Level Statements.

• CONTAINER, allows users to audit only the top-level operations that were performed
for the actions that were configured as part of this audit policy. See Unified Audit
Policies or AUDIT Settings in a Multitenant Environment.

This syntax is designed to audit any of the components listed in the policy. For
example, suppose you create the following policy:

CREATE AUDIT POLICY table_pol
PRIVILEGES CREATE ANY TABLE, DROP ANY TABLE
ROLES emp_admin, sales_admin;

The audit trail will capture SQL statements that require the CREATE ANY TABLE system
privilege or the DROP ANY TABLE system privilege or any system privilege directly
granted to the role emp_admin or any system privilege directly granted to the role
sales_admin. (Be aware that it audits privileges that are directly granted, not privileges
that are granted recursively through a role.)

After you create the policy, you must enable it by using the AUDIT statement.
Optionally, you can apply the policy to one or more users, exclude one or more users
from the policy, and designate whether an audit record is written when the audited
action succeeds, fails, or both succeeds or fails. See Enabling and Applying Unified
Audit Policies to Users and Roles.

Auditing Roles
You can use the CREATE AUDIT POLICY statement to audit database roles.

• About Role Auditing
When you audit a role, Oracle Database audits all system privileges that are
directly granted to the role.

• Configuring Role Unified Audit Policies
To create a unified audit policy to capture role use, you must include the ROLES
clause in the CREATE AUDIT POLICY statement.

• Example: Auditing the DBA Role in a Multitenant Environment
The CREATE AUDIT POLICY statement can audit roles in a multitenant environment.

About Role Auditing
When you audit a role, Oracle Database audits all system privileges that are directly
granted to the role.

You can audit any role, including user-defined roles. If you create a common unified
audit policy for roles with the ROLES audit option, then you must specify only common
roles in the role list. When such a policy is enabled, Oracle Database audits all system
privileges that are commonly and directly granted to the common role. The system
privileges that are locally granted to the common role will not be audited. To find if a
role was commonly granted, query the DBA_ROLES data dictionary view. To find if the
privileges granted to the role were commonly granted, query the ROLE_SYS_PRIVS view.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-7

Related Topics

• Predefined Roles in an Oracle Database Installation
Oracle Database provides a set of predefined roles to help in database
administration.

Configuring Role Unified Audit Policies
To create a unified audit policy to capture role use, you must include the ROLES clause
in the CREATE AUDIT POLICY statement.

• Use the following syntax to create a unified audit policy that audits roles:

CREATE AUDIT POLICY policy_name
 ROLES role1 [, role2];

For example:

CREATE AUDIT POLICY audit_roles_pol
 ROLES IMP_FULL_DATABASE, EXP_FULL_DATABASE;

You can build more complex role unified audit policies, such as those that include
conditions. Remember that after you create the policy, you must use the AUDIT
statement to enable it.

Related Topics

• Syntax for Creating a Unified Audit Policy
To create a unified audit policy, you must use the CREATE AUDIT POLICY
statement.

Example: Auditing the DBA Role in a Multitenant Environment
The CREATE AUDIT POLICY statement can audit roles in a multitenant environment.

The following example shows how to audit a predefined common role DBA in a
multitenant environment.

Example 25-2 Auditing the DBA Role in a Multitenant Environment

CREATE AUDIT POLICY role_dba_audit_pol
 ROLES DBA
 CONTAINER = ALL;

AUDIT POLICY role_dba_audit_pol;

Auditing System Privileges
You can use the CREATE AUDIT POLICY statement to audit system privileges.

• About System Privilege Auditing
System privilege auditing audits activities that use a system privilege, such as
READ ANY TABLE.

• System Privileges That Can Be Audited
You can audit the use of almost any system privilege.

• System Privileges That Cannot Be Audited
Several system privileges cannot be audited.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-8

• Configuring a Unified Audit Policy to Capture System Privilege Use
The PRIVILEGES clause in the CREATE AUDIT POLICY statement audits system
privilege use.

• Example: Auditing a User Who Has ANY Privileges
The CREATE AUDIT POLICY statement can audit users for ANY privileges.

• Example: Using a Condition to Audit a System Privilege
The CREATE AUDIT POLICY statement can create an audit policy that uses a
condition to audit a system privilege.

• How System Privilege Unified Audit Policies Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists system privilege audit events.

About System Privilege Auditing
System privilege auditing audits activities that use a system privilege, such as READ
ANY TABLE.

In this kind of auditing, SQL statements that require the audited privilege to succeed
are recorded.

A single unified audit policy can contain both privilege and action audit options. Do not
audit the privilege use of administrative users such as SYS. Instead, audit their object
actions.

Note:

You can audit system privileges, objects, database events, and so on.
However, if you must find database privilege usage (for example, which
privileges that have been granted to a given role are used), and generate a
report of the used and unused privileges, then you can create a privilege
capture. See Oracle Database Vault Administrator’s Guide for more
information.

Related Topics

• Auditing Object Actions
You can use the CREATE AUDIT POLICY statement to audit object actions.

System Privileges That Can Be Audited
You can audit the use of almost any system privilege.

To find a list of auditable system privileges, you can query the SYSTEM_PRIVILEGE_MAP
table.

For example:

SELECT NAME FROM SYSTEM_PRIVILEGE_MAP;

NAME

ALTER ANY CUBE BUILD PROCESS
SELECT ANY CUBE BUILD PROCESS

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-9

ALTER ANY MEASURE FOLDER
...

Similar to action audit options, privilege auditing audits the use of system privileges
that have been granted to database users. If you set similar audit options for both SQL
statement and privilege auditing, then only a single audit record is generated. For
example, if two policies exist, with one auditing EXECUTE PROCEDURE specifically on the
HR.PROC procedure and the second auditing EXECUTE PROCEDURE in general (all
procedures), then only one audit record is written.

Privilege auditing does not occur if the action is already permitted by the existing
owner and object privileges. Privilege auditing is triggered only if the privileges are
insufficient, that is, only if what makes the action possible is a system privilege. For
example, suppose that user SCOTT has been granted the SELECT ANY TABLE privilege
and SELECT ANY TABLE is being audited. If SCOTT selects his own table (for example,
SCOTT.EMP), then the SELECT ANY TABLE privilege is not used. Because he performed
the SELECT statement within his own schema, no audit record is generated. On the
other hand, if SCOTT selects from another schema (for example, the HR.EMPLOYEES
table), then an audit record is generated. Because SCOTT selected a table outside his
own schema, he needed to use the SELECT ANY TABLE privilege.

System Privileges That Cannot Be Audited
Several system privileges cannot be audited.

These privileges are:

• INHERIT ANY PRIVILEGE

• INHERIT PRIVILEGE

• TRANSLATE ANY SQL

• TRANSLATE SQL

Configuring a Unified Audit Policy to Capture System Privilege Use
The PRIVILEGES clause in the CREATE AUDIT POLICY statement audits system privilege
use.

• Use the following syntax to create a unified audit policy that audits privileges:

CREATE AUDIT POLICY policy_name
 PRIVILEGES privilege1 [, privilege2];

For example:

CREATE AUDIT POLICY my_simple_priv_policy
 PRIVILEGES SELECT ANY TABLE, CREATE LIBRARY;

You can build more complex privilege unified audit policies, such as those that include
conditions. Remember that after you create the policy, you must use the AUDIT
statement to enable it.

Related Topics

• Syntax for Creating a Unified Audit Policy
To create a unified audit policy, you must use the CREATE AUDIT POLICY
statement.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-10

Example: Auditing a User Who Has ANY Privileges
The CREATE AUDIT POLICY statement can audit users for ANY privileges.

Example 25-3 shows how to audit several ANY privileges of the user HR_MGR.

Example 25-3 Auditing a User Who Has ANY Privileges

CREATE AUDIT POLICY hr_mgr_audit_pol
 PRIVILEGES DROP ANY TABLE, DROP ANY CONTEXT, DROP ANY INDEX, DROP ANY LIBRARY;

AUDIT POLICY hr_mgr_audit_pol BY HR_MGR;

Example: Using a Condition to Audit a System Privilege
The CREATE AUDIT POLICY statement can create an audit policy that uses a condition
to audit a system privilege.

Example 25-4 shows how to use a condition to audit privileges that are used by two
operating system users, psmith and jrawlins.

Example 25-4 Using a Condition to Audit a System Privilege

CREATE AUDIT POLICY os_users_priv_pol
 PRIVILEGES SELECT ANY TABLE, CREATE LIBRARY
 WHEN 'SYS_CONTEXT (''USERENV'', ''OS_USER'') IN (''psmith'', ''jrawlins'')'
 EVALUATE PER SESSION;

AUDIT POLICY os_users_priv_pol;

How System Privilege Unified Audit Policies Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists system privilege audit events.

The following example, based on the unified audit policy os_users_priv_pol that was
created in Example 25-4, shows a list of privileges used by the operating system user
psmith.

SELECT SYSTEM_PRIVILEGE_USED FROM UNIFIED_AUDIT_TRAIL
 WHERE OS_USERNAME = 'PSMITH' AND UNIFIED_AUDIT_POLICIES = 'OS_USERS_PRIV_POL';

SYSTEM_PRIVILEGE_USED

SELECT ANY TABLE
DROP ANY TABLE

Note:

If you have created an audit policy for the SELECT ANY TABLE system
privilege, whether the user has exercised the READ object privilege or the
SELECT object privilege will affect the actions that the audit trail captures.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-11

Related Topics

• Auditing the READ ANY TABLE and SELECT ANY TABLE Privileges
The CREATE AUDIT POLICY statement can audit the READ ANY TABLE and SELECT
ANY TABLE privileges.

Auditing Administrative Users
You can create unified audit policies to capture the actions of administrative user
accounts, such as SYS.

• Administrative User Accounts That Can Be Audited
Oracle Database provides administrative user accounts that are associated with
administrative privileges.

• Configuring a Unified Audit Policy to Capture Administrator Activities
The CREATE AUDIT POLICY statement can audit administrative users.

• Example: Auditing the SYS User
The CREATE AUDIT POLICY statement can audit the SYS user.

Administrative User Accounts That Can Be Audited
Oracle Database provides administrative user accounts that are associated with
administrative privileges.

Table 25-1 lists default administrative user accounts and the administrative privileges
with which they are typically associated.

Table 25-1 Administrative Users and Administrative Privileges

Administrative User Account Administrative Privilege

SYS SYSDBA

PUBLIC1 SYSOPER

SYSASM SYSASM

SYSBACKUP SYSBACKUP

SYSDG SYSDG

SYSKM SYSKM

1 PUBLIC refers to the user PUBLIC, which is the effective user when you log in with the SYSOPER
administrative privilege. It does not refer to the PUBLIC role.

Related Topics

• Activities That Are Mandatorily Audited
Certain security sensitive database activities are always audited and such audit
configuration cannot be disabled.

Configuring a Unified Audit Policy to Capture Administrator Activities
The CREATE AUDIT POLICY statement can audit administrative users.

• To audit administrative users, create a unified audit policy and then apply this
policy to the user, the same as you would for non-administrative users. Note that

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-12

top-level statements by administrative users are mandatorily audited until the
database opens.

Example: Auditing the SYS User
The CREATE AUDIT POLICY statement can audit the SYS user.

Example 25-5 shows how to audit grants of the DBMS_FGA PL/SQL package by user
SYS.

Example 25-5 Auditing the SYS User

CREATE AUDIT POLICY dbms_fga_grants
 ACTIONS GRANT
 ON DBMS_FGA;

AUDIT POLICY dbms_fga_grants BY SYS;

Auditing Object Actions
You can use the CREATE AUDIT POLICY statement to audit object actions.

• About Auditing Object Actions
You can audit actions performed on specific objects, such as UPDATE statements
on the HR.EMPLOYEES table.

• Object Actions That Can Be Audited
Auditing object actions can be broad or focused (for example, auditing all user
actions or only a select list of user actions).

• Configuring an Object Action Unified Audit Policy
The ACTIONS clause in the CREATE AUDIT POLICY statement creates a policy that
captures object actions.

• Example: Auditing Actions on SYS Objects
The CREATE AUDIT POLICY statement can audit actions on SYS objects.

• Example: Auditing Multiple Actions on One Object
The CREATE AUDIT POLICY statement can audit multiple actions on one object.

• Example: Auditing Both Actions and Privileges on an Object
The CREATE AUDIT POLICY statement can audit both actions and privileges on an
object, using a single policy.

• Example: Auditing All Actions on a Table
The CREATE AUDIT POLICY statement can audit all actions on a table.

• Example: Auditing All Actions in the Database
The CREATE AUDIT POLICY statement can audit all actions in the database.

• How Object Action Unified Audit Policies Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists object action audit events.

• Auditing Functions, Procedures, Packages, and Triggers
You can audit functions, procedures, PL/SQL packages, and triggers.

• Auditing of Oracle Virtual Private Database Predicates
The unified audit trail automatically captures the predicates that are used in Oracle
Virtual Private Database (VPD) policies.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-13

• Audit Policies for Oracle Virtual Private Database Policy Functions
Auditing can affect dynamic VPD policies, static VPD policies, and context-
sensitive VPD policies.

• Unified Auditing with Editioned Objects
When an editioned object has a unified audit policy, it applies in all editions in
which the object is visible.

About Auditing Object Actions
You can audit actions performed on specific objects, such as UPDATE statements on
the HR.EMPLOYEES table.

The audit can include both DDL and DML statements that were used on the object. A
single unified audit policy can contain both privilege and action audit options, as well
as audit options set for multiple objects.

Object Actions That Can Be Audited
Auditing object actions can be broad or focused (for example, auditing all user actions
or only a select list of user actions).

Table 25-2 lists the object-level standard database action options. Audit policies for the
SELECT SQL statement will capture READ actions as well as SELECT actions.

Table 25-2 Object-Level Standard Database Action Audit Option

Object SQL Action That Can Be Audited

Table ALTER, AUDIT, COMMENT, DELETE, FLASHBACK, GRANT, INDEX,
INSERT, LOCK, RENAME, SELECT, UPDATE

View AUDIT, COMMENT, DELETE, FLASHBACK, GRANT, INSERT, LOCK,
RENAME, SELECT, UPDATE

Sequence ALTER, AUDIT, GRANT, SELECT

Procedure (including
triggers)

AUDIT, EXECUTE, GRANT

Function AUDIT, EXECUTE, GRANT

Package AUDIT, EXECUTE, GRANT

Materialized views ALTER, AUDIT, COMMENT, DELETE, INDEX, INSERT, LOCK, SELECT,
UPDATE

Mining Model AUDIT, COMMENT, GRANT, RENAME, SELECT

Directory AUDIT, GRANT, READ

Library EXECUTE, GRANT

Object type ALTER, AUDIT, GRANT

Java schema objects
(source, class,
resource)

AUDIT, EXECUTE, GRANT

Related Topics

• Auditing Functions, Procedures, Packages, and Triggers
You can audit functions, procedures, PL/SQL packages, and triggers.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-14

• Audit Policies for Oracle Virtual Private Database Policy Functions
Auditing can affect dynamic VPD policies, static VPD policies, and context-
sensitive VPD policies.

Configuring an Object Action Unified Audit Policy
The ACTIONS clause in the CREATE AUDIT POLICY statement creates a policy that
captures object actions.

• Use the following syntax to create a unified audit policy that audits object actions:

CREATE AUDIT POLICY policy_name
 ACTIONS action1 [, action2 ON object1] [, action3 ON object2];

For example:

CREATE AUDIT POLICY my_simple_obj_policy
 ACTIONS SELECT ON OE.ORDERS, UPDATE ON HR.EMPLOYEES;

Note that you can audit multiple actions on multiple objects, as shown in this example.

You can build complex object action unified audit policies, such as those that include
conditions. Remember that after you create the policy, you must use the AUDIT
statement to enable it.

Related Topics

• Syntax for Creating a Unified Audit Policy
To create a unified audit policy, you must use the CREATE AUDIT POLICY
statement.

Example: Auditing Actions on SYS Objects
The CREATE AUDIT POLICY statement can audit actions on SYS objects.

Example 25-6 shows how to create an audit policy that audits SELECT statements on
the SYS.USER$ system table. The audit policy applies to all users, including SYS and
SYSTEM.

Example 25-6 Auditing Actions on SYS Objects

CREATE AUDIT POLICY select_user_dictionary_table_pol ACTIONS SELECT ON SYS.USER$;

AUDIT POLICY select_user_dictionary_table_pol;

Example: Auditing Multiple Actions on One Object
The CREATE AUDIT POLICY statement can audit multiple actions on one object.

Example 25-7 shows how to audit multiple SQL statements performed by users
jrandolph and phawkins on the app_lib library.

Example 25-7 Auditing Multiple Actions on One Object

CREATE AUDIT POLICY actions_on_hr_emp_pol1
 ACTIONS EXECUTE, GRANT
 ON app_lib;

AUDIT POLICY actions_on_hr_emp_pol1 BY jrandolph, phawkins;

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-15

Example: Auditing Both Actions and Privileges on an Object
The CREATE AUDIT POLICY statement can audit both actions and privileges on an
object, using a single policy.

Example 25-8 shows a variation of Example 25-7, in which all EXECUTE and GRANT
statements on the app_lib library using the CREATE LIBRARY privilege are audited.

Example 25-8 Auditing Both Actions and Privileges on an Object

CREATE AUDIT POLICY actions_on_hr_emp_pol2
 PRIVILEGES CREATE LIBRARY
 ACTIONS EXECUTE, GRANT
 ON app_lib;

AUDIT POLICY actions_on_hr_emp_pol2 BY jrandolph, phawkins;

You can audit directory objects. For example, suppose you create a directory object
that contains a preprocessor program that the ORACLE_LOADER access driver will use.
You can audit anyone who runs this program within this directory object.

Example: Auditing All Actions on a Table
The CREATE AUDIT POLICY statement can audit all actions on a table.

You can use the keyword ALL to audit all actions. Example 25-9 shows how to audit all
actions on the HR.EMPLOYEES table, except actions by user pmulligan.

Example 25-9 Auditing All Actions on a Table

CREATE AUDIT POLICY all_actions_on_hr_emp_pol
 ACTIONS ALL ON HR.EMPLOYEES;

AUDIT POLICY all_actions_on_hr_emp_pol EXCEPT pmulligan;

Example: Auditing All Actions in the Database
The CREATE AUDIT POLICY statement can audit all actions in the database.

Example 25-10 shows how to audit all actions in the entire database.

Example 25-10 Auditing All Actions in the Database

CREATE AUDIT POLICY all_actions_pol ACTIONS ALL;

AUDIT POLICY all_actions_pol;

How Object Action Unified Audit Policies Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists object action audit events.

For example:

SELECT ACTION_NAME, OBJECT_SCHEMA, OBJECT_NAME FROM UNIFIED_AUDIT_TRAIL
WHERE DBUSERNAME = 'SYS';

ACTION_NAME OBJECT_SCHEMA OBJECT_NAME

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-16

----------- ------------- ------------
SELECT HR EMPLOYEES

Auditing Functions, Procedures, Packages, and Triggers
You can audit functions, procedures, PL/SQL packages, and triggers.

The areas that you can audit are as follows:

• You can individually audit standalone functions, standalone procedures, and
PL/SQL packages.

• If you audit a PL/SQL package, Oracle Database audits all functions and
procedures within the package.

• If you enable auditing for all executions, Oracle Database audits all triggers in the
database, as well as all the functions and procedures within PL/SQL packages.

• You cannot audit individual functions or procedures within a PL/SQL package.

• When you audit the EXECUTE operation on a PL/SQL stored procedure or stored
function, the database considers only its ability to find the procedure or function
and authorize its execution when determining the success or failure of the
operation for the purposes of auditing. Therefore, if you specify the WHENEVER NOT
SUCCESSFUL clause, then only invalid object errors, non-existent object errors, and
authorization failures are audited; errors encountered during the execution of the
procedure or function are not audited. If you specify the WHENEVER SUCCESSFUL
clause, then all executions that are not blocked by invalid object errors, non-
existent object errors, or authorization failures are audited, regardless of whether
errors are encountered during execution.

Auditing of Oracle Virtual Private Database Predicates
The unified audit trail automatically captures the predicates that are used in Oracle
Virtual Private Database (VPD) policies.

You do not need to create a unified audit policy to capture the VPD predicate audit
information.

This type of audit enables you to identify the predicate expression that was run as part
of a DML operation and thereby help you to identify other actions that may have
occurred as part of the DML operation. For example, if a malicious attack on your
database is performed using a VPD predicate, then you can track the attack by using
the unified audit trail. In addition to predicates from user-created VPD policies, the
internal predicates from Oracle Label Security and Oracle Real Application Security
policies are captured as well. For example, Oracle Label Security internally creates a
VPD policy while applying an OLS policy to a table. Oracle Real Application Security
generates a VPD policy while enabling an Oracle RAS policy.

The unified audit trail writes this predicate information to the RLS_INFO column of the
UNIFIED_AUDIT_TRAIL data dictionary view. If you have fine-grained audit policies,
then the RLS_INFO column of these views captures VPD predicate information as well.

The audit trail can capture the predicates and their corresponding policy names if
multiple VPD policies are enforced on the object. The audit trail captures the policy
schema and policy name to enable you to differentiate predicates that are generated
from different policies. By default, this information is concatenated in the RLS_INFO

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-17

column, but Oracle Database provides a function in the DBMS_AUDIT_UTIL PL/SQL
package that enables you to reformat the results in an easy-to-read format.

The following example shows how you can audit the predicates of a VPD policy:

1. Create the following VPD policy function:

CREATE OR REPLACE FUNCTION auth_orders(
 schema_var IN VARCHAR2,
 table_var IN VARCHAR2
)
 RETURN VARCHAR2
 IS
 return_val VARCHAR2 (400);
 BEGIN
 return_val := 'SALES_REP_ID = 159';
 RETURN return_val;
 END auth_orders;
/

2. Create the following VPD policy:

BEGIN
 DBMS_RLS.ADD_POLICY (
 object_schema => 'oe',
 object_name => 'orders',
 policy_name => 'orders_policy',
 function_schema => 'sec_admin',
 policy_function => 'auth_orders',
 statement_types => 'select, insert, update, delete'
);
 END;
/

3. Create and enable the following the unified audit policy:

CREATE AUDIT POLICY oe_pol
 ACTIONS SELECT ON OE.ORDERS;

AUDIT POLICY oe_pol;

4. Connect as user OE and query the OE.ORDERS table.

CONNECT OE
Enter password: password

SELECT COUNT(*) FROM ORDERS;

5. Connect as a user who has been granted the AUDIT_ADMIN role, and then query
the UNIFIED_AUDIT_TRAIL data dictionary view.

CONNECT sec_admin
Enter password: password

SELECT RLS_INFO FROM UNIFIED_AUDIT_TRAIL;

Output similar to the following should appear:

((POLICY_TYPE=[3]'VPD'),(POLICY_SCHEMA=[9]'SEC_ADMIN'),
(POLICY_NAME=[13]'ORDERS_POLICY'),(PREDICATE=[16]'SALES_REP_ID=159'));

6. To extract these details and add them to their own columns, run the appropriate
function from the DBMS_AUDIT_UTIL PL/SQL package.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-18

For unified auditing, you must run the
DBMS_AUDIT_UTIL.DECODE_RLS_INFO_ATRAIL_UNI function.

For example:

SELECT DBUSERNAME, ACTION_NAME, OBJECT_NAME, SQL_TEXT,
 RLS_PREDICATE, RLS_POLICY_TYPE, RLS_POLICY_OWNER, RLS_POLICY_NAME
 FROM TABLE (DBMS_AUDIT_UTIL.DECODE_RLS_INFO_ATRAIL_UNI
 (CURSOR (SELECT * FROM UNIFIED_AUDIT_TRAIL)));

The reformatted audit trail output appears similar to the following:

DBUSERNAME ACTION_NAME OBJECT_NAME SQL_TEXT
---------- ----------- ----------- ---------------------------
RLS_PREDICATE RLS_POLICY_TYPE RLS_POLICY_OWNER RLS_POLICY_NAME
------------------ --------------- ---------------- ---------------
OE SELECT ORDERS SELECT COUNT(*) FROM ORDERS
SALES_REP_ID = 159 VPD SEC_ADMIN ORDERS_POLICY

See Also:

• Using Oracle Virtual Private Database to Control Data Access for more
information about Oracle Virtual Private Database

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_AUDIT_UTIL PL/SQL package

Audit Policies for Oracle Virtual Private Database Policy Functions
Auditing can affect dynamic VPD policies, static VPD policies, and context-sensitive
VPD policies.

• Dynamic policies: Oracle Database evaluates the policy function twice, once
during SQL statement parsing and again during execution. As a result, two audit
records are generated for each evaluation.

• Static policies: Oracle Database evaluates the policy function once and then
caches it in the SGA. As a result, only one audit record is generated.

• Context-sensitive policies: Oracle Database executes the policy function once,
during statement parsing. As a result, only one audit record is generated.

Unified Auditing with Editioned Objects
When an editioned object has a unified audit policy, it applies in all editions in which
the object is visible.

When an editioned object is actualized, any unified audit policies that are attached to it
are newly attached to the new actual occurrence. When you newly apply a unified
audit policy to an inherited editioned object, this action will actualize it.

You can find the editions in which audited objects appear by querying the OBJECT_NAME
and OBJ_EDITION_NAME columns in the UNIFIED_AUDIT_TRAIL data dictionary view.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-19

See Also:

Oracle Database Development Guide for detailed information about editions

Auditing the READ ANY TABLE and SELECT ANY TABLE Privileges
The CREATE AUDIT POLICY statement can audit the READ ANY TABLE and SELECT ANY
TABLE privileges.

• About Auditing the READ ANY TABLE and SELECT ANY TABLE Privileges
You can create unified audit policies that capture the use of the READ ANY TABLE
and SELECT ANY TABLE system privileges.

• Creating a Unified Audit Policy to Capture READ Object Privilege Operations
You can create unified audit policies that capture READ object privilege operations.

• How the Unified Audit Trail Captures READ ANY TABLE and SELECT ANY
TABLE
The unified audit trail captures SELECT behavior based on whether a user has the
READ ANY TABLE or the SELECT ANY TABLE privilege.

About Auditing the READ ANY TABLE and SELECT ANY TABLE Privileges
You can create unified audit policies that capture the use of the READ ANY TABLE and
SELECT ANY TABLE system privileges.

Based on the action that the user tried to perform and the privilege that was granted to
the user, the SYSTEM_PRIVILEGE_USED column of the UNIFIED_AUDIT_TRAIL data
dictionary view will record either the READ ANY TABLE system privilege or the SELECT
ANY TABLE system privilege. For example, suppose the user has been granted the
SELECT ANY TABLE privilege and then performs a query on a table. The audit trail will
record that the user used the SELECT ANY TABLE system privilege. If the user was
granted READ ANY TABLE and performed the same query, then the READ ANY TABLE
privilege is recorded.

Creating a Unified Audit Policy to Capture READ Object Privilege Operations
You can create unified audit policies that capture READ object privilege operations.

• To create a unified audit policy to capture any READ object operations, create the
policy for the SELECT statement, not for the READ statement.

For example:

CREATE AUDIT POLICY read_hr_employees
 ACTIONS SELECT ON HR.EMPLOYEES;

For any SELECT object operations, also create the policy on the SELECT statement, as
with other object actions that you can audit.

Related Topics

• Auditing Object Actions
You can use the CREATE AUDIT POLICY statement to audit object actions.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-20

How the Unified Audit Trail Captures READ ANY TABLE and SELECT ANY
TABLE

The unified audit trail captures SELECT behavior based on whether a user has the READ
ANY TABLE or the SELECT ANY TABLE privilege.

Table 25-3 describes how the unified audit trail captures these actions.

Table 25-3 Auditing Behavior for READ ANY TABLE and SELECT ANY TABLE

Statement User Issues Privilege Granted
to User

System Privilege Being
Audited

Expected UNIFIED_AUDIT_TRAIL
Behavior

SELECT SELECT ANY
TABLE

SELECT ANY TABLE Record inserted into
SYSTEM_PRIVILEGE_USED:

SELECT ANY TABLE

SELECT SELECT ANY
TABLE

READ ANY TABLE No record

SELECT SELECT ANY
TABLE

Both SELECT ANY TABLE
and READ ANY TABLE

Record inserted into
SYSTEM_PRIVILEGE_USED:

SELECT ANY TABLE

SELECT SELECT ANY
TABLE

Neither SELECT ANY
TABLE nor READ ANY
TABLE

No record

SELECT READ ANY TABLE SELECT ANY TABLE No record

SELECT READ ANY TABLE READ ANY TABLE Record inserted into
SYSTEM_PRIVILEGE_USED:

READ ANY TABLE

SELECT READ ANY TABLE Both SELECT ANY TABLE
and READ ANY TABLE

Record inserted into
SYSTEM_PRIVILEGE_USED:

READ ANY TABLE

SELECT READ ANY TABLE Neither SELECT ANY
TABLE nor READ ANY
TABLE

No record

SELECT Both SELECT ANY
TABLE and READ
ANY TABLE

SELECT ANY TABLE No record, because READ ANY
TABLE was used for access

SELECT Both SELECT ANY
TABLE and READ
ANY TABLE

READ ANY TABLE Record inserted into
SYSTEM_PRIVILEGE_USED:

READ ANY TABLE

SELECT Both SELECT ANY
TABLE and READ
ANY TABLE

Both SELECT ANY TABLE
and READ ANY TABLE

Record inserted into
SYSTEM_PRIVILEGE_USED:

READ ANY TABLE

SELECT Both SELECT ANY
TABLE and READ
ANY TABLE

Neither SELECT ANY
TABLE nor READ ANY
TABLE

No record

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-21

Table 25-3 (Cont.) Auditing Behavior for READ ANY TABLE and SELECT ANY TABLE

Statement User Issues Privilege Granted
to User

System Privilege Being
Audited

Expected UNIFIED_AUDIT_TRAIL
Behavior

SELECT Neither SELECT
ANY TABLE nor
READ ANY TABLE

SELECT ANY TABLE No record

SELECT Neither SELECT
ANY TABLE nor
READ ANY TABLE

READ ANY TABLE No record

SELECT Neither SELECT
ANY TABLE nor
READ ANY TABLE

Both SELECT ANY TABLE
and READ ANY TABLE

No record

SELECT Neither SELECT
ANY TABLE nor
READ ANY TABLE

Neither SELECT ANY
TABLE nor READ ANY
TABLE

No record

SELECT ... FOR
UPDATE

SELECT ANY
TABLE

SELECT ANY TABLE Record inserted into
SYSTEM_PRIVILEGE_USED:

SELECT ANY TABLE

SELECT ... FOR
UPDATE

SELECT ANY
TABLE

READ ANY TABLE No record

SELECT ... FOR
UPDATE

SELECT ANY
TABLE

Both SELECT ANY TABLE
and READ ANY TABLE

Record inserted into
SYSTEM_PRIVILEGE_USED:

SELECT ANY TABLE

SELECT ... FOR
UPDATE

SELECT ANY
TABLE

Neither SELECT ANY
TABLE nor READ ANY
TABLE

No record

SELECT ... FOR
UPDATE

READ ANY TABLE SELECT ANY TABLE No record

SELECT ... FOR
UPDATE

READ ANY TABLE READ ANY TABLE No record

SELECT ... FOR
UPDATE

READ ANY TABLE Both SELECT ANY TABLE
and READ ANY TABLE

No record

SELECT ... FOR
UPDATE

READ ANY TABLE Neither SELECT ANY
TABLE nor READ ANY
TABLE

No record

SELECT ... FOR
UPDATE

Both SELECT ANY
TABLE and READ
ANY TABLE

SELECT ANY TABLE Record inserted into
SYSTEM_PRIVILEGE_USED:

SELECT ANY TABLE

SELECT ... FOR
UPDATE

Both SELECT ANY
TABLE and READ
ANY TABLE

READ ANY TABLE No record, because READ ANY
TABLE was used for access

SELECT ... FOR
UPDATE

Both SELECT ANY
TABLE and READ
ANY TABLE

Both SELECT ANY TABLE
and READ ANY TABLE

Record inserted into
SYSTEM_PRIVILEGE_USED:

SELECT ANY TABLE

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-22

Table 25-3 (Cont.) Auditing Behavior for READ ANY TABLE and SELECT ANY TABLE

Statement User Issues Privilege Granted
to User

System Privilege Being
Audited

Expected UNIFIED_AUDIT_TRAIL
Behavior

SELECT ... FOR
UPDATE

Both SELECT ANY
TABLE and READ
ANY TABLE

Neither SELECT ANY
TABLE nor READ ANY
TABLE

No record

SELECT ... FOR
UPDATE

Neither SELECT
ANY TABLE nor
READ ANY TABLE

SELECT ANY TABLE No record

SELECT ... FOR
UPDATE

Neither SELECT
ANY TABLE nor
READ ANY TABLE

READ ANY TABLE No record

SELECT ... FOR
UPDATE

Neither SELECT
ANY TABLE nor
READ ANY TABLE

Both SELECT ANY TABLE
and READ ANY TABLE

No record

SELECT ... FOR
UPDATE

Neither SELECT
ANY TABLE nor
READ ANY TABLE

Neither SELECT ANY
TABLE or READ ANY
TABLE

No record

Auditing SQL Statements and Privileges in a Multitier Environment
You can create a unified audit policy to audit the activities of a client in a multitier
environment.

In a multitier environment, Oracle Database preserves the identity of a client through
all tiers. Thus, you can audit actions taken on behalf of the client by a middle-tier
application, by using the BY user clause in the AUDIT statement for your policy. The
audit applies to all user sessions, including proxy sessions.

The middle tier can also set the user client identity in a database session, enabling the
auditing of end-user actions through the middle-tier application. The end-user client
identity then shows up in the audit trail.

The following example shows how to audit SELECT TABLE statements issued by the
user jackson:

CREATE AUDIT POLICY tab_pol
 PRIVILEGES CREATE ANY TABLE
 ACTIONS CREATE TABLE;

AUDIT tab_pol BY jackson;

You can audit user activity in a multitier environment. Once audited, you can verify
these activities by querying the UNIFIED_AUDIT_TRAIL data dictionary view.

Figure 25-1 illustrates how you can audit proxy users by querying the
PROXY_SESSIONID, ACTION_NAME, and SESSION_ID columns of the
UNIFIED_AUDIT_TRAIL view. In this scenario, both the database user and proxy user
accounts are known to the database. Session pooling can be used.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-23

Figure 25-1 Auditing Proxy Users

Table
Table

CLIENT_IDENTIFIER attribute
of USERENV
namespace = ‘CLIENT_A’

UNIFIED_AUDIT_TRAIL.DBPROXY_USERNAME = 'apphr' (Proxy user for jackson)

UNIFIED_AUDIT_TRAIL.PROXY_SESSIONID = 3205062574 (ID for the apphr proxy user login)

UNIFIED_AUDIT_TRAIL.ACTION_NAME = 'CREATE TABLE' (User jackson’s actions)

Client_A

Mid-Tier
(apphr)

Database Server

Database

Figure 25-2 illustrates how you can audit client identifier information across multiple
database sessions by querying the CLIENT_ID column of the DBA_AUDIT_TRAIL data
dictionary view. In this scenario, the client identifier has been set to CLIENT_A. As with
the proxy user-database user scenario described in Figure 25-1, session pooling can
be used.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-24

Figure 25-2 Auditing Client Identifier Information Across Sessions

Table

Table

CLIENT_IDENTIFIER attribute
of USERENV
namespace = ‘CLIENT_A’

UNIFIED_AUDIT_TRAIL.CLIENT_IDENTIFIER =
‘CLIENT_A’

Client A

Mid-Tier

(AppInventory)

Database 1

Database 2

Database 1

Table

Table

UNIFIED_AUDIT_TRAIL.CLIENT_IDENTIFIER =
‘CLIENT_A’

Database 2

Database Link

Related Topics

• Preserving User Identity in Multitiered Environments
You can use middle tier servers for proxy authentication and client identifiers to
identify application users who are not known to the database.

Creating a Condition for a Unified Audit Policy
You can use the CREATE AUDIT POLICY statement to create conditions for a unified
audit policy.

• About Conditions in Unified Audit Policies
You can create a unified audit policy that uses a SYS_CONTEXT namespace-attribute
pair to specify a condition.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-25

• Configuring a Unified Audit Policy with a Condition
The WHEN clause in the CREATE AUDIT POLICY statement defines the condition in
the audit policy.

• Example: Auditing Access to SQL*Plus
The CREATE AUDIT POLICY statement can audit access to SQL*Plus.

• Example: Auditing Actions Not in Specific Hosts
The CREATE AUDIT POLICY statement can audit actions that are not in specific
hosts.

• Example: Auditing Both a System-Wide and a Schema-Specific Action
The CREATE AUDIT POLICY statement can audit both system-wide and schema-
specific actions.

• Example: Auditing a Condition Per Statement Occurrence
The CREATE AUDIT POLICY statement can audit conditions.

• Example: Unified Audit Session ID of a Current Administrative User Session
The SYS_CONTEXT function can be used to find session IDs.

• Example: Unified Audit Session ID of a Current Non-Administrative User Session
The SYS_CONTEXT function can find the session ID of a current non-administrative
user session.

• How Audit Records from Conditions Appear in the Audit Trail
The audit record conditions from a unified audit policy do not appear in the audit
trail.

About Conditions in Unified Audit Policies
You can create a unified audit policy that uses a SYS_CONTEXT namespace-attribute
pair to specify a condition.

For example, this audit condition can apply to a specific user who may fulfil the audit
condition, or a computer host where the audit condition is fulfilled.

If the audit condition is satisfied, then Oracle Database creates an audit record for the
event. As part of the condition definition, you must specify whether the audited
condition is evaluated per statement occurrence, session, or database instance.

Note:

Audit conditions can use both secure and insecure application contexts.

Configuring a Unified Audit Policy with a Condition
The WHEN clause in the CREATE AUDIT POLICY statement defines the condition in the
audit policy.

• Use the following syntax to create a unified audit policy that uses a condition:

CREATE AUDIT POLICY policy_name
 action_privilege_role_audit_option
[WHEN function_operation_value_list_1 [[AND | OR]
function_operation_value_list_n]
 EVALUATE PER STATEMENT | SESSION | INSTANCE];

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-26

In this specification:

• action_privilege_role_audit_option refers to audit options for system actions,
object actions, privileges, and roles.

• WHEN defines the condition. It has the following components:

– function uses the following types of functions:

Numeric functions, such as BITAND, CEIL, FLOOR, and LN POWER

Character functions that return character values, such as CONCAT, LOWER, and
UPPER

Character functions that return numeric values, such as LENGTH or INSTR

Environment and identifier functions, such as SYS_CONTEXT and UID. For
SYS_CONTEXT, in most cases, you may want to use the USERENV namespace,
which is described in Oracle Database SQL Language Reference.

– operation can be any the following operators: AND, OR, IN, NOT IN, =, <, >, <>

– value_list refers to the condition for which you are testing.

You can include additional conditions for each function_operation_value_list
set, separated by AND or OR.

When you write the WHEN clause, follow these guidelines:

– Enclose the entire function operation value setting in single quotation
marks. Within the clause, enclose each quoted component within two pairs of
single quotation marks. Do not use double quotation marks.

– Do not exceed 4000 bytes for the WHEN condition.

• EVALUATE PER refers to the following options:

– STATEMENT evaluates the condition for each relevant auditable statement that
occurs.

– SESSION evaluates the condition only once during the session, and then
caches and re-uses the result during the remainder of the session. Oracle
Database evaluates the condition the first time the policy is used, and then
stores the result in UGA memory afterward.

– INSTANCE evaluates the condition only once during the database instance
lifetime. After Oracle Database evaluates the condition, it caches and re-uses
the result for the remainder of the instance lifetime. As with the SESSION
evaluation, the evaluation takes place the first time it is needed, and then the
results are stored in UGA memory afterward.

For example:

CREATE AUDIT POLICY oe_orders_pol
 ACTIONS UPDATE ON OE.ORDERS
 WHEN 'SYS_CONTEXT(''USERENV'', ''IDENTIFICATION_TYPE'') = ''EXTERNAL'''
 EVALUATE PER STATEMENT;

Remember that after you create the policy, you must use the AUDIT statement to
enable it.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-27

See Also:

Oracle Database SQL Language Reference for more information about
functions that you can use in conditions

Example: Auditing Access to SQL*Plus
The CREATE AUDIT POLICY statement can audit access to SQL*Plus.

Example 25-11 shows how to audit access to the database with SQL*Plus by users
who have been directly granted the roles emp_admin and sales_admin.

Example 25-11 Auditing Access to SQL*Plus

CREATE AUDIT POLICY logon_pol
 ACTIONS LOGON
 WHEN 'INSTR(UPPER(SYS_CONTEXT(''USERENV'', ''CLIENT_PROGRAM_NAME'')), ''SQLPLUS'')
> 0'
 EVALUATE PER SESSION;

AUDIT POLICY logon_pol BY USERS WITH GRANTED ROLES emp_admin, sales_admin;

Example: Auditing Actions Not in Specific Hosts
The CREATE AUDIT POLICY statement can audit actions that are not in specific hosts.

Example 25-12 shows how to audit two actions (UPDATE and DELETE statements) on the
OE.ORDERS table, but excludes the host names sales_24 and sales_12 from the audit.
It performs the audit on a per session basis and writes audit records for failed attempts
only.

Example 25-12 Auditing Actions Not in Specific Hosts

CREATE AUDIT POLICY oe_table_audit1
 ACTIONS UPDATE ON OE.ORDERS, DELETE ON OE.ORDERS
 WHEN 'SYS_CONTEXT (''USERENV'', ''HOST'') NOT IN (''sales_24'',''sales_12'')'
 EVALUATE PER SESSION;

AUDIT POLICY oe_table_audit1 WHENEVER NOT SUCCESSFUL;

Example: Auditing Both a System-Wide and a Schema-Specific Action
The CREATE AUDIT POLICY statement can audit both system-wide and schema-specific
actions.

Example 25-13 shows a variation of Example 25-12 in which the UPDATE statement is
audited system wide. The DELETE statement audit is still specific to the OE.ORDERS
table.

Example 25-13 Auditing Both a System-Wide and a Schema-Specific Action

CREATE AUDIT POLICY oe_table_audit2
 ACTIONS UPDATE, DELETE ON OE.ORDERS
 WHEN 'SYS_CONTEXT (''USERENV'', ''HOST'') NOT IN (''sales_24'',''sales_12'')'
 EVALUATE PER SESSION;

AUDIT POLICY oe_table_audit2;

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-28

Example: Auditing a Condition Per Statement Occurrence
The CREATE AUDIT POLICY statement can audit conditions.

Example 25-14 shows how to audit a condition based on each occurrence of the
DELETE statement on the OE.ORDERS table and exclude user jmartin from the audit.

Example 25-14 Auditing a Condition Per Statement Occurrence

CREATE AUDIT POLICY sales_clerk_pol
 ACTIONS DELETE ON OE.ORDERS
 WHEN 'SYS_CONTEXT(''USERENV'', ''CLIENT_IDENTIFIER'') = ''sales_clerk'''
 EVALUATE PER STATEMENT;

AUDIT POLICY sales_clerk_pol EXCEPT jmartin;

Example: Unified Audit Session ID of a Current Administrative User Session
The SYS_CONTEXT function can be used to find session IDs.

Example 25-15 shows how to find the unified audit session ID of current user session
for an administrative user.

Example 25-15 Unified Audit Session ID of a Current Administrative User
Session

CONNECT SYS AS SYSDBA
Enter password: password

SELECT SYS_CONTEXT('USERENV', 'UNIFIED_AUDIT_SESSIONID') FROM DUAL;

Output similar to the following appears:

SYS_CONTEXT('USERENV','UNIFIED_AUDIT_SESSIONID')
--
2318470183

Note that in mixed mode auditing, the UNIFIED_AUDIT_SESSIONID value in the USERENV
namespace is different from the value that is recorded by the SESSIONID parameter.
Hence, if you are using mixed mode auditing and want to find the correct audit session
ID, you should use the USERENV UNIFIED_AUDIT_SESSIONID parameter, not the
SESSIONID parameter. In pure unified auditing, the SESSIONID and
UNIFIED_AUDIT_SESSIONID values are the same.

Example: Unified Audit Session ID of a Current Non-Administrative User
Session

The SYS_CONTEXT function can find the session ID of a current non-administrative user
session.

Example 25-16 shows how to find the unified audit session ID of a current user
session for a non-administrative user.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-29

Example 25-16 Unified Audit Session ID of a Current Non-Administrative User
Session

CONNECT mblake -- Or, CONNECT mblake@hrpdb for a PDB
Enter password: password

SELECT SYS_CONTEXT('USERENV', 'UNIFIED_AUDIT_SESSIONID') FROM DUAL;

Output similar to the following appears:

SYS_CONTEXT('USERENV','UNIFIED_AUDIT_SESSIONID')
--
2776921346

How Audit Records from Conditions Appear in the Audit Trail
The audit record conditions from a unified audit policy do not appear in the audit trail.

If the condition evaluates to true and the record is written, then the record appears in
the audit trail. You can check the audit trail by querying the UNIFIED_AUDIT_TRAIL data
dictionary view.

Related Topics

• Audit Policy Data Dictionary Views
Data dictionary and dynamic views can be used to find detailed auditing
information.

Auditing Application Context Values
You can use the AUDIT statement to audit application context values.

• About Auditing Application Context Values
You can capture application context values in the unified audit trail.

• Configuring Application Context Audit Settings
The AUDIT statement with the CONTEXT keyword configures auditing for application
context values.

• Disabling Application Context Audit Settings
The NOAUDIT statement disables application context audit settings.

• Example: Auditing Application Context Values in a Default Database
The AUDIT CONTEXT NAMESPACE statement can audit application context values.

• Example: Auditing Application Context Values from Oracle Label Security
The AUDIT CONTEXT NAMESPACE statement can audit application context values
from Oracle Label Security.

• How Audited Application Contexts Appear in the Audit Trail
The UNIFIED_AUDIT_POLICIES data dictionary view lists application context audit
events.

About Auditing Application Context Values
You can capture application context values in the unified audit trail.

This feature enables you to capture any application context values set by the database
applications, while executing the audited statement.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-30

If you plan to audit Oracle Label Security, then this feature captures session label
activity for the database audit trail. The audit trail records all the values retrieved for
the specified context-attribute value pairs.

The application context audit setting or the audit policy have session static semantics.
In other words, if a new policy is enabled for a user, then the subsequent user
sessions will see an effect of this command. After the session is established, then the
policies and contexts settings are loaded and the subsequent AUDIT statements have
no effect on that session.

For multitenant environments, the application context audit policy applies only to the
current PDB.

See Also:

• Using Application Contexts to Retrieve User Information, for detailed
information about application contexts

• Unified Audit Policies or AUDIT Settings in a Multitenant Environment

• Oracle Label Security Administrator’s Guide for detailed information
about Oracle Label Security

Configuring Application Context Audit Settings
The AUDIT statement with the CONTEXT keyword configures auditing for application
context values.

You do not create an unified audit policy for this type of auditing.

• Use the following syntax to configure auditing for application context values:

AUDIT CONTEXT NAMESPACE context_name1 ATTRIBUTES attribute1 [, attribute2]
 [, CONTEXT NAMESPACE context_name2 ATTRIBUTES attribute1 [, attribute2]]
 [BY user_list];

In this specification:

• context_name1: Optionally, you can include one additional CONTEXT name-attribute
value pair.

• user_list is an optional list of database user accounts. Separate multiple names
with a comma. If you omit this setting, then Oracle Database configures the
application context policy for all users. When each user logs in, a list of all
pertinent application contexts and their attributes is cached for the user session.

For example:

AUDIT CONTEXT NAMESPACE clientcontext3 ATTRIBUTES module, action,
 CONTEXT NAMESPACE ols_session_labels ATTRIBUTES ols_pol1, ols_pol3
 BY appuser1, appuser2;

To find a list of currently configured application context audit settings, query the
AUDIT_UNIFIED_CONTEXTS data dictionary view.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-31

Disabling Application Context Audit Settings
The NOAUDIT statement disables application context audit settings.

• To disable an application context audit setting, specify the namespace and
attribute settings in the NOAUDIT statement. You can enter the attributes in any
order (that is, they do not need to match the order used in the corresponding
AUDIT CONTEXT statement.)

For example:

NOAUDIT CONTEXT NAMESPACE client_context ATTRIBUTES module,
 CONTEXT NAMESPACE ols_session_labels ATTRIBUTES ols_pol1, ols_pol3
 BY USERS WITH GRANTED ROLES emp_admin;

To find the currently audited application contexts, query the AUDIT_UNIFIED_CONTEXTS
data dictionary view.

Example: Auditing Application Context Values in a Default Database
The AUDIT CONTEXT NAMESPACE statement can audit application context values.

Example 25-17 shows how to audit the clientcontext application values for the
module and action attributes, by the user appuser1.

Example 25-17 Auditing Application Context Values in a Default Database

AUDIT CONTEXT NAMESPACE clientcontext ATTRIBUTES module, action
BY appuser1;

Example: Auditing Application Context Values from Oracle Label Security
The AUDIT CONTEXT NAMESPACE statement can audit application context values from
Oracle Label Security.

Example 25-18 shows how to audit an application context for Oracle Label Security
called ols_session_labels, for the attributes ols_pol1 and ols_pol2.

Example 25-18 Auditing Application Context Values from Oracle Label Security

AUDIT CONTEXT NAMESPACE ols_session_labels ATTRIBUTES ols_pol1, ols_pol2;

How Audited Application Contexts Appear in the Audit Trail
The UNIFIED_AUDIT_POLICIES data dictionary view lists application context audit
events.

The APPLICATION_CONTEXTS column of the UNIFIED_AUDIT_TRAIL data dictionary view
shows application context audit data. The application contexts appear as a list of semi-
colon separated values.

For example:

SELECT APPLICATION_CONTEXTS FROM UNIFIED_AUDIT_TRAIL
 WHERE UNIFIED_AUDIT_POLICIES = 'app_audit_pol';

APPLICATION_CONTEXTS

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-32

--
CLIENT_CONTEXT.APPROLE=MANAGER;E2E_CONTEXT.USERNAME=PSMITH

Auditing Oracle Database Real Application Security Events
You can use CREATE AUDIT POLICY statement to audit Oracle Database Real
Application Security events.

• About Auditing Oracle Database Real Application Security Events
You must have the AUDIT_ADMIN role to audit Oracle Database Real Application
Security events.

• Oracle Database Real Application Security Auditable Events
Oracle Database provides Real Application Security events that you can audit,
such CREATE USER, UPDATE USER.

• Oracle Database Real Application Security User, Privilege, and Role Audit Events
The unified audit trail can capture Oracle Database Real Application Security
events for users, privileges, and roles.

• Oracle Database Real Application Security Security Class and ACL Audit Events
The unified audit trail can capture Oracle Database Real Application Security
security class and ACL audit events.

• Oracle Database Real Application Security Session Audit Events
The unified audit trail can capture Oracle Database Real Application Security
session audit events.

• Oracle Database Real Application Security ALL Events
The unified audit trail can capture Oracle Database Real Application Security ALL
events.

• Configuring a Unified Audit Policy for Oracle Database Real Application Security
The CREATE AUDIT POLICY statement can create a unified audit policy for Oracle
Real Application Security.

• Example: Auditing Real Application Security User Account Modifications
The CREATE AUDIT POLICY statement can audit Real Application Security user
account modifications.

• Example: Using a Condition in a Real Application Security Unified Audit Policy
The CREATE AUDIT POLICY statement can set a condition for a Real Application
Security unified audit policy.

• How Oracle Database Real Application Security Events Appear in the Audit Trail
The DBA_XS_AUDIT_TRAIL data dictionary view lists Oracle Real Application
Security audit events.

About Auditing Oracle Database Real Application Security Events
You must have the AUDIT_ADMIN role to audit Oracle Database Real Application
Security events.

To access the audit trail, you can query the UNIFIED_AUDIT_TRAIL data dictionary
view, whose Real Application Security-specific columns begin with XS_. If you want to
find audit information about the internally generated VPD predicate that is created
while an Oracle Real Application Security policy is being enabled, then you can query
the RLS_INFO column.

Real Application Security-specific views are as follows:

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-33

• DBA_XS_AUDIT_TRAIL provides detailed information about Real Application Security
events that were audited.

• DBA_XS_AUDIT_POLICY_OPTIONS describes the auditing options that were defined
for Real Application Security unified audit policies.

• DBA_XS_ENB_AUDIT_POLICIES lists users for whom Real Application Security
unified audit polices are enabled.

See Also:

• Auditing Application Context Values

Oracle Database Real Application Security Predfined Audit Policies

• Auditing of Oracle Virtual Private Database Predicates for information
about how to format the output of the RLS_INFO column

• Oracle Database Real Application Security Administrator's and
Developer's Guide for detailed information about Oracle Database Real
Application Security

Oracle Database Real Application Security Auditable Events
Oracle Database provides Real Application Security events that you can audit, such
CREATE USER, UPDATE USER.

To find a list of auditable Real Application Security events that you can audit, you can
query the COMPONENT and NAME columns of the AUDITABLE_SYSTEM_ACTIONS data
dictionary view, as follows:

SELECT NAME FROM AUDITABLE_SYSTEM_ACTIONS WHERE COMPONENT = 'XS';

NAME

CREATE USER
UPDATE USER
DELETE USER
...

Related Topics

• Oracle Database Real Application Security User, Privilege, and Role Audit Events
The unified audit trail can capture Oracle Database Real Application Security
events for users, privileges, and roles.

• Oracle Database Real Application Security Security Class and ACL Audit Events
The unified audit trail can capture Oracle Database Real Application Security
security class and ACL audit events.

• Oracle Database Real Application Security Session Audit Events
The unified audit trail can capture Oracle Database Real Application Security
session audit events.

• Oracle Database Real Application Security ALL Events
The unified audit trail can capture Oracle Database Real Application Security ALL
events.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-34

Oracle Database Real Application Security User, Privilege, and Role Audit
Events

The unified audit trail can capture Oracle Database Real Application Security events
for users, privileges, and roles.

Table 25-4 describes these events.

Table 25-4 Oracle Database Real Application Security User, Privilege, and Role
Audit Events

Audit Event Description

CREATE USER Creates an Oracle Database Real Application Security user account
through the XS_PRINCIPAL.CREATE_USER procedure

UPDATE USER Updates an Oracle Database Real Application Security user account
through the following procedures:

• XS_PRINCIPAL.SET_EFFECTIVE_DATES
• XS_PRINCIPAL.SET_USER_DEFAULT_ROLES_ALL
• XS_PRINCIPAL.SET_USER_SCHEMA
• XS_PRINCIPAL.SET_GUID
• XS_PRINCIPAL.SET_USER_STATUS
• XS_PRINCIPAL.SET_DESCRIPTION

DELETE USER Deletes an Oracle Database Real Application Security user account
through the through the XS_PRINCIPAL.DELETE_PRINCIPAL
procedure

AUDIT_GRANT_PRIVILE
GE

Audits the GRANT_SYSTEM_PRIVILEGE privilege

AUDIT_REVOKE_PRIVIL
EGE

Audits the REVOKE_SYSTEM_PRIVILEGE privilege

CREATE ROLE Creates an Oracle Database Real Application Security role through
the XS_PRINCIPAL.CREATE_ROLE procedure

UPDATE ROLE Updates an Oracle Database Real Application Security role through
the following procedures:

• XS_PRINCIPAL.SET_DYNAMIC_ROLE_SCOPE
• XS_PRINCIPAL.SET_DYNAMIC_ROLE_DURATION
• XS_PRINCIPAL.SET_EFFECTIVE_DATES
• XS_PRINCIPAL.SET_ROLE_DEFAULT

DELETE ROLE Deletes an Oracle Database Real Application Security role through
the XS_PRINCIPAL.DELETE_ROLE procedure

GRANT ROLE Grants Oracle Database Real Application Security roles through the
XS_PRINCIPAL.GRANT_ROLES procedure

REVOKE ROLE Revokes Oracle Database Real Application Security roles through
the XS_PRINCIPAL.REVOKE_ROLES procedure and revokes all
granted roles through the
XS_PRINCIPAL.REVOKE_ALL_GRANTED_ROLES procedure

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-35

Table 25-4 (Cont.) Oracle Database Real Application Security User, Privilege,
and Role Audit Events

Audit Event Description

ADD PROXY Adds Oracle Database Real Application Security proxy user account
through the XS_PRINCIPAL.ADD_PROXY_USER procedure, and adds
proxies to database users through the
XS_PRINCIPAL.ADD_PROXY_TO_SCHEMA procedure

REMOVE PROXY Removes an Oracle Database Real Application Security proxy user
account through the XS_PRINCIPAL.REMOVE_PROXY_USER,
XS_PRINCIPAL.REMOVE_ALL_PROXY_USERS, and
XS_PRINCIPAL.REMOVE_PROXY_FROM_SCHEMA PROCEDURES

SET USER PASSWORD Sets the Oracle Database Real Application Security user account
password through the XS_PRINCIPAL.SET_PASSWORD procedure

SET USER VERIFIER Sets the Oracle Database Real Application Security proxy user
account verifier through the XS_PRINCIPAL.SET_VERIFIER
procedure

Oracle Database Real Application Security Security Class and ACL Audit
Events

The unified audit trail can capture Oracle Database Real Application Security security
class and ACL audit events.

Table 25-5 describes these events.

Table 25-5 Oracle Database Real Application Security Security Class and ACL
Audit Events

Audit Event Description

CREATE SECURITY CLASS Creates a security class through the
XS_SECURITY_CLASS.CREATE_SECURITY_CLASS procedure

UPDATE SECURITY CLASS Creates a security class through the following procedures:

• XS_SECURITY_CLASS.SET_DEFAULT_ACL
• XS_SECURITY_CLASS.ADD_PARENTS
• XS_SECURITY_CLASS.REMOVE_ALL_PARENTS
• XS_SECURITY_CLASS.REMOVE_PARENTS
• XS_SECURITY_CLASS.ADD_PRIVILEGES
• XS_SECURITY_CLASS.REMOVE_ALL_PRIVILEGES
• XS_SECURITY_CLASS.ADD_IMPLIED_PRIVILEGES
• XS_SECURITY_CLASS.REMOVE_IMPLIED_PRIVILEGES
• XS_SECURITY_CLASS.REMOVE_ALL_IMPLIED_PRIVILEGE

S
• XS_SECURITY_CLASS.SET_DESCRIPTION

DELETE SECURITY CLASS Deletes a security class through the
XS_SECURITY_CLASS.DELETE_SECURITY_CLASS procedure

CREATE ACL Creates an Access Control List (ACL) through the
XS_ACL.CREATE_ACL procedure

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-36

Table 25-5 (Cont.) Oracle Database Real Application Security Security Class
and ACL Audit Events

Audit Event Description

UPDATE ACL Updates an ACL through the following procedures:

• XS_ACL.APPEND_ACES
• XS_ACL.REMOVE_ALL_ACES
• XS_ACL.SET_SECURITY_CLASS
• XS_ACL.SET_PARENT_ACL
• XS_ACL.ADD_ACL_PARAMETER
• XS_ACL.REMOVE_ALL_ACL_PARAMETERS
• XS_ACL.REMOVE_ACL_PARAMETER
• XS_ACL.SET_DESCRIPTION

DELETE ACL Deletes an ACL through the XS_ACL.DELETE_ACL procedure

CREATE DATA SECURITY- Creates a data security policy through the
XS_DATA_SECURITY.CREATE_DATA_SECURITY procedure

UPDATE DATA SECURITY Updates a data security policy through the following procedures:

• XS_DATA_SECURITY.CREATE_ACL_PARAMETER
• XS_DATA_SECURITY.DELETE_ACL_PARAMETER
• XS_DATA_SECURITY.SET_DESCRIPTION

DELETE DATA SECURITY Deletes a data security policy through the
XS_DATA_SECURITY.DELETE_DATA_SECURITY procedure

ENABLE DATA SECURITY Enables extensible data security for a database table or view
through the XS_DATA_SECURITY.ENABLE_OBJECT_POLICY
procedure

DISABLE DATA SECURITY Disables extensible data security for a database table or view
through the XS_DATA_SECURITY.DISABLE_XDS procedure

Oracle Database Real Application Security Session Audit Events
The unified audit trail can capture Oracle Database Real Application Security session
audit events.

Table 25-4 describes these events.

Table 25-6 Oracle Database Real Application Security Session Audit Events

Audit Event Description

CREATE SESSION Creates a session through the
DBMS_XS_SESSIONS.CREATE_SESSION procedure

DESTROY SESSION Destroys a session through the
DBMS_XS_SESSIONS.DESTROY_SESSION procedure

CREATE SESSION NAMESPACE Creates a namespace through the
DBMS_XS_SESSIONS.CREATE_NAMESPACE procedure

DELETE SESSION NAMESPACE Deletes a namespace through the
DBMS_XS_SESSIONS.DELETE_NAMESPACE procedure

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-37

Table 25-6 (Cont.) Oracle Database Real Application Security Session Audit
Events

Audit Event Description

CREATE NAMESPACE
ATTRIBUTE

Creates a namespace attribute through the
DBMS_XS_SESSIONS.CREATE_ATTRIBUTE procedure

SET NAMESPACE ATTRIBUTE Sets a namespace attribute through the
DBMS_XS_SESSIONS.SET_ATTRIBUTE procedure

GET NAMESPACE ATTRIBUTE Gets a namespace attribute through the
DBMS_XS_SESSIONS.GET_ATTRIBUTE procedure

DELETE NAMESPACE
ATTRIBUTE

Deletes a namespace attribute through the
DBMS_XS_SESSIONS.DELETE_ATTRIBUTE procedure

CREATE NAMESPACE
TEMPLATE

Creates a namespace attribute through the
XS_NS_TEMPLATE.CREATE_NS_TEMPLATE procedure

UPDATE NAMESPACE
TEMPLATE

Updates a namespace attribute through the following
procedures:

• XS_NS_TEMPLATE.SET_HANDLER
• XS_NS_TEMPLATE.ADD_ATTRIBUTES
• XS_NS_TEMPLATE.REMOVE_ALL_ATTRIBUTES
• XS_NS_TEMPLATE.REMOVE_ATTRIBUTES
• XS_NS_TEMPLATE.SET_DESCRIPTION

DELETE NAMESPACE
TEMPLATE

Deletes a namespace through the
XS_NS_TEMPLATE.DELETE_NS_TEMPLATE procedure

ADD GLOBAL CALLBACK Adds a global callback through the
DBMS_XS_SESSIONS.ADD_GLOBAL_CALLBACK procedure

DELETE GLOBAL CALLBACK Deletes a global callback through the
DBMS_XS_SESSIONS.DELETE_GLOBAL_CALLBACK procedure

ENABLE GLOBAL CALLBACK Enables a global callback through the
DBMS_XS_SESSIONS.ENABLE_GLOBAL_CALLBACK procedure

SET COOKIE Sets a session cookie through the
DBMS_XS_SESSIONS.SET_SESSION_COOKIE procedure

SET INACTIVE TIMEOUT Sets the time-out time for inactive sessions through the
DBMS_XS_SESSIONS.SET_INACTIVITY_TIMEOUT procedure

SWITCH USER Sets the security context of the current lightweight user
session to a newly initialized security context for a specified
user through the DBMS_XS_SESSIONS.SWITCH_USER
procedure

ASSIGN USER Assigns or removes one or more dynamic roles for the
specified user through the
DBMS_XS_SESSIONS.ASSIGN_USER procedure

ENABLE ROLE Enable a role for a lightweight user session through the
DBMS_XS_SESSIONS.ENABLE_ROLE procedure

DISABLE ROLE Disables a role for a lightweight user session through the
DBMS_XS_SESSIONS.DISABLE_ROLE procedure

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-38

Oracle Database Real Application Security ALL Events
The unified audit trail can capture Oracle Database Real Application Security ALL
events.

Table 25-7 describes these events.

Table 25-7 Oracle Database Real Application Security ALL Events

Audit Event Description

ALL Captures all Real Application Security actions

Configuring a Unified Audit Policy for Oracle Database Real Application
Security

The CREATE AUDIT POLICY statement can create a unified audit policy for Oracle Real
Application Security.

• Use the following syntax to create a unified audit policy for Oracle Database Real
Application Security:

CREATE AUDIT POLICY policy_name
 ACTIONS COMPONENT=XS component_action1 [, action2];

For example:

CREATE AUDIT POLICY audit_ras_pol
 ACTIONS COMPONENT=XS SWITCH USER, DISABLE ROLE;

You can build more complex policies, such as those that include conditions.
Remember that after you create the policy, you must use the AUDIT statement to
enable it.

Related Topics

• Syntax for Creating a Unified Audit Policy
To create a unified audit policy, you must use the CREATE AUDIT POLICY
statement.

Example: Auditing Real Application Security User Account Modifications
The CREATE AUDIT POLICY statement can audit Real Application Security user account
modifications.

Example 25-19 shows how to audit user bhurst's attempts to switch users and
disable roles.

Example 25-19 Auditing Real Application Security User Account Modifications

CREATE AUDIT POLICY ras_users_pol
 ACTIONS COMPONENT=XS SWITCH USER, DISABLE ROLE;

AUDIT POLICY ras_users_pol BY bhurst;

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-39

Example: Using a Condition in a Real Application Security Unified Audit Policy
The CREATE AUDIT POLICY statement can set a condition for a Real Application
Security unified audit policy.

Example 25-20 shows how to create Real Application Security unified audit policy that
applies the audit only to actions from the nemosity computer host.

Example 25-20 Using a Condition in a Real Application Security Unified Audit
Policy

CREATE AUDIT POLICY ras_acl_pol
 ACTIONS DELETE ON OE.CUSTOMERS
 ACTIONS COMPONENT=XS CREATE ACL, UPDATE ACL, DELETE ACL
 WHEN 'SYS_CONTEXT(''USERENV'', ''HOST'') = ''nemosity'''
 EVALUATE PER INSTANCE;

AUDIT POLICY ras_acl_pol BY pfitch;

How Oracle Database Real Application Security Events Appear in the Audit
Trail

The DBA_XS_AUDIT_TRAIL data dictionary view lists Oracle Real Application Security
audit events.

The following example queries the Real Application Security-specific view,
DBA_XS_AUDIT_TRAIL:

SELECT XS_USER_NAME FROM DBA_XS_AUDIT_TRAIL
WHERE XS_ENABLED_ROLE = 'CLERK';

XS_USER_NAME

USER2

Auditing Oracle Recovery Manager Events
You can use the CREATE AUDIT POLICY statement to audit Oracle Recovery Manager
events.

• About Auditing Oracle Recovery Manager Events
The UNIFIED_AUDIT_TRAIL data dictionary view automatically stores Oracle
Recovery Manager audit events in the RMAN_column.

• Oracle Recovery Manager Unified Audit Trail Events
The unified audit trail can capture Oracle Recovery Manager events.

• How Oracle Recovery Manager Audited Events Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists Oracle Recovery Manager
audit events.

About Auditing Oracle Recovery Manager Events
The UNIFIED_AUDIT_TRAIL data dictionary view automatically stores Oracle Recovery
Manager audit events in the RMAN_column.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-40

Unlike other Oracle Database components, you do not create a unified audit policy for
Oracle Recovery Manager events.

However, you must have the AUDIT_ADMIN or AUDIT_VIEWER role in order to query the
UNIFIED_AUDIT_TRAIL view to see these events. If you have the SYSBACKUP or the
SYSDBA administrative privilege, then you can find additional information about
Recovery Manager jobs by querying views such as V$RMAN_STATUS or
V$RMAN_BACKUP_JOB_DETAILS.

See Also:

Oracle Database Backup and Recovery User's Guide

Oracle Recovery Manager Unified Audit Trail Events
The unified audit trail can capture Oracle Recovery Manager events.

Table 25-8 describes these events.

Table 25-8 Oracle Recovery Manager Columns in UNIFIED_AUDIT_TRAIL View

Recovery Manager Column Description

RMAN_SESSION_RECID Recovery Manager session identifier. Together with the
RMAN_SESSION_STAMP column, this column uniquely identifies
the Recovery Manager job. The Recovery Manager session ID
is a a RECID value in the control file that identifies the
Recovery Manager job. (Note that the Recovery Manager
session ID is not the same as a user session ID.)

RMAN_SESSION_STAMP Timestamp for the session. Together with the
RMAN_SESSION_RECID column, this column identifies
Recovery Manager jobs.

RMAN_OPERATION The Recovery Manager operation executed by the job.
One row is added for each distinct operation within a Recovery
Manager session. For example, a backup job contains BACKUP
as the RMAN_OPERATION value.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-41

Table 25-8 (Cont.) Oracle Recovery Manager Columns in
UNIFIED_AUDIT_TRAIL View

Recovery Manager Column Description

RMAN_OBJECT_TYPE Type of objects involved in a Recovery Manager session.
It contains one of the following values. If the Recovery
Manager session does not satisfy more than one of them, then
preference is given in the following order, from top to bottom of
the list.

1. DB FULL (Database Full) refers to a full backup of the
database

2. RECVR AREA refers to the Fast Recovery area

3. DB INCR (Database Incremental) refers to incremental
backups of the database

4. DATAFILE FULL refers to a full backup of the data files

5. DATAFILE INCR refers to incremental backups of the
data files

6. ARCHIVELOG refers to archived redo log files

7. CONTROLFILE refers to control files

8. SPFILE refers to the server parameter file

9. BACKUPSET refers to backup files

RMAN_DEVICE_TYPE Device associated with a Recovery Manager session. This
column can be DISK, SBT (system backup tape), or *
(asterisk). An asterisk indicates more than one device. In most
cases, the value will be DISK and SBT.

How Oracle Recovery Manager Audited Events Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists Oracle Recovery Manager
audit events.

Table 25-8 lists the columns in the UNIFIED_AUDIT_TRAIL data dictionary view that you
can query to find Oracle Recovery Manager-specific audit data.

For example:

SELECT RMAN_OPERATION FROM UNIFIED_AUDIT_TRAIL
WHERE RMAN_OBJECT_TYPE = 'DB FULL';

RMAN_OPERATION

BACKUP

Auditing Oracle Database Vault Events
In an Oracle Database Vault environment, the CREATE AUDIT POLICY statement can
audit Database Vault activities.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-42

• About Auditing Oracle Database Vault Events
As with all unified auditing, you must have the AUDIT_ADMIN role before you can
audit Oracle Database Vault events.

• Who Is Audited in Oracle Database Vault?
Audited Oracle Database Vault users include administrators and users whose
activities affect Database Vault enforcement policies.

• About Oracle Database Vault Unified Audit Trail Events
The audit trail in an Oracle Database Vault environment captures all configuration
changes or attempts at changes to Database Vault policies.

• Oracle Database Vault Realm Audit Events
The unified audit trail captures Oracle Database Vault realm events.

• Oracle Database Vault Rule Set and Rule Audit Events
The unified audit trail can capture Oracle Database Vault rule set and rule audit
events.

• Oracle Database Vault Command Rule Audit Events
The unified audit trail can capture Oracle Database Vault command rule audit
events.

• Oracle Database Vault Factor Audit Events
The unified audit trail can capture Oracle Database Vault factor events.

• Oracle Database Vault Secure Application Role Audit Events
The unified audit trail can capture Oracle Database Vault secure application role
audit events.

• Oracle Database Vault Oracle Label Security Audit Events
The unified audit trail can capture Oracle Database Vault Oracle Label Security
audit events.

• Oracle Database Vault Oracle Data Pump Audit Events
The unified audit trail can capture Oracle Database Vault Oracle Data Pump audit
events.

• Oracle Database Vault Enable and Disable Audit Events
The unified audit trail can capture Oracle Database Vault enable and disable audit
events.

• Configuring a Unified Audit Policy for Oracle Database Vault
The ACTIONS and ACTIONS COMPONENT clauses in the CREATE AUDIT POLICY
statement can create unified audit policies for Oracle Database Vault events.

• Example: Auditing an Oracle Database Vault Realm
The CREATE AUDIT POLICY statement can audit Oracle Database Vault realms.

• Example: Auditing an Oracle Database Vault Rule Set
The CREATE AUDIT POLICY statement can audit Oracle Database Vault rule sets.

• Example: Auditing Two Oracle Database Vault Events
The CREATE AUDIT POLICY statement can audit multiple Oracle Database Vault
events.

• Example: Auditing Oracle Database Vault Factors
The CREATE AUDIT POLICY statement can audit Oracle Database Vault factors.

• How Oracle Database Vault Audited Events Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists Oracle Database Vault
audited events.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-43

About Auditing Oracle Database Vault Events
As with all unified auditing, you must have the AUDIT_ADMIN role before you can audit
Oracle Database Vault events.

To create Oracle Database Vault unified audit policies, you must set the CREATE AUDIT
POLICY statement's COMPONENT clause to DV, and then specify an action, such as Rule
Set Failure, and an object, such as the name of a rule set.

To access the audit trail, you can query the following views:

• UNIFIED_AUDIT_TRAIL

• AUDSYS.DV$CONFIGURATION_AUDIT

• AUDSYS.DV$ENFORCEMENT_AUDIT

In the UNIFIED_AUDIT_TRAIL view, the Oracle Database Vault-specific columns begin
with DV_. You must have the AUDIT_VIEWER role before you can query the
UNIFIED_AUDIT_TRAIL view.

In addition to these views, the Database Vault reports capture the results of Database
Vault-specific unified audit policies.

See Also:

• Oracle Database Vault Predefined Unified Audit Policy for DVSYS and
LBACSYS Schemas

• Oracle Database Vault Administrator's Guide for detailed information
about Oracle Database Vault audit policies

Who Is Audited in Oracle Database Vault?
Audited Oracle Database Vault users include administrators and users whose
activities affect Database Vault enforcement policies.

These users are as follows:

• Database Vault administrators. All configuration changes that are made to
Oracle Database Vault are mandatorily audited. The auditing captures activities
such as creating, modifying, or deleting realms, factors, command rules, rule sets,
rules, and so on. The AUDSYS.DV$CONFIGURATION_AUDIT data dictionary view
captures configuration changes made by Database Vault administrators.

• Users whose activities affect Oracle Database Vault enforcement policies.
The AUDSYS.DV$ENFORCEMENT_AUDIT data dictionary view captures enforcement-
related audits

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-44

See Also:

Oracle Database Vault Administrator’s Guide for more information about the
AUDSYS.DV$CONFIGURATION_AUDIT and AUDSYS.DV$ENFORCEMENT_AUDIT data
dictionary views

About Oracle Database Vault Unified Audit Trail Events
The audit trail in an Oracle Database Vault environment captures all configuration
changes or attempts at changes to Database Vault policies.

It also captures violations by users to existing Database Vault policies.

You can audit the following kinds of Oracle Database Vault events:

• All configuration changes or attempts at changes to Oracle Database Vault
policies. It captures both Database Vault administrator changes and attempts
made by unauthorized users.

• Violations by users to existing Database Vault policies. For example, if you
create a policy to prevent users from accessing a specific schema table during
non-work hours, the audit trail will capture this activity.

Oracle Database Vault Realm Audit Events
The unified audit trail captures Oracle Database Vault realm events.

Table 25-9 describes these events.

Table 25-9 Oracle Database Vault Realm Audit Events

Audit Event Description

CREATE_REALM Creates a realm through the
DVSYS.DBMS_MACADM.CREATE_REALM procedure

UPDATE_REALM Updates a realm through the
DVSYS.DBMS_MACADM.UPDATE_REALM procedure

RENAME_REALM Renames a realm through the
DVSYS.DBMS_MACADM.RENAME_REALM procedure

DELETE_REALM Deletes a realm through the
DVSYS.DBMS_MACADM.DELETE_REALM procedure

DELETE_REALM_CASCADE Deletes a realm and its related Database Vault
configuration information through the
DVSYS.DBMS_MACADM.DELETE_REALM_CASCADE
procedure

ADD_AUTH_TO_REALM Adds an authorization to the realm through the
DVSYS.DBMS_MACADM.ADD_AUTH_TO_REALM
procedure

DELETE_AUTH_FROM_REALM Removes an authorization from the realm through
the
DVSYS.DBMS_MACADM.DELETE_AUTH_FROM_REALM
procedure

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-45

Table 25-9 (Cont.) Oracle Database Vault Realm Audit Events

Audit Event Description

UPDATE_REALM_AUTH Updates a realm authorization through the
DVSYS.DBMS_MACADM.UPDATE_REALM_AUTHORIZA
TION procedure

ADD_OBJECT_TO_REALM Adds an object to a realm authorization through the
DVSYS.DBMS_MACADM.ADD_AUTH_TO_REALM
procedure

DELETE_OBJECT_FROM_REALM Removes an object from a realm authorization
through the
DVSYS.DBMS_MACADM.DELETE_OBJECT_FROM_REA
LM procedure

Oracle Database Vault Rule Set and Rule Audit Events
The unified audit trail can capture Oracle Database Vault rule set and rule audit
events.

Table 25-10 describes these events.

Table 25-10 Oracle Database Vault Rule Set and Rule Audit Events

Audit Event Description

CREATE_RULE_SET Creates a rule set through the
DVSYS.DBMS_MACADM.CREATE_RULE_SET
procedure

UPDATE_RULE_SET Updates a rule set through the
DVSYS.DBMS_MACADM.UPDATE_RULE_SET
procedure

RENAME_RULE_SET Renames a rule set through the
DVSYS.DBMS_MACADM.RENAME_RULE_SET
procedure

DELETE_RULE_SET Deletes a rule set through the
DVSYS.DBMS_MACADM.DELETE_RULE_SET
procedure

ADD_RULE_TO_RULE_SET Adds a rule to an existing rule set through the
DVSYS.DBMS_MACADM.ADD_RULE_TO_RULE_SET
procedure

DELETE_RULE_FROM_RULE_SET Removes a rule from an existing rule set through the
DVSYS.DBMS_MACADM.DELETE_RULE_FROM_RULE_
SET procedure

CREATE_RULE Creates a rule through the
DVSYS.DBMS_MACADM.CREATE_RULE procedure

UPDATE_RULE Updates a rule through the
DVSYS.DBMS_MACADM.UPDATE_RULE procedure

RENAME_RULE Renames a rule through the
DVSYS.DBMS_MACADM.RENAME_RULE procedure

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-46

Table 25-10 (Cont.) Oracle Database Vault Rule Set and Rule Audit Events

Audit Event Description

DELETE_RULE Deletes a rule through the
DVSYS.DBMS_MACADM.DELETE_RULE procedure

SYNC_RULES Synchronizes the rules in Oracle Database Vault
and Advanced Queuing Rules engine through the
DVSYS.DBMS_MACADM.SYNC_RULES procedure

Oracle Database Vault Command Rule Audit Events
The unified audit trail can capture Oracle Database Vault command rule audit events.

Table 25-11 describes these events.

Table 25-11 Oracle Database Vault Command Rule Audit Events

Audit Event Description

CREATE_COMMAND_RULE Creates a command rule through the
DVSYS.DBMS_MACADM.CREATE_COMMAND_RULE
procedure

DELETE_COMMAND_RULE Deletes a command rule through the
DVSYS.DBMS_MACADM.DELETE_COMMAND_RULE
procedure

UPDATE_COMMAND_RULE Updates a command rule through the
DVSYS.DBMS_MACADM.UPDATE_COMMAND_RULE
procedure

Oracle Database Vault Factor Audit Events
The unified audit trail can capture Oracle Database Vault factor events.

Table 25-12 describes these events.

Table 25-12 Oracle Database Vault Factor Audit Events

Audit Event Description

CREATE_FACTOR_TYPE Creates a factor type through the
DVSYS.DBMS_MACADM.CREATE_FACTOR_TYPE
procedure

DELETE_FACTOR_TYPE Deletes a factor type through the
DVSYS.DBMS_MACADM.DELETE_FACTOR_TYPE
procedure

UPDATE_FACTOR_TYPE Updates a factor type through the
DVSYS.DBMS_MACADM.UPDATE_FACTOR_TYPE
procedure

RENAME_FACTOR_TYPE Renames a factor type through the
DVSYS.DBMS_MACADM.RENAME_FACTOR_TYPE
procedure

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-47

Table 25-12 (Cont.) Oracle Database Vault Factor Audit Events

Audit Event Description

CREATE_FACTOR Creates a factor through the
DVSYS.DBMS_MACADM.CREATE_FACTOR procedure

UPDATE_FACTOR Updates a factor through the
DVSYS.DBMS_MACADM.UPDATE_FACTOR procedure

DELETE_FACTOR Deletes a factor through the
DVSYS.DBMS_MACADM.DELETE_FACTOR procedure

RENAME_FACTOR Renames a factor through the
DVSYS.DBMS_MACADM.RENAME_FACTOR procedure

ADD_FACTOR_LINK Specifies a parent-child relationship between two
factors through the
DVSYS.DBMS_MACADM.ADD_FACTOR_LINK
procedure

DELETE_FACTOR_LINK Removes the parent-child relationship between two
factors through the
DVSYS.DBMS_MACADM.DELETE_FACTOR_LINK
procedure

ADD_POLICY_FACTOR Specifies that the label for a factor contributes to the
Oracle Label Security label for a policy, through the
DVSYS.DBMS_MACADM.ADD_POLICY_FACTOR
procedure

DELETE_POLICY_FACTOR Removes factor label from being associated with an
Oracle Label Security label for a policy, through the
DBMS_MACADM.DELETE_POLICY_FACTOR procedure

CREATE_IDENTITY Creates a factor identity through the
DVSYS.DBMS_MACADM.CREATE_IDENTITY
procedure

UPDATE_IDENTITY Updates a factor identity through the
DVSYS.DBMS_MACADM.UPDATE_IDENTITY
procedure

CHANGE_IDENTITY_FACTOR Associates an identity with a different factor through
the
DVSYS.DBMS_MACADM.CHANGE_IDENTITY_FACTOR
procedure

CHANGE_IDENTITY_VALUE Updates the value of an identity through the
DVSYS.DBMS_MACADM.CHANGE_IDENTITY_VALUE
procedure

DELETE_IDENTITY Deletes an existing factor identity through the
DVSYS.DBMS_MACADM.DELETE_IDENTITY
procedure

CREATE_IDENTITY_MAP Creates a factor identity map through the
DVSYS.DBMS_MACADM.CREATE_IDENTITY_MAP
procedure

DELETE_IDENTITY_MAP Deletes a factor identity map through the
DVSYS.DBMS_MACADM.DELETE_IDENTITY_MAP
procedure

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-48

Table 25-12 (Cont.) Oracle Database Vault Factor Audit Events

Audit Event Description

CREATE_DOMAIN_IDENTITY Adds an Oracle Database Real Application Clusters
database node to the domain factor identities and
labels it according to the Oracle Label Security
policy, through the
DVSYS.DBMS_MACADM.CREATE_DOMAIN_IDENTITY
procedure

DROP_DOMAIN_IDENTITY Drops an Oracle RAC node from the domain factor
identities through the
DVSYS.DBMS_MACADM.DROP_DOMAIN_IDENTITY
procedure

Oracle Database Vault Secure Application Role Audit Events
The unified audit trail can capture Oracle Database Vault secure application role audit
events.

Table 25-13 describes these events.

Table 25-13 Oracle Database Vault Secure Application Role Audit Events

Audit Event Description

CREATE_ROLE Creates an Oracle Database Vault secure
application role through the
DVSYS.DBMS_MACADM.CREATE_ROLE procedure

DELETE_ROLE Deletes an Oracle Database Vault secure
application role through the
DVSYS.DBMS_MACADM.DELETE_ROLE procedure

UPDATE_ROLE Updates an Oracle Database Vault secure
application role through the
DVSYS.DBMS_MACADM.UPDATE_ROLE procedure

RENAME_ROLE Renames an Oracle Database Vault secure
application role through the
DVSYS.DBMS_MACADM.RENAME_ROLE procedure

Oracle Database Vault Oracle Label Security Audit Events
The unified audit trail can capture Oracle Database Vault Oracle Label Security audit
events.

Table 25-14 describes these events.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-49

Table 25-14 Oracle Database Vault Oracle Label Security Audit Events

Audit Event Description

CREATE_POLICY_LABEL Creates an Oracle Label Security policy label
through the
DVSYS.DBMS_MACADM.CREATE_POLICY_LABEL
procedure

DELETE_POLICY_LABEL Deletes an Oracle Label Security policy label
through the
DVSYS.DBMS_MACADM.DELETE_POLICY_LABEL
procedure

CREATE_MAC_POLICY Specifies the algorithm that is used to merge labels
when computing the label for a factor, or the Oracle
Label Security Session label, through the
DVSYS.DBMS_MACADM.CREATE_MAC_POLICY
procedure

UPDATE_MAC_POLICY Changes the Oracle Label Security merge label
algorithm through the
DVSYS.DBMS_MACADM.UPDATE_MAC_POLICY
procedure

DELETE_MAC_POLICY_CASCADE Deletes all Oracle Database Vault objects related to
an Oracle Label Security policy, through the
DVSYS.DBMS_MACADM.DELETE_MAC_POLICY_CASC
ADE procedure

Oracle Database Vault Oracle Data Pump Audit Events
The unified audit trail can capture Oracle Database Vault Oracle Data Pump audit
events.

Table 25-15 describes these events.

Table 25-15 Oracle Database Vault Oracle Data Pump Audit Events

Audit Event Description

AUTHORIZE_DATAPUMP_USER Authorizes an Oracle Data Pump user through the
DVSYS.DBMS_MACADM.AUTHORIZE_DATAPUMP_USE
R procedure

UNAUTHORIZE_DATAPUMP_USER Removes from authorization an Oracle Data Pump
user through the
DVSYS.DBMS_MACADM.UNAUTHORIZE_DATAPUMP_U
SER procedure

Oracle Database Vault Enable and Disable Audit Events
The unified audit trail can capture Oracle Database Vault enable and disable audit
events.

Table 25-16 describes these events.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-50

Table 25-16 Oracle Database Vault Enable and Disable Audit Events

Event Description

ENABLE_EVENT DBMS_MACADM.ENABLE_EVENT

DISABLE_EVENT DBMS_MACADM.DISABLE_EVENT

Configuring a Unified Audit Policy for Oracle Database Vault
The ACTIONS and ACTIONS COMPONENT clauses in the CREATE AUDIT POLICY statement
can create unified audit policies for Oracle Database Vault events.

• Use the following syntax to create an Oracle Database Vault unified audit policy:

CREATE AUDIT POLICY policy_name
 ACTIONS action1 [,action2]
 ACTIONS COMPONENT= DV DV_action ON DV_object [,DV_action2 ON DV_object2]

In this specification:

• DV_action is one of the following:

– Realm Violation, Realm Success, Realm Access

– Rule Set Failure, Rule Set Success, Rule Set Eval

– Factor Error, Factor Null, Factor Validate Error, Factor Validate
False, Factor Trust Level Null, Factor Trust Level Neg, Factor All

• DV_objects is one of the following:

– Realm_Name

– Rule_Set_Name

– Factor_Name

If the object was created in lower or mixed case, then you must enclose DV_objects in
double quotation marks. If you had created the object in all capital letters, then you can
omit the quotation marks.

For example, to audit realm violations on the Database Vault Account Management
realm:

CREATE AUDIT POLICY audit_dv
 ACTIONS CREATE TABLE, SELECT
 ACTIONS COMPONENT=DV Realm Violation ON "Database Vault Account Management";

You can build more complex policies, such as those that include conditions.
Remember that after you create the policy, you must use the AUDIT statement to
enable it.

Example: Auditing an Oracle Database Vault Realm
The CREATE AUDIT POLICY statement can audit Oracle Database Vault realms.

Example 25-21 shows how to audit a realm violation on the HR schema.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-51

Example 25-21 Auditing a Realm Violation

CREATE AUDIT POLICY dv_realm_hr
 ACTIONS SELECT, UPDATE, DELETE
 ACTIONS COMPONENT=DV Realm Violation ON "HR Schema Realm";

AUDIT POLICY dv_realm_hr EXCEPT psmith;

Example: Auditing an Oracle Database Vault Rule Set
The CREATE AUDIT POLICY statement can audit Oracle Database Vault rule sets.

Example: Auditing an Oracle Database Vault Rule Set shows how to audit the Can
Maintain Accounts/Profile rule set. The user dbv_acctmgr, who has the DV_ACCTMGR
role and hence has privileges to manage user accounts and user profiles, is exempt
from this audit policy.

Example 25-22 Auditing a Rule Set

CREATE AUDIT POLICY dv_rule_set_accts
 ACTIONS CREATE USER, ALTER USER, ALTER PROFILE
 ACTIONS COMPONENT=DV RULE SET FAILURE ON "Can Maintain Accounts/Profile";

AUDIT POLICY dv_rule_set_accts EXCEPT dbv_acctmgr;

Example: Auditing Two Oracle Database Vault Events
The CREATE AUDIT POLICY statement can audit multiple Oracle Database Vault events.

Example 25-23 shows how to audit a realm violation and a rule set failure.

Example 25-23 Auditing Two Oracle Database Vault Events

CREATE AUDIT POLICY audit_dv
 ACTIONS CREATE TABLE, SELECT
 ACTIONS COMPONENT=DV REALM VIOLATION ON "Oracle Enterprise Manager", Rule Set
 Failure ON "Allow Sessions";

AUDIT POLICY audit_dv EXCEPT psmith;

Example: Auditing Oracle Database Vault Factors
The CREATE AUDIT POLICY statement can audit Oracle Database Vault factors.

Example 25-24 shows how to audit two types of errors for one factor.

Example 25-24 Auditing Oracle Database Vault Factor Settings

CREATE AUDIT POLICY audit_dv_factor
 ACTIONS COMPONENT=DV FACTOR ERROR ON "Database_Domain", Factor Validate Error ON
"Client_IP";

AUDIT POLICY audit_dv_factor;

How Oracle Database Vault Audited Events Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists Oracle Database Vault audited
events.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-52

The DV_* columns of the UNIFIED_AUDIT_TRAIL view show Oracle Database Vault-
specific audit data.

For example:

SELECT DV_RULE_SET_NAME FROM UNIFIED_AUDIT_TRAIL
WHERE ACTION_NAME = 'UPDATE';

DV_RULE_SET_NAME

Allow System Parameters

Auditing Oracle Label Security Events
In an Oracle Label Security environment, the CREATE AUDIT POLICY statement can
audit Oracle Label Security activities.

• About Auditing Oracle Label Security Events
As with all unified auditing, you must have the AUDIT_ADMIN role before you can
audit Oracle Label Security (OLS) events.

• Oracle Label Security Unified Audit Trail Events
The unified audit trail can capture Oracle Label Security audit events.

• Oracle Label Security Auditable User Session Labels
The ORA_OLS_SESSION_LABELS application context can capture user session label
usage for each Oracle Database event.

• Configuring a Unified Audit Policy for Oracle Label Security
The ACTIONS and ACTIONS COMPONENT clauses in the CREATE AUDIT POLICY
statement can be used to create Oracle Label Security event audit policies.

• Example: Auditing Oracle Label Security Session Label Attributes
The AUDIT CONTEXT NAMESPACE statement can audit Oracle Label Security session
label attributes.

• Example: Excluding a User from an Oracle Label Security Policy
The CREATE AUDIT POLICY statement can exclude users from policies.

• Example: Auditing Oracle Label Security Policy Actions
The CREATE AUDIT POLICY statement can audit Oracle Label Security policy
actions.

• Example: Querying for Audited OLS Session Labels
The LBACSYS.ORA_GET_AUDITED_LABEL function can be used in a
UNIFIED_AUDIT_TRAIL query to find audited Oracle Label Security session
labels.

• How Oracle Label Security Audit Events Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists Oracle Label Security audit
events.

About Auditing Oracle Label Security Events
As with all unified auditing, you must have the AUDIT_ADMIN role before you can audit
Oracle Label Security (OLS) events.

To create Oracle Label Security unified audit policies, you must set the CREATE AUDIT
POLICY statement COMPONENT clause to OLS.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-53

To audit user session label information, you use the AUDIT statement to audit
application context values.

To access the audit trail, you can query the UNIFIED_AUDIT_TRAIL data dictionary
view. This view contains Oracle Label Security-specific columns whose names begin
with OLS_. If you want to find audit information about the internally generated VPD
predicate that is created when you apply an Oracle Label Security policy to a table,
then you can query the RLS_INFO column.

See Also:

• Auditing of Oracle Virtual Private Database Predicates for information
about how to format the output of the RLS_INFO column

• Oracle Label Security Administrator’s Guide for more information about
Oracle Label Security

Oracle Label Security Unified Audit Trail Events
The unified audit trail can capture Oracle Label Security audit events.

To find a list of auditable Oracle Label Security events that you can audit, you can
query the COMPONENT and NAME columns of the AUDITABLE_SYSTEM_ACTIONS data
dictionary view.

For example:

SELECT NAME FROM AUDITABLE_SYSTEM_ACTIONS WHERE COMPONENT = 'Label Security';

NAME

CREATE POLICY
ALTER POLICY
DROP POLICY
...

Table 25-17 describes the Oracle Label Security audit events.

Table 25-17 Oracle Label Security Audit Events

Audit Event Description

CREATE POLICY Creates an Oracle Label Security policy through the
SA_SYSDBA.CREATE_POLICY procedure

ALTER POLICY Alters an Oracle Label Security policy through the
SA_SYSDBA.ALTER_POLICY procedure

DROP POLICY Drops an Oracle Label Security policy through the
SA_SYSDBA.DROP_POLICY procedure

APPLY POLICY Applies a table policy through the
SA_POLICY_ADMIN.APPLY_TABLE_POLICY procedure or a
schema policy through the
SA_POLICY_ADMIN.APPLY_SCHEMA_POLICY procedure

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-54

Table 25-17 (Cont.) Oracle Label Security Audit Events

Audit Event Description

REMOVE POLICY Removes a table policy through the
SA_POLICY_ADMIN.REMOVE_TABLE_POLICY procedure or a
schema policy through the
SA_POLICY_ADMIN.REMOVE_SCHEMA_POLICY procedure

SET AUTHORIZATION Covers all Oracle Label Security authorizations, including
Oracle Label Security privileges and user labels to either
users or trusted stored procedures. The PL/SQL procedures
that correspond to the SET AUTHORIZATION event are
SA_USER_ADMIN.SET_USER_LABELS,
SA_USER_ADMIN.SET_USER_PRIVS, and
SA_USER_ADMIN.SET_PROG_PRIVS.

PRIVILEGED ACTION Covers any action that requires the user of an Oracle Label
Security privilege. These actions are logons,
SA_SESSION.SET_ACCESS_PROFILE executions, and the
invocation of trusted stored procedures.

ENABLE POLICY Enables an Oracle Label Security policy through the following
procedures:

• SA_SYSDBA.ENABLE_POLICY: Enforces access control
on the tables and schemas protected by the policy

• SA_POLICY_ADMIN.ENABLE_TABLE_POLICY: Enables an
Oracle Label Security policy for a specified table

• SA_POLICY_ADMIN.ENABLE_SCHEMA_POLICY: Enables
an Oracle Label Security policy for all the tables in a
specified schema

DISABLE POLICY Disables an Oracle Label Security policy through the following
procedures:

• SA_SYSDBA.DISABLE_POLICY: Disables the enforcement
of an Oracle Label Security policy

• SA_POLICY_ADMIN.DISABLE_TABLE_POLICY: Disables
the enforcement an Oracle Label Security policy for a
specified table

• SA_POLICY_ADMIN.DISABLE_SCHEMA_POLICY: Disables
the enforcement of an Oracle Label Security policy for all
the tables in a specified schema

SUBSCRIBE OID Subscribes to an Oracle Internet Directory-enabled Oracle
Label Security policy through the
SA_POLICY_ADMIN.POLICY_SUBSCRIBE procedure

UNSUBSCRIBE OID Unsubscribes to an Oracle Internet Directory-enabled Oracle
Label Security policy through the
SA_POLICY_ADMIN.POLICY_UNSUBSCRIBE procedure

CREATE DATA LABEL Creates an Oracle Label Security data label through the
SA_LABEL_ADMIN.CREATE_LABEL procedure. CREATE DATA
LABEL also corresponds to the LBACSYS.TO_DATA_LABEL
function.

ALTER DATA LABEL Alters an Oracle Label Security data label through the
SA_LABEL_ADMIN.ALTER_LABEL procedure

DROP DATA LABEL Drops an Oracle Label Security data label through the
SA_LABEL_ADMIN.DROP_LABEL procedure

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-55

Table 25-17 (Cont.) Oracle Label Security Audit Events

Audit Event Description

CREATE LABEL COMPONENT Creates an Oracle Label Security component through the
following procedures:

• Levels: SA_COMPONENTS.CREATE_LEVEL
• Compartments:

SA_COMPONENTS.CREATE_COMPARTMENT
• Groups: SA_COMPONENTS.CREATE_GROUP

ALTER LABEL COMPONENTS Alters an Oracle Label Security component through the
following procedures:

• Levels: SA_COMPONENTS.ALTER_LEVEL
• Compartments: SA_COMPONENTS.ALTER_COMPARTMENT
• Groups: SA_COMPONENTS.ALTER_GROUP and

SA_COMPONENTS.ALTER_GROUP_PARENT

DROP LABEL COMPONENTS Drops an Oracle Label Security component through the
following procedures:

• Levels: SA_COMPONENTS.DROP_LEVEL
• Compartments: SA_COMPONENTS.DROP_COMPARTMENT
• Groups: SA_COMPONENTS.DROP_GROUP

ALL Enables auditing of all Oracle Label Security actions

Oracle Label Security Auditable User Session Labels
The ORA_OLS_SESSION_LABELS application context can capture user session label
usage for each Oracle Database event.

The attributes used by this application context refer to Oracle Label Security policies. .

The syntax is the same as the syntax used for application context auditing, described
in Configuring Application Context Audit Settings. For example:

AUDIT CONTEXT NAMESPACE ORA_SESSION_LABELS ATTRIBUTES policy1, policy2;

Because the recording of session labels is not user-session specific, the BY user_list
clause is not required for auditing Oracle Label Security application contexts.

To disable the auditing of user session label information, you use the NOAUDIT
statement. For example, to stop auditing for policies policy1 and policy2, enter the
following statement:

NOAUDIT CONTEXT NAMESPACE ORA_SESSION_LABELS ATTRIBUTES policy1, policy2;

Configuring a Unified Audit Policy for Oracle Label Security
The ACTIONS and ACTIONS COMPONENT clauses in the CREATE AUDIT POLICY statement
can be used to create Oracle Label Security event audit policies.

• Use the following syntax to create an Oracle Label Security unified audit policy:

CREATE AUDIT POLICY policy_name
 ACTIONS action1 [,action2]
 ACTIONS COMPONENT=OLS component_action1 [, action2];

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-56

For example:

CREATE AUDIT POLICY audit_ols
 ACTIONS SELECT ON OE.ORDERS
 ACTIONS COMPONENT=OLS ALL;

You can build more complex policies, such as those that include conditions.
Remember that after you create the policy, you must use the AUDIT statement to
enable it.

Related Topics

• Syntax for Creating a Unified Audit Policy
To create a unified audit policy, you must use the CREATE AUDIT POLICY
statement.

Example: Auditing Oracle Label Security Session Label Attributes
The AUDIT CONTEXT NAMESPACE statement can audit Oracle Label Security session
label attributes.

Example 25-25 shows how to audit ORA_OLS_SESSION_LABELS application context
attributes for the Oracle Label Security policies usr_pol1 and usr_pol2.

Example 25-25 Auditing Oracle Label Security Session Label Attributes

AUDIT CONTEXT NAMESPACE ORA_SESSION_LABELS ATTRIBUTES usr_pol1, usr_pol2;

Example: Excluding a User from an Oracle Label Security Policy
The CREATE AUDIT POLICY statement can exclude users from policies.

Example 25-26 shows how to create a unified audit policy that excludes actions from
user ols_mgr.

Example 25-26 Excluding a User from an Oracle Label Security Policy

CREATE AUDIT POLICY auth_ols_audit_pol
 ACTIONS SELECT ON HR.EMPLOYEES
 ACTIONS COMPONENT=OLS DROP POLICY, DISABLE POLICY;

AUDIT POLICY auth_ols_audit_pol EXCEPT ols_mgr;

Example: Auditing Oracle Label Security Policy Actions
The CREATE AUDIT POLICY statement can audit Oracle Label Security policy actions.

Example 25-27 shows how to audit the DROP POLICY, DISABLE POLICY, UNSUBSCRIBE
OID events, and UPDATE and DELETE statements on the HR.EMPLOYEES table. Then this
policy is applied to the HR and LBACSYS users, and audit records are written to the
unified audit trail only when the audited actions are successful.

Example 25-27 Auditing Oracle Label Security Policy Actions

CREATE AUDIT POLICY generic_audit_pol
 ACTIONS UPDATE ON HR.EMPLOYEES, DELETE ON HR.EMPLOYEES
 ACTIONS COMPONENT=OLS DROP POLICY, DISABLE POLICY, UNSUBSCRIBE OID;

AUDIT POLICY generic_audit_pol BY HR, LBACSYS WHENEVER SUCCESSFUL;

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-57

Example: Querying for Audited OLS Session Labels
The LBACSYS.ORA_GET_AUDITED_LABEL function can be used in a
UNIFIED_AUDIT_TRAIL query to find audited Oracle Label Security session labels.

Example 25-28 shows how to use the LBACSYS.ORA_GET_AUDITED_LABEL function in a
UNIFIED_AUDIT_TRAIL data dictionary view query.

Example 25-28 Querying for Audited Oracle Label Security Session Labels

SELECT ENTRY_ID, SESSIONID,
 LBACSYS.ORA_GET_AUDITED_LABEL(APPLICATION_CONTEXTS,'GENERIC_AUDIT_POL1') AS
SESSION_LABEL1,
 LBACSYS.ORA_GET_AUDITED_LABEL(APPLICATION_CONTEXTS,'GENERIC_AUDIT_POL2') AS
SESSION_LABEL2
FROM UNIFIED_AUDIT_TRAIL;
/

ENTRY_ID SESSIONID SESSION_LABEL1 SESSION_LABEL2
-------- --------- -------------- --------------
 1 1023 SECRET LEVEL_ALPHA
 2 1024 TOP_SECRET LEVEL_BETA

How Oracle Label Security Audit Events Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists Oracle Label Security audit
events.

The OLS_* columns of the UNIFIED_AUDIT_TRAIL view show Oracle Label Security-
specific audit data. For example:

SELECT OLS_PRIVILEGES_USED FROM UNIFIED_AUDIT_TRAIL WHERE DBUSERNAME = 'psmith';

OLS_PRIVILEGES_USED

READ
WRITEUP
WRITEACROSS

The session labels that the audit trail captures are stored in the
APPLICATION_CONTEXTS column of the UNIFIED_AUDIT_TRAIL view. You can use the
LBACSYS.ORA_GET_AUDITED_LABEL function to retrieve session labels that are stored in
the APPLICATION_CONTEXTS column. This function accepts the
UNIFIED_AUDIT_TRAIL.APPLICATION_CONTEXTS column value, and the Oracle Label
Security policy name as arguments, and then returns the session label that is stored in
the column for the specified policy.

See Also:

Oracle Label Security Administrator’s Guide for more information about the
ORA_GET_AUDITED_LABEL function

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-58

Auditing Oracle Data Mining Events
You can use the CREATE AUDIT POLICY statement to audit Oracle Data Mining events.

• About Auditing Oracle Data Mining Events
You must have the AUDIT_ADMIN role to audit Oracle Data Mining events.

• Oracle Data Mining Unified Audit Trail Events
The unified audit trail can capture Oracle Data Mining audit events..

• Configuring a Unified Audit Policy for Oracle Data Mining
The CREATE AUDIT POLICY statement ACTIONS and ON MINING MODEL clauses can
be used to create Oracle Data Mining event unified audit policies.

• Example: Auditing Multiple Oracle Data Mining Operations by a User
The CREATE AUDIT POLICY statement can audit multiple Oracle Data Mining
operations.

• Example: Auditing All Failed Oracle Data Mining Operations by a User
The CREATE AUDIT POLICY statement can audit failed Oracle Data Mining
operations by a user.

• How Oracle Data Mining Events Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists Oracle Data Mining audit
events.

About Auditing Oracle Data Mining Events
You must have the AUDIT_ADMIN role to audit Oracle Data Mining events.

To access the audit trail, you can query the UNIFIED_AUDIT_TRAIL data dictionary
view.

See Also:

Oracle Data Mining Concepts for more information about Oracle Data Mining

Oracle Data Mining Unified Audit Trail Events
The unified audit trail can capture Oracle Data Mining audit events..

Table 25-18 describes these events.

Table 25-18 Oracle Data Mining Audit Events

Audit Event Description

AUDIT Generates an audit record for a Data Mining model

COMMENT Adds a comment to a Data Mining model

GRANT Gives permission to a user to access the Data Mining model

RENAME Changes the name of the Data Mining model

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-59

Table 25-18 (Cont.) Oracle Data Mining Audit Events

Audit Event Description

SELECT Applies the Data Mining model or view its signature

Configuring a Unified Audit Policy for Oracle Data Mining
The CREATE AUDIT POLICY statement ACTIONS and ON MINING MODEL clauses can be
used to create Oracle Data Mining event unified audit policies.

• Use the following syntax to create a unified audit policy for Oracle Data Mining:

CREATE AUDIT POLICY policy_name
ACTIONS {operation | ALL}
ON MINING MODEL schema_name.model_name;

For example:

CREATE AUDIT POLICY dm_ops ACTIONS RENAME ON MINING MODEL hr.dm_emp;

You can build more complex policies, such as those that include conditions.
Remember that after you create the policy, you must use the AUDIT statement to
enable it.

Related Topics

• Syntax for Creating a Unified Audit Policy
To create a unified audit policy, you must use the CREATE AUDIT POLICY
statement.

Example: Auditing Multiple Oracle Data Mining Operations by a User
The CREATE AUDIT POLICY statement can audit multiple Oracle Data Mining
operations.

Example 25-29 shows how to audit multiple Oracle Data Mining operations by user
psmith. Include the ON MINING MODEL schema_name.model_name clause for each
event, and separate each with a comma. This example specifies the same
schema_name.model name for both actions, but the syntax enables you to specify
different schema_name.model_name settings for different schemas and data models.

Example 25-29 Auditing Multiple Oracle Data Mining Operations by a User

CREATE AUDIT POLICY dm_ops_pol
ACTIONS SELECT ON MINING MODEL dmuser1.nb_model, ALTER ON MINING MODEL
dmuser1.nb_model;

AUDIT POLICY dm_ops_pol BY psmith;

Example: Auditing All Failed Oracle Data Mining Operations by a User
The CREATE AUDIT POLICY statement can audit failed Oracle Data Mining operations
by a user.

Example 25-30 shows how to audit all failed Oracle Data Mining operations by user
psmith.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-60

Example 25-30 Auditing All Failed Oracle Data Mining Operations by a User

CREATE AUDIT POLICY dm_all_ops_pol ACTIONS ALL ON MINING MODEL dmuser1.nb_model;

AUDIT POLICY dm_all_ops_pol BY psmith WHENEVER NOT SUCCESSFUL;

How Oracle Data Mining Events Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists Oracle Data Mining audit events.

The following example shows how to query the UNIFIED_AUDIT_TRAIL data dictionary
view for Data Mining audit events.

SELECT DBUSERNAME, ACTION_NAME, SYSTEM_PRIVILEGE_USED, RETURN_CODE,
OBJECT_SCHEMA, OBJECT_NAME, SQL_TEXT
FROM UNIFIED_AUDIT_TRAIL;

DBUSERNAME ACTION_NAME SYSTEM_PRIVILEGE_USED RETURN_CODE
---------- -------------------- ------------------------- -----------
OBJECT_SCHEMA OBJECT_NAME
-------------------- --------------------
SQL_TEXT
--
DMUSER1 CREATE MINING MODEL CREATE MINING MODEL 0
DMUSER1
BEGIN
 dbms_data_mining.create_model(model_name => 'nb_model',
 mining_function => dbms_data_mining.classification,
 data_table_name => 'dm_data',
 case_id_column_name => 'case_id',
 target_column_name => 'target');
END;

DMUSER1 SELECT MINING MODEL 0
DMUSER1 NB_MODEL
select prediction(nb_model using *) from dual

DMUSER2 SELECT MINING MODEL 40284
DMUSER1 NB_MODEL
select prediction(dmuser1.nb_model using *) from dual

DMUSER1 ALTER MINING MODEL 0
DMUSER1 NB_MODEL
BEGIN dbms_data_mining.rename_model('nb_model', 'nb_model1'); END;

DMUSER2 ALTER MINING MODEL 40284
DMUSER1 NB_MODEL
BEGIN dbms_data_mining.rename_model('dmuser1.nb_model1', 'nb_model'); END;

DMUSER2 ALTER MINING MODEL 40284
DMUSER1 NB_MODEL
BEGIN dbms_data_mining.rename_model('dmuser1.nb_model1', 'nb_model'); END;

Auditing Oracle Data Pump Events
You can use the CREATE AUDIT POLICY statement to audit Oracle Data Pump.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-61

• About Auditing Oracle Data Pump Events
The CREATE AUDIT POLICY statement COMPONENT clause must be set to DATAPUMP
to create Oracle Data Pump unified audit policies.

• Oracle Data Pump Unified Audit Trail Events
The unified audit trail can capture Oracle Data Pump events.

• Configuring a Unified Audit Policy for Oracle Data Pump
The ACTIONS COMPONENT clause in the CREATE AUDIT POLICY statement can be
used to create an Oracle Data Pump event unified audit policy.

• Example: Auditing Oracle Data Pump Import Operations
The CREATE AUDIT POLICY statement can audit Oracle Data Pump import
operations.

• Example: Auditing All Oracle Data Pump Operations
The CREATE AUDIT POLICY statement can audit all Oracle Data Pump operations.

• How Oracle Data Pump Audited Events Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists Oracle Data Pump audited
events.

About Auditing Oracle Data Pump Events
The CREATE AUDIT POLICY statement COMPONENT clause must be set to DATAPUMP to
create Oracle Data Pump unified audit policies.

You can audit Data Pump export (expdp) and import (impdp) operations.

As with all unified auditing, you must have the AUDIT_ADMIN role before you can audit
Oracle Data Pump events.

To access the audit trail, query the UNIFIED_AUDIT_TRAIL data dictionary view. The
Data Pump-specific columns in this view begin with DP_.

See Also:

Oracle Database Utilities for detailed information about Oracle Data Pump

Oracle Data Pump Unified Audit Trail Events
The unified audit trail can capture Oracle Data Pump events.

The unified audit trail captures information about both export (expdp) and import
(impdp) operations.

Configuring a Unified Audit Policy for Oracle Data Pump
The ACTIONS COMPONENT clause in the CREATE AUDIT POLICY statement can be used to
create an Oracle Data Pump event unified audit policy.

• Use the following syntax to create a unified audit policy for Oracle Data Pump:

CREATE AUDIT POLICY policy_name
ACTIONS COMPONENT=DATAPUMP { EXPORT | IMPORT | ALL };

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-62

For example:

CREATE AUDIT POLICY audit_dp_export_pol
 ACTIONS COMPONENT=DATAPUMP EXPORT;

You can build more complex policies, such as those that include conditions.
Remember that after you create the policy, you must use the AUDIT statement to
enable it.

Related Topics

• Syntax for Creating a Unified Audit Policy
To create a unified audit policy, you must use the CREATE AUDIT POLICY
statement.

Example: Auditing Oracle Data Pump Import Operations
The CREATE AUDIT POLICY statement can audit Oracle Data Pump import operations.

Example 25-31 shows how to audit all Oracle Data Pump import operations.

Example 25-31 Auditing Oracle Data Pump Import Operations

CREATE AUDIT POLICY audit_dp_import_pol
 ACTIONS COMPONENT=DATAPUMP IMPORT;

AUDIT POLICY audit_dp_import_pol;

Example: Auditing All Oracle Data Pump Operations
The CREATE AUDIT POLICY statement can audit all Oracle Data Pump operations.

Example 25-32 shows how to audit both Oracle Database Pump export and import
operations.

Example 25-32 Auditing All Oracle Data Pump Operations

CREATE AUDIT POLICY audit_dp_all_pol
 ACTIONS COMPONENT=DATAPUMP ALL;

AUDIT POLICY audit_dp_all_pol BY SYSTEM;

How Oracle Data Pump Audited Events Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists Oracle Data Pump audited
events.

The DP_* columns of the UNIFIED_AUDIT_TRAIL view show Oracle Data Pump-specific
audit data. For example:

SELECT DP_TEXT_PARAMETERS1, DP_BOOLEAN_PARAMETERS1 FROM UNIFIED_AUDIT_TRAIL
WHERE AUDIT_TYPE = 'DATAPUMP';

DP_TEXT_PARAMETERS1 DP_BOOLEAN_PARAMETERS1
-- ----------------------------------

MASTER TABLE: "SCOTT"."SYS_EXPORT_TABLE_01", MASTER_ONLY: FALSE,
JOB_TYPE: EXPORT, DATA_ONLY: FALSE,
METADATA_JOB_MODE: TABLE_EXPORT, METADATA_ONLY: FALSE,
JOB VERSION: 19.1.0.0, DUMPFILE_PRESENT: TRUE,

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-63

ACCESS METHOD: DIRECT_PATH, JOB_RESTARTED: FALSE
DATA OPTIONS: 0,
DUMPER DIRECTORY: NULL
REMOTE LINK: NULL,
TABLE EXISTS: NULL,
PARTITION OPTIONS: NONE

(This output was reformatted for easier readability.)

Auditing Oracle SQL*Loader Direct Load Path Events
You can use the CREATE AUDIT POLICY statement to audit Oracle SQL*Loader direct
load path events.

• About Auditing in Oracle SQL*Loader Direct Path Load Events
You must have the AUDIT_ADMIN role to audit Oracle SQL*Loader direct path
events.

• Oracle SQL*Loader Direct Load Path Unified Audit Trail Events
The unified audit trail can capture SQL*Loader Direct Load Path events.

• Configuring a Unified Audit Trail Policy for Oracle SQL*Loader Direct Path Events
The CREATE AUDIT POLICY statement ACTIONS COMPONENT clause can create
unified audit policies for Oracle SQL*Loader direct path events.

• Example: Auditing Oracle SQL*Loader Direct Path Load Operations
The CREATE AUDIT POLICY statement can audit Oracle SQL*Loader direct path
load operations.

• How SQL*Loader Direct Path Load Audited Events Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists SQL*Loader direct path load
audited events.

About Auditing in Oracle SQL*Loader Direct Path Load Events
You must have the AUDIT_ADMIN role to audit Oracle SQL*Loader direct path events.

To create SQL*Loader unified audit policies, you must set the CREATE AUDIT POLICY
statement's COMPONENT clause to DIRECT_LOAD. You can audit direct path load
operations only, not other SQL*Loader loads, such as conventional path loads.

To access the audit trail, you can query the DIRECT_PATH_NUM_COLUMNS_LOADED column
in the UNIFIED_AUDIT_TRAIL data dictionary view.

See Also:

Oracle Database Utilities for detailed information about Oracle SQL*Loader

Oracle SQL*Loader Direct Load Path Unified Audit Trail Events
The unified audit trail can capture SQL*Loader Direct Load Path events.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-64

The unified audit trail captures information about direct path loads that SQL*Loader
performs (that is, when you set direct=true on the SQL*Loader command line or in
the SQL*Loader control file).

It also audits Oracle Call Interface (OCI) programs that use the direct path API.

See Also:

Oracle Database Utilities for detailed information about direct path loads in
Oracle SQL*Loader

Configuring a Unified Audit Trail Policy for Oracle SQL*Loader Direct Path
Events

The CREATE AUDIT POLICY statement ACTIONS COMPONENT clause can create unified
audit policies for Oracle SQL*Loader direct path events.

• Use the following syntax to create an Oracle SQL*Loader unified audit policy:

CREATE AUDIT POLICY policy_name
ACTIONS COMPONENT=DIRECT_LOAD { LOAD };

For example:

CREATE AUDIT POLICY audit_sqlldr_pol
 ACTIONS COMPONENT=DIRECT_LOAD LOAD;

You can build more complex policies, such as those that include conditions.
Remember that after you create the policy, you must use the AUDIT statement to
enable it.

Related Topics

• Syntax for Creating a Unified Audit Policy
To create a unified audit policy, you must use the CREATE AUDIT POLICY
statement.

Example: Auditing Oracle SQL*Loader Direct Path Load Operations
The CREATE AUDIT POLICY statement can audit Oracle SQL*Loader direct path load
operations.

Example 25-31 shows how to audit SQL*Loader direct path load operations.

Example 25-33 Auditing Oracle SQL*Loader Direct Path Load Operations

CREATE AUDIT POLICY audit_sqlldr_load_pol
 ACTIONS COMPONENT=DIRECT_LOAD LOAD;

AUDIT POLICY audit_sqlldr_load_pol;

How SQL*Loader Direct Path Load Audited Events Appear in the Audit Trail
The UNIFIED_AUDIT_TRAIL data dictionary view lists SQL*Loader direct path load
audited events.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-65

The DIRECT_PATH_NUM_COLUMNS_LOADED column of the UNIFIED_AUDIT_TRAIL view
shows the number of columns that were loaded using the SQL*Loader direct path load
method. For example:

SELECT DBUSERNAME, ACTION_NAME, OBJECT_SCHEMA, OBJECT_NAME,
DIRECT_PATH_NUM_COLUMNS_LOADED FROM UNIFIED_AUDIT_TRAIL WHERE AUDIT_TYPE = 'DIRECT
PATH API';

DBUSERNAME ACTION_NAME OBJECT_SCHEMA OBJECT_NAME DIRECT_PATH_NUM_COLUMNS_LOADED
----------- ----------- ------------- ------------ ------------------------------
RLAYTON INSERT HR EMPLOYEES 4

Auditing Only Top-Level Statements
A top-level statement audit refers to filtering audit records so that only a single audit
record for a specified audited statement.

• About Auditing Only Top-Level SQL Statements
A top-level statement is a statement that is executed directly by a user, not a
statement that is run from within a PL/SQL procedure.

• Configuring a Unified Audit Policy to Capture Only Top-Level Statements
The ONLY TOPLEVEL clause in the CREATE AUDIT POLICY statement enables you to
audit only the SQL statements that are directly issued by an end user by honoring
the audit configuration in the audit policy.

• Example: Auditing Top-Level Statements
The CREATE AUDIT POLICY statement can include or exclude top-level statement
audit records in the unified audit trail for any user.

• How the Unified Audit Trail Captures Top-Level SQL Statements
The ONLY TOPLEVEL clause has no impact on the output for an individual unified
audit trail record.

About Auditing Only Top-Level SQL Statements
A top-level statement is a statement that is executed directly by a user, not a
statement that is run from within a PL/SQL procedure.

You can audit top-level statements from all users, including user SYS. The advantage
of restricting the unified audit trail to top-level statements is that it greatly reduces the
size of the audit trail, particularly in cases where a large number of audit trail records
are generated for a single statement in the unified audit policy. This feature helps to
reduce recursive SQL statements. By limiting these audit records, this feature also
reduces the number of records that do not provide useful data. An example of this
scenario would be audits for the DBMS_STATS.GATHER_DATABASE_STATS SQL statement,
which can generate over 200,000 individual audit records. By reducing the audit trail,
this feature improves database performance and saves space in the database (and in
the Oracle Audit Vault repository if it is being used).

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-66

Configuring a Unified Audit Policy to Capture Only Top-Level Statements
The ONLY TOPLEVEL clause in the CREATE AUDIT POLICY statement enables you to
audit only the SQL statements that are directly issued by an end user by honoring the
audit configuration in the audit policy.

To find policies that include the ONLY TOPLEVEL clause, query the
AUDIT_ONLY_TOPLEVEL column of the AUDIT_UNIFIED_POLICIES data dictionary view.

Use the following syntax to create a unified audit policy that audits only top-level SQL
statements.

CREATE AUDIT POLICY policy_name
all_existing_options
ONLY TOPLEVEL;

For example, to limit the audit trail to top-level instances of the SELECT statement on
the HR.EMPLOYEES table:

CREATE AUDIT POLICY actions_on_hr_emp_pol
ACTIONS SELECT ON HR.EMPLOYEES
ONLY TOPLEVEL;

Example: Auditing Top-Level Statements
The CREATE AUDIT POLICY statement can include or exclude top-level statement audit
records in the unified audit trail for any user.

The following example shows an audit policy that will capture all top level statements
executed by user SYS.

Example 25-34 Example: Auditing Top-Level Statements Executed by User
SYS

CREATE AUDIT POLICY actions_all_pol ACTION ALL
ONLY TOPLEVEL;

AUDIT POLICY actions_all_pol BY SYS;

How the Unified Audit Trail Captures Top-Level SQL Statements
The ONLY TOPLEVEL clause has no impact on the output for an individual unified audit
trail record.

The only effect that ONLY TOPLEVEL has on a policy is to limit the number of records
generated for the given unified audit policy.

Unified Audit Policies or AUDIT Settings in a Multitenant Environment
In a multitenant environment, you can create unified audit policies for individual PDBs
and in the root.

• About Local, CDB Common, and Application Common Audit Policies
An audit policy can be either a local audit policy, a CDB common audit policy, or
an application common audit policy.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-67

• Traditional Auditing in a Multitenant Environment
In traditional auditing (not unified auditing), the AUDIT and NOAUDIT statements can
audit statements and privileges in a multitenant environment.

• Configuring a Local Unified Audit Policy or Common Unified Audit Policy
The CONTAINER clause is specific to multitenant environment use for the CREATE
AUDIT POLICY statement.

• Example: Local Unified Audit Policy
The CREATE AUDIT POLICY statement can create a local unified audit policy in
either the root or a PDB.

• Example: CDB Common Unified Audit Policy
The CREATE AUDIT POLICY statement can create a CDB common unified audit
policy.

• Example: Application Common Unified Audit Policy
For application container common unified audit policies, you can audit action
options and system privilege options, and refer to common objects and roles.

• How Local or Common Audit Policies or Settings Appear in the Audit Trail
You can query unified audit policy views from either the root or the PDB in which
the action occurred.

About Local, CDB Common, and Application Common Audit Policies
An audit policy can be either a local audit policy, a CDB common audit policy, or an
application common audit policy.

This applies to both unified audit policies and policies that are created using the AUDIT
SQL statement.

• Local audit policy. This type of policy can exist in either the root (CDB or
application) or the PDB (CDB or application). A local audit policy that exists in the
root can contain object audit options for both local and common objects. Both local
and common users who have been granted the AUDIT_ADMIN role can enable local
policies: local users from their PDBs and common users from the root or the PDB
to which they have privileges. You can enable a local audit policy for both local
and common users and roles.

You can create local audit policies for application local objects and application
local roles, as well as system action options and system privilege options. You
cannot enforce a local audit policy for a common user across all containers, nor
can you enforce a common audit policy for a local user.

• CDB common audit policy. This type of policy is available to all PDBs in the
multitenant environment. Only common users who have been granted the
AUDIT_ADMIN role can create and maintain common audit policies. You can enable
common audit policies only for common users. You must create common audit
policies only in the root. This type of policy can contain object audit options of only
common objects, and be enabled only for common users. You can enable a
common audit policy for common users and roles only.

You cannot enforce a common audit policy for a local user across all containers.

• Application common audit policy. Similar to CDB common audit policies, this
type of policy is available to all PDBs in the multitenant environment. You can
create common audit policies for application common objects and application
common roles, as well as system action options and system privilege options. You
can only create this type of policy in the application root container, but you can

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-68

enable it on both application common users and CDB common users. If you want
to audit objects, then ensure that these objects are application common objects.
You can determine whether an object is an application common object by querying
the SHARING column of the DBA_OBJECTS data dictionary view.

By default, audit policies are local to the current PDB, for both CDB and application
scenarios.

The following table explains how audit policies apply in different multitenant
environments.

Table 25-19 How Audit Policies Apply to the CDB Root, Application Root, and
Individual PDBs

Audit Option Type CDB Root Application Root Individual PDB

Common audit
statement or audit
policy

Applies to CDB
common users

Applies to CDB
common users

Applies to CDB
common users

Application container
common audit
statement or audit
policy

Not applicable • Applies to CDB
common users
and are valid for
the current
application
container only

• Applies to
application
container
common users

• Applies to CDB
common users
and are valid for
this application
container only

• Applies to
application
common users

Local audit statement
or audit policy

Local configurations
not allowed

Local configurations
not allowed

• Applies to CDB
common users

• Applies to
application
common users

Traditional Auditing in a Multitenant Environment
In traditional auditing (not unified auditing), the AUDIT and NOAUDIT statements can
audit statements and privileges in a multitenant environment.

To configure the audit policy to be either a local audit policy or a common audit policy,
you must include the CONTAINER clause, as you normally do for other SQL creation or
modification statements. If you want to audit an application container, then you can
audit SQL statement and system privileges performed by local and common users and
roles. The audit record will be created in the container in which the action was
performed.

• If you want to apply the AUDIT or NOAUDIT statement to the current CDB or
application PDB, then in this PDB, you must set CONTAINER to CURRENT. For
example:

AUDIT DROP ANY TABLE BY SYSTEM BY ACCESS CONTAINER = CURRENT;

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-69

• If you want to apply the AUDIT or NOAUDIT statement to the entire multitenant
environment, then in the CDB root, then you must set CONTAINER to ALL. For an
application container, you would set it in the application root. For example:

AUDIT DROP ANY TABLE BY SYSTEM BY ACCESS CONTAINER = ALL;

To find if a traditional audit option is designed for use in an application container,
perform a join query with the DBA_OBJ_AUDIT_OPTS and DBA_OBJECTS data dictionary
views, by using the OWNER and OBJECT_NAME columns in both views, and the
APPLICATION column in DBA_OBJECTS.

See Also:

Oracle Database SQL Language Reference for more information about the
traditional AUDIT and NOAUDIT SQL statements

Configuring a Local Unified Audit Policy or Common Unified Audit Policy
The CONTAINER clause is specific to multitenant environment use for the CREATE AUDIT
POLICY statement.

To create a local or common (CDB or application) unified audit policy in either the CDB
environment or an application container environment, include the CONTAINER clause in
the CREATE AUDIT POLICY statement.

• Use the following syntax to create a local or common unified audit policy:

CREATE AUDIT POLICY policy_name
 action1 [,action2]
 [CONTAINER = {CURRENT | ALL}];

In this specification:

• CURRENT sets the audit policy to be local to the current PDB.

• ALL makes the audit policy a common audit policy, that is, available to the entire
multitenant environment.

For example, for a common unified audit policy:

CREATE AUDIT POLICY dict_updates
 ACTIONS UPDATE ON SYS.USER$,
 DELETE ON SYS.USER$,
 UPDATE ON SYS.LINK$,
 DELETE ON SYS.LINK$
 CONTAINER = ALL;

Note the following:

• You can set the CONTAINER clause for the CREATE AUDIT POLICY statement but not
for ALTER AUDIT POLICY or DROP AUDIT POLICY. If you want to change the scope

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-70

of an existing unified audit policy to use this setting, then you must drop and re-
create the policy.

• For AUDIT statements, you can set the CONTAINER clause for audit settings only if
you have an Oracle database that has not been migrated to the Release 12.x and
later audit features. You cannot use the CONTAINER clause in an AUDIT statement
that is used to enable a unified audit policy.

• If you are in a PDB, then you can only set the CONTAINER clause to CURRENT, not
ALL. If you omit the setting while in the PDB, then the default is CONTAINER =
CURRENT.

• If you are in the root, then you can set the CONTAINER clause to either CURRENT if
you want the policy to apply to the root only, or to ALL if you want the policy to
apply to the entire CDB. If you omit the CONTAINER clause, then default is
CONTAINER = CURRENT.

• For objects:

– Common audit policies can have common objects only and local audit policies
can have both local objects and common objects.

– You cannot set CONTAINER to ALL if the objects involved are local. They must
be common objects.

• For privileges:

– You can set the CONTAINER to CURRENT (or omit the CONTAINER clause) if the
user accounts involved are a mixture of local and common accounts. This
creates a local audit configuration that applies only to the current PDB.

– You cannot set CONTAINER to ALL if the users involved are local users. They
must be common users.

– If you set CONTAINER to ALL and do not specify a user list (using the BY clause
in the AUDIT statement), then the configuration applies to all common users in
each PDB.

• For application containers, you can run a common unified audit policy from the
application container script that is used for application install, upgrade, patch, and
uninstall operations. To do so:

1. Create a common unified audit policy in the application container root, and set
this policy to CONTAINER = ALL. Alternatively, you can include this policy in the
script that is described in this next step.

2. Create a custom version of the script you normally would use to install,
upgrade, patch, or uninstall Oracle Database.

3. Within this script, include the SQL statements that you want to audit within the
following lines:

ALTER PLUGGABLE DATABASE APPLICATION BEGIN INSTALL
List SQL statements here. Separate each statement with a semi-colon.
ALTER PLUGGABLE DATABASE APPLICATION END INSTALL

If you include the unified audit policy in the script, then ensure that you include
both the CREATE AUDIT POLICY and AUDIT POLICY statements.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-71

After the audit policy is created and enabled, all user access to the application
common objects is audited irrespective of whether the audit policy is defined in the
database or from the script.

• To audit application install, upgrade, patch, and uninstall operations locally in an
application root or an application PDB, follow a procedure similar to the preceding
procedure for common unified audit policies, but synchronize the application PDB
afterward. For example:

ALTER PLUGGABLE DATABASE APPLICATION application_name SYNC;

Related Topics

• Oracle Multitenant Administrator's Guide

Example: Local Unified Audit Policy
The CREATE AUDIT POLICY statement can create a local unified audit policy in
either the root or a PDB.

When you create a local unified audit policy in the root, it only applies to the root and
not across the multitenant environment.

The following example shows a local unified audit policy that has been created by the
common user c##sec_admin from a PDB and applied to common user c##hr_admin.

Example 25-35 Local Unified Audit Policy

CONNECT c##sec_admin@hrpdb
Enter password: password
Connected.

CREATE AUDIT POLICY table_privs
 PRIVILEGES CREATE ANY TABLE, DROP ANY TABLE
 CONTAINER = CURRENT;

AUDIT POLICY table_privs BY c##hr_admin;

Example: CDB Common Unified Audit Policy
The CREATE AUDIT POLICY statement can create a CDB common unified audit
policy.

Example 25-36 shows a common unified audit policy that has been created by the
common user c##sec_admin from the root and applied to common user c##hr_admin.

Example 25-36 Common Unified Audit Policy

CONNECT c##sec_admin
Enter password: password
Connected.

CREATE AUDIT POLICY admin_pol
 ACTIONS CREATE TABLE, ALTER TABLE, DROP TABLE
 ROLES c##hr_mgr, c##hr_sup
 CONTAINER = ALL;

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-72

AUDIT POLICY admin_pol BY c##hr_admin;

Example: Application Common Unified Audit Policy
For application container common unified audit policies, you can audit action options
and system privilege options, and refer to common objects and roles.

You can create the application common audit policy only from the application root, and
enable the policy for both application common users and CDB common users.

The following example shows how to create a policy that audits the application
common user SYSTEM for the application container app_pdb. The audit policy audits
SELECT actions on the SYSTEM.utils_tab table and on DROP TABLE actions on any of
the PDBs in the container database, including the CDB root. The policy also audits the
use of the SELECT ANY TABLE system privilege across all containers.

Example 25-37 Application Common Unified Audit Policy

CONNECT c##sec_admin@app_pdb
Enter password: password
Connected.

CREATE AUDIT POLICY app_pdb_admin_pol
 ACTIONS SELECT ON hr_app_cdb.utils_tab, DROP TABLE
 PRIVILEGES SELECT ANY TABLE
 CONTAINER = ALL;

AUDIT POLICY app_pdb_admin_pol by SYSTEM, c##hr_admin;

In the preceding example, setting CONTAINER to ALL applies the policy only to all the
relevant object accesses in the application root and on all the application PDBs that
belong to the application root. It does not apply the policy outside this scope.

How Local or Common Audit Policies or Settings Appear in the Audit Trail
You can query unified audit policy views from either the root or the PDB in which the
action occurred.

You can perform the following types of queries:

• Audit records from all PDBs. The audit trail reflects audited actions that have
been performed in the PDBs. For example, if user lbrown in PDB1 performs an
action that has been audited by either a common or a local audit policy, then the
audit trail will capture this action. The DBID column in the UNIFIED_AUDIT_TRAIL
data dictionary view indicates the PDB in which the audited action takes place and
to which the policy applies. If you want to see audit records from all PDBs, you
should query the CDB_UNIFIED_AUDIT_TRAIL data dictionary view from the root.

• Audit records from common audit policies. This location is where the common
audit policy results in an audit record. The audit record can be generated
anywhere in the multitenant environment—the root or the PDBs, depending on
where the action really occurred. For example, the common audit policy fga_pol
audits the EXECUTE privilege on the DBMS_FGA PL/SQL package, and if this action

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-73

occurs in PDB1, then the audit record is generated in PDB1 and not in the root.
Hence, the audit record can be seen in PDB1.

You can query the UNIFIED_AUDIT_TRAIL data dictionary view for the policy from
either the root or a PDB if you include a WHERE clause for the policy name (for
example, WHERE UNIFIED_AUDIT_POLICIES = 'FGA_POL').

The following example shows how to find the results of a common unified audit policy:

CONNECT c##sec_admin
Enter password: password
Connected.

SELECT DBID, ACTION_NAME, OBJECT_SCHEMA, OBJECT_NAME FROM
CDB_UNIFIED_AUDIT_TRAIL WHERE DBUSERNAME = 'c##hr_admin';
46892-1
DBID ACTION_NAME OBJECT_SCHEMA OBJECT_NAME
----------- ----------- ------------- -----------
653916017 UPDATE HR EMPLOYEES
653916018 UPDATE HR JOB_HISTORY
653916017 UPDATE HR JOBS

Altering Unified Audit Policies
You can use the ALTER AUDIT POLICY statement to modify a unified audit policy.

• About Altering Unified Audit Policies
You can change most properties in a unified audit policy, except for its CONTAINER
setting.

• Altering a Unified Audit Policy
The ALTER AUDIT POLICY statement can modify a unified audit policy.

• Example: Altering a Condition in a Unified Audit Policy
The ALTER AUDIT POLICY statement can alter conditions in unified audit
policies.

• Example: Altering an Oracle Label Security Component in a Unified Audit Policy
The ALTER AUDIT POLICY statement can alter Oracle Label Security components
in an audit policy.

• Example: Altering Roles in a Unified Audit Policy
The ALTER AUDIT POLICY statement can alter roles in a unified audit policy.

• Example: Dropping a Condition from a Unified Audit Policy
The ALTER AUDIT POLICY statement can drop a condition from a unified audit
policy.

• Example: Altering an Existing Unified Audit Policy Top-Level Statement Audits
The ALTER AUDIT POLICY statement can modify an existing unified audit policy so
that the unified audit trail captures top-level SQL statements only.

About Altering Unified Audit Policies
You can change most properties in a unified audit policy, except for its CONTAINER
setting.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-74

You cannot alter unified audit policies in a multitenant environment. For example, you
cannot turn a common unified audit policy into a local unified audit policy.

To find existing unified audit policies, query the AUDIT_UNIFIED_POLICIES data
dictionary view. If you want to find only the enabled unified audit policies, then query
the AUDIT_UNIFIED_ENABLED_POLICIES view. You can alter both enabled and disabled
audit policies. If you alter an enabled audit policy, it remains enabled after you alter it.

After you alter an object unified audit policy, the new audit settings take place
immediately, for both the active and subsequent user sessions. If you alter system
audit options, or audit conditions of the policy, then they are activated for new user
sessions, but not the current user session.

Altering a Unified Audit Policy
The ALTER AUDIT POLICY statement can modify a unified audit policy.

• Use the following syntax to alter a unified audit policy, you use the ALTER AUDIT
POLICY statement.

ALTER AUDIT POLICY policy_name
[ADD [privilege_audit_clause][action_audit_clause]
 [role_audit_clause] [ONLY TOPLEVEL]]
[DROP [privilege_audit_clause][action_audit_clause]
 [role_audit_clause] [ONLY TOPLEVEL]]
[CONDITION {DROP | audit_condition EVALUATE PER {STATEMENT|SESSION|INSTANCE}}]

In this specification:

• ADD enables you to alter the following the following settings:

– privilege_audit_clause describes privilege-related audit options. See
Auditing System Privileges for details. The detailed syntax for configuring
privilege audit options is as follows:

ADD privilege_audit_clause := PRIVILEGES privilege1 [, privilege2]

– action_audit_clause and standard_actions describe object action-related
audit options. See Auditing Object Actions. The syntax is as follows:

ADD action_audit_clause := {standard_actions | component_actions}
 [, component_actions]
standard_actions :=
 ACTIONS action1 [ON {schema.obj_name
 | DIRECTORY directory_name
 | MINING MODEL schema.obj_name
 }
]
 [, action2 [ON {schema.obj_name
 | DIRECTORY directory_name
 | MINING MODEL schema.obj_name
 }
]

– role_audit_clause enables you to add or drop the policy for roles. See
Auditing Roles. The syntax is:

ADD role_audit_clause := ROLES role1 [, role2]

– ONLY TOPLEVEL includes in the unified audit trail only the top-level SQL
statements that are affected by this policy.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-75

• DROP enables you to drop the same components that are described for the ADD
clause. For example:

DROP role_audit_clause := ROLES role1 [, role2 ONLY TOPLEVEl]

• CONDITION {DROP... enables you to add or drop a condition for the policy. If you
are altering an existing condition, then you must include the EVALUATE PER clause
with the condition. See Creating a Condition for a Unified Audit Policy. The syntax
is:

CONDITION 'audit_condition := function operation value_list'
EVALUATE PER {STATEMENT|SESSION|INSTANCE}

If you want to drop a condition, then omit the condition definition and the EVALUATE
PER clause. For example:

CONDITION DROP

Example: Altering a Condition in a Unified Audit Policy
The ALTER AUDIT POLICY statement can alter conditions in unified audit policies.

Example 25-38 shows how to change a condition in an existing unified audit policy.

Example 25-38 Altering a Condition in a Unified Audit Policy

ALTER AUDIT POLICY orders_unified_audpol
 ADD ACTIONS INSERT ON SCOTT.EMP
CONDITION 'SYS_CONTEXT(''ENTERPRISE'', ''GROUP'') = ''ACCESS_MANAGER'''
EVALUATE PER SESSION;

Example: Altering an Oracle Label Security Component in a Unified Audit
Policy

The ALTER AUDIT POLICY statement can alter Oracle Label Security components in an
audit policy.

Example 25-39 shows how to alter an Oracle Label Security component in an audit
policy.

Example 25-39 Altering an Oracle Label Security Component in a Unified Audit
Policy

ALTER AUDIT POLICY audit_ols
 ADD ACTIONS SELECT ON HR.EMPLOYEES
 ACTIONS COMPONENT=OLS DROP POLICY, DISABLE POLICY, REMOVE POLICY;

Example: Altering Roles in a Unified Audit Policy
The ALTER AUDIT POLICY statement can alter roles in a unified audit policy.

Example 25-40 shows how to add roles to a common unified audit policy.

Example 25-40 Altering Roles in a Unified Audit Policy

CONNECT c##sec_admin
Enter password: password
Connected.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-76

ALTER AUDIT POLICY RoleConnectAudit
 ADD ROLES c##role1, c##role2;

Example: Dropping a Condition from a Unified Audit Policy
The ALTER AUDIT POLICY statement can drop a condition from a unified audit policy.

Example 25-41 shows how to drop a condition from an existing unified audit policy.

Example 25-41 Dropping a Condition from a Unified Audit Policy

ALTER AUDIT POLICY orders_unified_audpol
CONDITION DROP;

Example: Altering an Existing Unified Audit Policy Top-Level Statement Audits
The ALTER AUDIT POLICY statement can modify an existing unified audit policy so that
the unified audit trail captures top-level SQL statements only.

The following example shows how to modify the orders_unified_audpol policy to
capture only top-level SQL statements.

Example 25-42 Altering an Existing Unified Audit Policy to Audit for Top-Level
Statements

ALTER AUDIT POLICY orders_unified_audpol ADD ONLY TOPLEVEL;

Similarly, to remove the top-level SQL statement audit, use the DROP clause:

ALTER AUDIT POLICY orders_unified_audpol DROP ONLY TOPLEVEL;

Enabling and Applying Unified Audit Policies to Users and Roles
You can use the AUDIT POLICY statement to enable and apply unified audit policies to
users and roles.

• About Enabling Unified Audit Policies
The AUDIT statement with the POLICY clause enables a unified audit policy,
applying for all types of audit options, including object-level options.

• Enabling a Unified Audit Policy
The AUDIT POLICY statement can enable a unified audit policy.

• Example: Enabling a Unified Audit Policy
The AUDIT POLICY statement can enable a unified audit policy using conditions,
such as WHENEVER NOT SUCCESSFUL.

About Enabling Unified Audit Policies
The AUDIT statement with the POLICY clause enables a unified audit policy, applying for
all types of audit options, including object-level options.

The policy does not take effect until after the audited users (or users who have been
granted the roles associated with the policy) log into the database instance. In other
words, if you create and enable a policy while the audited users are logged in, then the
policy cannot collect audit data; the users must log out and then log in again before

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-77

auditing can begin. Once the session is set up with auditing for it, then the setting lasts
as long as the user session and then ends when the session ends.

You can enable the audit policy for individual users or for roles. Enabling the audit
policy for roles allows you to enable the policy for a group of users who have been
directly granted the role. When the role has been directly granted to a new user, then
the policy automatically applies to the user. When the role is revoked from a user, then
the policy no longer applies to the user.

You can check the results of the audit by querying the UNIFIED_AUDIT_TRAIL data
dictionary view. To find a list of existing unified audit policies, query the
AUDIT_UNIFIED_POLICIES data dictionary view.

The AUDIT statement lets you specify the following optional additional settings:

• Whether to apply the unified audit policy to one or more users or roles.To
apply the policy to one or more users or roles, including administrative users who
log in with the SYSDBA administrative privilege (such as SYS), use the BY clause. For
example, to apply the policy to users SYS and SYSTEM:

For example, to apply the policy to two users:

AUDIT POLICY role_connect_audit_pol BY SYS, SYSTEM;

To apply a policy to users who have been directly granted the DBA and CDB_DBA
roles:

AUDIT POLICY admin_audit_pol BY USERS WITH GRANTED ROLES DBA, CDB_DBA;

• Whether to exclude users from the unified audit policy. To exclude users from
the audit policy, include the EXCEPT clause.

For example:

AUDIT POLICY role_connect_audit_pol EXCEPT rlee, jrandolph;

• Whether to create an audit record if the activity succeeds or fails. This
method of auditing reduces the audit trail, helping you to focus on specific actions.
This can aid in maintaining good database performance. Enter one of the following
clauses:

– WHENEVER SUCCESSFUL audits only successful executions of the user’s activity.

– WHENEVER NOT SUCCESSFUL audits only failed executions of the user’s activity.
Monitoring unsuccessful SQL statement can expose users who are snooping
or acting maliciously, though most unsuccessful SQL statements are neither.

For example:

AUDIT POLICY role_connect_audit_pol WHENEVER NOT SUCCESSFUL;

If you omit this clause, then both failed and successful user activities are written to
the audit trail.

Note the following:

• The unified audit policy only can have either the BY, BY USERS WITH GRANTED
ROLES, or the EXCEPT clause, but not more than one of these clauses for the same
policy.

• If you run multiple AUDIT statements on the same unified audit policy but specify
different BY users or different BY USERS WITH GRANTED ROLES roles, then Oracle
Database audits all of these users or roles.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-78

• If you run multiple AUDIT statements on the same unified audit policy but specify
different EXCEPT users, then Oracle Database uses the last exception user list, not
any of the users from the preceding lists. This means the effect of the earlier AUDIT
POLICY ... EXCEPT statements are overridden by the latest AUDIT POLICY ...
EXCEPT statement.

• You cannot use the EXCEPT clause for roles. It applies to users only.

• You can only enable common unified audit policies for common users or roles.

• In a multitenant environment, you can enable a common audit policy only from the
root and a local audit policy only from the PDB to which it applies.

Enabling a Unified Audit Policy
The AUDIT POLICY statement can enable a unified audit policy.

• Use the following syntax to enable a unified audit policy:

AUDIT POLICY { policy_auditing }
 [WHENEVER [NOT] SUCCESSFUL]

In this specification:

• policy_auditing refers to the following components:

– The name of the unified audit policy. To find all existing policies, query the
AUDIT_UNIFIED_POLICIES data dictionary view. To find currently enabled
policies, query AUDIT_UNIFIED_ENABLED_POLICIES.

– Users or roles to whom the unified audit policy applies. To apply the
policy to one or more users (including user SYS), enter the BY clause. For
example:

BY psmith, rlee

To apply the policy to one or more users to whom the list of roles are directly
granted, use the BY USERS WITH GRANTED ROLES clause. For example:

BY USERS WITH GRANTED ROLES HS_ADMIN_ROLE, HS_ADMIN_SELECT_ROLE

– Users to exclude from the unified audit policy. To exclude one or more
users from the policy, enter the EXCEPT clause. For example:

EXCEPT psmith, rlee

Mandatory audit records are captured in the UNIFIED_AUDIT_TRAIL data
dictionary view for the AUDIT POLICY SQL statement. To find users who have
been excluded in the audit records, you can query the EXCLUDED_USER column
in the UNIFIED_AUDIT_TRAIL view to list the excluded users.

You cannot enable the same audit policy with the BY, BY USERS WITH GRANTED
ROLES, and EXCEPT clauses in the same statement. This action throws an error for
the subsequent AUDIT statement with the conflicting clause

• WHENEVER [NOT] SUCCESSFUL enables the policy to generate audit records based
on whether the user's actions failed or succeeded. See About Enabling Unified
Audit Policies for more information.

After you enable the unified audit policy and it is generating records, you can find the
audit records by querying the UNIFIED_AUDIT_TRAIL data dictionary view.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-79

Example: Enabling a Unified Audit Policy
The AUDIT POLICY statement can enable a unified audit policy using conditions, such
as WHENEVER NOT SUCCESSFUL.

Example 25-43 shows how to enable a unified audit policy to record only failed actions
by the user dv_admin.

Example 25-43 Enabling a Unified Audit Policy

AUDIT POLICY dv_admin_pol BY tjones
 WHENEVER NOT SUCCESSFUL;

Disabling Unified Audit Policies
You can use the NOAUDIT POLICY statement to disable a unified audit policy.

• About Disabling Unified Audit Policies
The NOAUDIT statement with the POLICY clause can disable a unified audit policy.

• Disabling a Unified Audit Policy
The NOAUDIT statement can disable a unified audit policy using supported audit
options.

• Example: Disabling a Unified Audit Policy
The NOAUDIT POLICY statement disable a unified audit policy using filtering, such
as by user name.

About Disabling Unified Audit Policies
The NOAUDIT statement with the POLICY clause can disable a unified audit policy.

In the NOAUDIT statement, you can specify a BY user or BY USERS WITH GRANTED ROLES
role list, but not an EXCEPT user list. The disablement of a unified audit policy takes
effect on subsequent user sessions.

You can find a list of existing unified audit policies by querying the
AUDIT_UNIFIED_POLICIES data dictionary view.

In a multitenant environment, you can disable a common audit policy only from the
root and a local audit policy only from the PDB to which it applies.

Disabling a Unified Audit Policy
The NOAUDIT statement can disable a unified audit policy using supported audit
options.

• Use the following syntax to disable a unified audit policy:

NOAUDIT POLICY {policy_auditing | existing_audit_options};

In this specification:

– policy_auditing is the name of the policy. To find all currently enabled
policies, query the AUDIT_UNIFIED_ENABLED_POLICIES data dictionary view. As
part of this specification, you optionally can include the BY or BY USERS WITH

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-80

GRANTED ROLES clause, but not the EXCEPT clause. See About Enabling Unified
Audit Policies for more information.

– existing_audit_options refers to AUDIT options that were available in
releases earlier than Oracle Database 12c release 1 (12.1), such as the
following:

* SELECT ANY TABLE, UPDATE ANY TABLE BY SCOTT, HR

* UPDATE ON SCOTT.EMP

If the unified policy had been applied to all users, then you only need to specify the
policy name. For example:

NOAUDIT POLICY logons_pol;

Example: Disabling a Unified Audit Policy
The NOAUDIT POLICY statement disable a unified audit policy using filtering, such as by
user name.

Example 25-44 shows examples of how to disable a unified audit policy for a user and
for a role.

Example 25-44 Disabling a Unified Audit Policy

NOAUDIT POLICY dv_admin_pol BY tjones;

NOAUDIT POLICY dv_admin_pol BY USERS WITH GRANTED ROLES emp_admin;

Dropping Unified Audit Policies
You can use the DROP AUDIT POLICY statement to drop a unified audit policy.

• About Dropping Unified Audit Policies
The DROP AUDIT POLICY statement can be used to unified audit policies.

• Dropping a Unified Audit Policy
To drop a unified audit policy, you must first disable it, and then run the DROP
AUDIT POLICY statement to remove it.

• Example: Disabling and Dropping a Unified Audit Policy
The NOAUDIT POLICY and DROP AUDIT POLICY statements can disable and drop a
unified audit policy.

About Dropping Unified Audit Policies
The DROP AUDIT POLICY statement can be used to unified audit policies.

If a unified audit policy is already enabled for a session, the effect of dropping the
policy is not seen by this existing session. Until that time, the unified audit policy's
settings remain in effect. For object-related unified audit policies, however, the effect is
immediate.

You can find a list of existing unified audit policies by querying the
AUDIT_UNIFIED_POLICIES data dictionary view.

When you disable an audit policy before dropping it, ensure that you disable it using
the same settings that you used to enable it. For example, suppose you enabled the
logon_pol policy as follows:

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-81

AUDIT POLICY logon_pol BY HR, OE;

Before you can drop it, your NOAUDIT statement must include the HR and OE users as
follows:

NOAUDIT POLICY logon_pol BY HR, OE;

In a multitenant environment, you can drop a common audit policy only from the root
and a local audit policy only from the PDB to which it applies.

Dropping a Unified Audit Policy
To drop a unified audit policy, you must first disable it, and then run the DROP AUDIT
POLICY statement to remove it.

• Use the following the following syntax to drop a unified audit policy:

DROP AUDIT POLICY policy_name;

In a multitenant environment, the unified audit policy drop applies to the current PDB.
If the unified audit policy was created as a common unified audit policy, then you
cannot drop it from the local PDB.

Related Topics

• Unified Audit Policies or AUDIT Settings in a Multitenant Environment
In a multitenant environment, you can create unified audit policies for individual
PDBs and in the root.

Example: Disabling and Dropping a Unified Audit Policy
The NOAUDIT POLICY and DROP AUDIT POLICY statements can disable and drop a
unified audit policy.

Example 25-45 shows how to disable and drop a common unified audit policy.

Example 25-45 Disabling and Dropping a Unified Audit Policy

CONNECT c##sec_admin
Enter password: password
Connected.

NOAUDIT POLICY dv_admin_pol;

DROP AUDIT POLICY dv_admin_pol

Tutorial: Auditing Nondatabase Users
This tutorial shows how to create a unified audit policy that uses a client identifier to
audit a nondatabase user's actions.

• Step 1: Create the User Accounts and Ensure the User OE Is Active
You must first create users and ensure that the user OE is active.

• Step 2: Create the Unified Audit Policy
Next, you are ready to create the unified audit policy.

• Step 3: Test the Policy
To test the policy, use OE must try to select from the OE.ORDERS table.

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-82

• Step 4: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

Step 1: Create the User Accounts and Ensure the User OE Is Active
You must first create users and ensure that the user OE is active.

1. Log on as user SYS with the SYSDBA administrative privilege.

sqlplus sys as sysdba
Enter password: password

2. In a multitenant environment, connect to the appropriate PDB.

For example:

CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

To find the available PDBs, run the show pdbs command. To check the current
PDB, run the show con_name command.

3. Create the local user policy_admin, who will create the fine-grained audit policy.

CREATE USER policy_admin IDENTIFIED BY password;
GRANT CREATE SESSION, AUDIT_ADMIN TO policy_admin;

Follow the guidelines in Minimum Requirements for Passwords to replace
password with a password that is secure.

4. Create the local user account auditor, who will check the audit trail for this policy.

CREATE USER policy_auditor IDENTIFIED BY password;
GRANT CREATE SESSION, AUDIT_VIEWER TO policy_auditor;

5. The sample user OE will also be used in this tutorial, so query the DBA_USERS data
dictionary view to ensure that OE is not locked or expired.

SELECT USERNAME, ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = 'OE';

The account status should be OPEN. If the DBA_USERS view lists user OE as locked
and expired, log in as user SYSTEM and then enter the following statement to
unlock the OE account and create a new password:

ALTER USER OE ACCOUNT UNLOCK IDENTIFIED BY password;

Follow the guidelines in Minimum Requirements for Passwords to replace
password with a password that is secure. For greater security, do not give the OE
account the same password from previous releases of Oracle Database.

Step 2: Create the Unified Audit Policy
Next, you are ready to create the unified audit policy.

1. Connect to SQL*Plus as user policy_admin.

CONNECT policy_admin -- Or, CONNECT policy_admin@hrpdb
Enter password: password

2. Create the following policy:

CREATE AUDIT POLICY orders_unified_audpol
 ACTIONS INSERT ON OE.ORDERS, UPDATE ON OE.ORDERS, DELETE ON OE.ORDERS, SELECT

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-83

ON OE.ORDERS
 WHEN 'SYS_CONTEXT(''USERENV'', ''CLIENT_IDENTIFIER'') = ''robert'''
 EVALUATE PER STATEMENT;

AUDIT POLICY orders_unified_audpol;

In this example, the AUDIT_CONDITION parameter assumes that the nondatabase
user is named robert. The policy will monitor any INSERT, UPDATE, DELETE, and
SELECT statements that robert will attempt. Remember that the user's
CLIENT_IDENTITIFER setting that you enter in the policy is case sensitive and that
the policy only recognizes the case used for the identity that you specify here. In
other words, later on, if the user session is set to Robert or ROBERT, the policy's
condition will not be satisfied.

Step 3: Test the Policy
To test the policy, use OE must try to select from the OE.ORDERS table.

A unified auditing policy takes effect in the next user session for the users who are
being audited. So, before their audit records can be captured, the users must connect
to the database after the policy has been created.

1. Connect as user OE and select from the OE.ORDERS table.

CONNECT OE -- Or, CONNECT OE@hrpdb
Enter password: password

SELECT COUNT(*) FROM ORDERS;

The following output appears:

 COUNT(*)

 105

2. Connect as user policy_auditor and then check if any audit records were
generated.

CONNECT policy_auditor -- Or, CONNECT policy_auditor@hrpdb
Enter password: password

col dbusername format a10
col client_identifier format a20
col sql_text format a29

SELECT DBUSERNAME, CLIENT_IDENTIFIER, SQL_TEXT FROM UNIFIED_AUDIT_TRAIL
 WHERE SQL_TEXT LIKE '%FROM ORDERS%';

The following output appears:

no rows selected

3. Reconnect as user OE, set the client identifier to robert, and then reselect from the
OE.ORDERS table.

CONNECT OE -- Or, CONNECT OE@hrpdb
Enter password: password

EXEC DBMS_SESSION.SET_IDENTIFIER('robert');

SELECT COUNT(*) FROM ORDERS;

Chapter 25
Auditing Activities with Unified Audit Policies and the AUDIT Statement

25-84

The following output should appear:

 COUNT(*)

 105

4. Reconnect as user auditor and then check the audit trail again.

CONNECT policy_auditor -- Or, CONNECT policy_auditor@hrpdb
Enter password: password

SELECT DBUSERNAME, CLIENT_IDENTIFIER, SQL_TEXT FROM UNIFIED_AUDIT_TRAIL
 WHERE SQL_TEXT LIKE '%FROM ORDERS%';

This time, because robert has made his appearance and queried the OE.ORDERS
table, the audit trail captures his actions:

DBUSERNAME CLIENT_IDENTIFIER SQL_TEXT
---------- ----------------- ----------------------------
OE robert SELECT COUNT(*) FROM ORDERS;

Step 4: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

1. Connect to SQL*Plus as user policy_admin, and then manually disable and drop
the orders_unified_audpol policy.

CONNECT policy_admin -- Or, CONNECT policy_admin@hrpdb
Enter password: password

NOAUDIT POLICY orders_unified_audpol;
DROP AUDIT policy orders_unified_audpol;

(Unified audit policies reside in the SYS schema, not the schema of the user who
created them.)

2. Connect to SQL*Plus as user SYSTEM.

CONNECT SYSTEM -- Or, CONNECT SYSTEM@hrpdb
Enter password: password

3. Drop users policy_admin and policy_auditor.

DROP USER policy_admin;
DROP USER policy_auditor;

4. If you want, lock and expire OE, unless other users want to use this account:

ALTER USER OE PASSWORD EXPIRE ACCOUNT LOCK;

Auditing Activities with the Predefined Unified Audit Policies
Oracle Database provides predefined unified audit policies that cover commonly used
security-relevant audit settings.

• Logon Failures Predefined Unified Audit Policy
The ORA_LOGON_FAILURES unified audit policy tracks failed logons only, but not any
other kinds of logons.

Chapter 25
Auditing Activities with the Predefined Unified Audit Policies

25-85

• Secure Options Predefined Unified Audit Policy
The ORA_SECURECONFIG unified audit policy provides all the secure configuration
audit options.

• Oracle Database Parameter Changes Predefined Unified Audit Policy
The ORA_DATABASE_PARAMETER policy audits commonly used Oracle Database
parameter settings.

• User Account and Privilege Management Predefined Unified Audit Policy
The ORA_ACCOUNT_MGMT policy audits commonly used user account and privilege
settings.

• Center for Internet Security Recommendations Predefined Unified Audit Policy
The ORA_CIS_RECOMMENDATIONS policy performs audits that the Center for Internet
Security (CIS) recommends.

• Oracle Database Real Application Security Predfined Audit Policies
You can use predefined unified audit policies for Oracle Database Real Application
Security events.

• Oracle Database Vault Predefined Unified Audit Policy for DVSYS and LBACSYS
Schemas
The ORA_DV_AUDPOL predefined unified audit policy audits Oracle Database Vault
DVSYS and LBACSYS schema objects.

• Oracle Database Vault Predefined Unified Audit Policy for Default Realms and
Command Rules
The ORA_DV_AUDPOL2 predefined unified audit policy audits the Oracle Database
Vault default realms and command rules.

Related Topics

• Auditing Commonly Used Security-Relevant Activities
Oracle Database provides a set default unified audit policies that you can choose
from for commonly used security-relevant audits.

Logon Failures Predefined Unified Audit Policy
The ORA_LOGON_FAILURES unified audit policy tracks failed logons only, but not any
other kinds of logons.

For new databases, this policy is enabled by default for both pure unified auditing and
mixed-mode auditing environments. This policy is not enabled for databases that were
upgraded from earlier versions, except if you have created a new database from the
previous release and then upgrade it to the current release.

Note:

Only user SYS can alter or drop this predefined policy.

The following CREATE AUDIT POLICY statement shows the ORA_LOGON_FAILURES unified
audit policy definition:

CREATE AUDIT POLICY ORA_LOGON_FAILURES ACTIONS LOGON;

You should enable the ORA_LOGON_FAILURES unified audit policy as follows:

Chapter 25
Auditing Activities with the Predefined Unified Audit Policies

25-86

AUDIT POLICY ORA_LOGON_FAILURES WHENEVER NOT SUCCESSFUL;

Secure Options Predefined Unified Audit Policy
The ORA_SECURECONFIG unified audit policy provides all the secure configuration audit
options.

For new databases, this policy is enabled by default for both pure unified auditing and
mixed-mode auditing environments. This policy is not enabled for databases that were
upgraded from earlier versions, except if you have created a new database from the
previous release and then upgrade it to the current release.

Note:

Only user SYS can alter or drop this predefined policy.

The following CREATE AUDIT POLICY statement shows the ORA_SECURECONFIG unified
audit policy definition.

CREATE AUDIT POLICY ORA_SECURECONFIG
 PRIVILEGES ALTER ANY TABLE, CREATE ANY TABLE, DROP ANY TABLE,
 CREATE ANY PROCEDURE, DROP ANY PROCEDURE, ALTER ANY PROCEDURE,
 GRANT ANY PRIVILEGE, GRANT ANY OBJECT PRIVILEGE, GRANT ANY ROLE,
 AUDIT SYSTEM, CREATE EXTERNAL JOB, CREATE ANY JOB,
 CREATE ANY LIBRARY,
 EXEMPT ACCESS POLICY,
 CREATE USER, DROP USER,
 ALTER DATABASE, ALTER SYSTEM,
 CREATE PUBLIC SYNONYM, DROP PUBLIC SYNONYM,
 CREATE SQL TRANSLATION PROFILE, CREATE ANY SQL TRANSLATION
PROFILE,
 DROP ANY SQL TRANSLATION PROFILE, ALTER ANY SQL TRANSLATION
PROFILE,
 TRANSLATE ANY SQL,
 EXEMPT REDACTION POLICY,
 PURGE DBA_RECYCLEBIN, LOGMINING,
 ADMINISTER KEY MANAGEMENT, BECOME USER
 ACTIONS ALTER USER, CREATE ROLE, ALTER ROLE, DROP ROLE,
 SET ROLE, CREATE PROFILE, ALTER PROFILE,
 DROP PROFILE, CREATE DATABASE LINK,
 ALTER DATABASE LINK, DROP DATABASE LINK,
 CREATE DIRECTORY, DROP DIRECTORY,
 CREATE PLUGGABLE DATABASE,
 DROP PLUGGABLE DATABASE,
 ALTER PLUGGABLE DATABASE,
 EXECUTE ON DBMS_RLS,
 ALTER DATABASE DICTIONARY;

Oracle Database Parameter Changes Predefined Unified Audit Policy
The ORA_DATABASE_PARAMETER policy audits commonly used Oracle Database
parameter settings.

Chapter 25
Auditing Activities with the Predefined Unified Audit Policies

25-87

Note:

Only user SYS can alter or drop this predefined policy.

The following CREATE AUDIT POLICY statement shows the ORA_DATABASE_PARAMETER
unified audit policy definition. By default, this policy is not enabled.

CREATE AUDIT POLICY ORA_DATABASE_PARAMETER
 ACTIONS ALTER DATABASE, ALTER SYSTEM, CREATE SPFILE;

User Account and Privilege Management Predefined Unified Audit
Policy

The ORA_ACCOUNT_MGMT policy audits commonly used user account and privilege
settings.

Note:

Only user SYS can alter or drop this predefined policy.

The following CREATE AUDIT POLICY statement shows the ORA_ACCOUNT_MGMT unified
audit policy definition. By default, this policy is not enabled.

CREATE AUDIT POLICY ORA_ACCOUNT_MGMT
 ACTIONS CREATE USER, ALTER USER, DROP USER, CREATE ROLE, DROP ROLE,
 ALTER ROLE, SET ROLE, GRANT, REVOKE;

Center for Internet Security Recommendations Predefined Unified
Audit Policy

The ORA_CIS_RECOMMENDATIONS policy performs audits that the Center for Internet
Security (CIS) recommends.

Note:

Only user SYS can alter or drop this predefined policy.

The following CREATE AUDIT POLICY statement shows the ORA_CIS_RECOMMENDATIONS
unified audit policy definition. By default, this policy is not enabled.

CREATE AUDIT POLICY ORA_CIS_RECOMMENDATIONS
PRIVILEGES SELECT ANY DICTIONARY, ALTER SYSTEM
ACTIONS CREATE USER, ALTER USER, DROP USER,
 CREATE ROLE, DROP ROLE, ALTER ROLE,
 GRANT, REVOKE, CREATE DATABASE LINK,
 ALTER DATABASE LINK, DROP DATABASE LINK,
 CREATE PROFILE, ALTER PROFILE, DROP PROFILE,

Chapter 25
Auditing Activities with the Predefined Unified Audit Policies

25-88

 CREATE SYNONYM, DROP SYNONYM,
 CREATE PROCEDURE, DROP PROCEDURE,
 ALTER PROCEDURE, ALTER SYNONYM, CREATE FUNCTION,
 CREATE PACKAGE, CREATE PACKAGE BODY,
 ALTER FUNCTION, ALTER PACKAGE, ALTER SYSTEM,
 ALTER PACKAGE BODY, DROP FUNCTION,
 DROP PACKAGE, DROP PACKAGE BODY,
 CREATE TRIGGER, ALTER TRIGGER,
 DROP TRIGGER;

Oracle Database Real Application Security Predfined Audit Policies
You can use predefined unified audit policies for Oracle Database Real Application
Security events.

• System Administrator Operations Predefined Unified Audit Policy
The ORA_RAS_POLICY_MGMT predefined unified audit policy audits policies for all
Oracle Real Application Security administrative actions on application users, roles,
and policies.

• Session Operations Predefined Unified Audit Policy
The ORA_RAS_SESSION_MGMT predefined unified audit policy audits policies for all
run-time Oracle Real Application Security session actions and namespace actions.

Related Topics

• Auditing Oracle Database Real Application Security Events
You can use CREATE AUDIT POLICY statement to audit Oracle Database Real
Application Security events.

System Administrator Operations Predefined Unified Audit Policy
The ORA_RAS_POLICY_MGMT predefined unified audit policy audits policies for all Oracle
Real Application Security administrative actions on application users, roles, and
policies.

Note:

Only user SYS can alter or drop this predefined policy.

The following CREATE AUDIT POLICY statement describes the ORA_RAS_POLICY_MGMT
audit policy. By default, this policy is not enabled.

CREATE AUDIT POLICY ORA_RAS_POLICY_MGMT
 ACTIONS COMPONENT=XS
 CREATE USER, UPDATE USER, DELETE USER,
 CREATE ROLE, UPDATE ROLE, DELETE ROLE, GRANT ROLE, REVOKE ROLE,
 ADD PROXY, REMOVE PROXY,
 SET USER PASSWORD, SET USER VERIFIER, SET USER PROFILE,
 CREATE ROLESET, UPDATE ROLESET, DELETE ROLESET,
 CREATE SECURITY CLASS, UPDATE SECURITY CLASS, DELETE SECURITY CLASS,
 CREATE NAMESPACE TEMPLATE, UPDATE NAMESPACE TEMPLATE, DELETE NAMESPACE TEMPLATE,
 CREATE ACL, UPDATE ACL, DELETE ACL,
 CREATE DATA SECURITY, UPDATE DATA SECURITY, DELETE DATA SECURITY,
 ENABLE DATA SECURITY, DISABLE DATA SECURITY,
 ADD GLOBAL CALLBACK, DELETE GLOBAL CALLBACK, ENABLE GLOBAL CALLBACK;

Chapter 25
Auditing Activities with the Predefined Unified Audit Policies

25-89

Session Operations Predefined Unified Audit Policy
The ORA_RAS_SESSION_MGMT predefined unified audit policy audits policies for all run-
time Oracle Real Application Security session actions and namespace actions.

Note:

Only user SYS can alter or drop this predefined policy.

The following CREATE AUDIT POLICY statement describes the ORA_RAS_SESSION_MGMT
policy. By default, this policy is not enabled.

CREATE AUDIT POLICY ORA_RAS_SESSION_MGMT
 ACTIONS COMPONENT=XS
 CREATE SESSION, DESTROY SESSION,
 ENABLE ROLE, DISABLE ROLE,
 SET COOKIE, SET INACTIVE TIMEOUT,
 SWITCH USER, ASSIGN USER,
 CREATE SESSION NAMESPACE, DELETE SESSION NAMESPACE,
 CREATE NAMESPACE ATTRIBUTE, GET NAMESPACE ATTRIBUTE, SET NAMESPACE ATTRIBUTE,
 DELETE NAMESPACE ATTRIBUTE;

Oracle Database Vault Predefined Unified Audit Policy for DVSYS and
LBACSYS Schemas

The ORA_DV_AUDPOL predefined unified audit policy audits Oracle Database Vault DVSYS
and LBACSYS schema objects.

The ORA_DV_AUDPOL policy audits all actions that are performed on the Oracle
Database Vault DVSYS (including DVF) schema objects and the Oracle Label Security
LBACSYS schema objects. It does not capture actions on the F$* factor functions in the
DVF schema. By default, this policy is not enabled.

Note:

Only user SYS can alter or drop this predefined policy.

To view the complete definition of this policy, query the AUDIT_UNIFIED_POLICIES data
dictionary view, where policy_name is ORA_DV_AUDPOL.

Related Topics

• Auditing Oracle Database Vault Events
In an Oracle Database Vault environment, the CREATE AUDIT POLICY statement
can audit Database Vault activities.

Chapter 25
Auditing Activities with the Predefined Unified Audit Policies

25-90

Oracle Database Vault Predefined Unified Audit Policy for Default
Realms and Command Rules

The ORA_DV_AUDPOL2 predefined unified audit policy audits the Oracle Database Vault
default realms and command rules.

The ORA_DV_AUDPOL2 policy constitutes the audit settings of the Oracle Database
Vault-supplied default realms and command rules. By default, this policy is not
enabled.

Note:

Only user SYS can alter or drop this predefined policy.

To view the complete definition of this policy, query the AUDIT_UNIFIED_POLICIES data
dictionary view, where policy_name is ORA_DV_AUDPOL2.

Related Topics

• Auditing Oracle Database Vault Events
In an Oracle Database Vault environment, the CREATE AUDIT POLICY statement
can audit Database Vault activities.

Auditing Specific Activities with Fine-Grained Auditing
Fine-grained auditing enables you to create audit policies at the granular level.

• About Fine-Grained Auditing
Fine-grained auditing enables you to create policies that define specific conditions
that must take place for the audit to occur.

• Where Are Fine-Grained Audit Records Stored?
Fine-grained auditing records are stored in the AUDSYS schema.

• Who Can Perform Fine-Grained Auditing?
Oracle provides roles for privileges needed to create fine-grained audit policies
and to view and analyze fine-grained audit policy data.

• Fine-Grained Auditing on Tables or Views That Have Oracle VPD Policies
The audit trail captures the VPD predicate for fine-grained audited tables or views
that are included in an Oracle VPD policy.

• Fine-Grained Auditing in a Multitenant Environment
You can create fine-grained audit policies in the CDB root, application root, CDB
PDBs, and application PDBs.

• Fine-Grained Audit Policies with Editions
You can prepare an application for edition-based redefinition, and cover each table
that the application uses with an editioning view.

• Using the DBMS_FGA PL/SQL Package to Manage Fine-Grained Audit Policies
The DBMS_FGA PL/SQL package manages fine-grained audit policies.

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-91

• Tutorial: Adding an Email Alert to a Fine-Grained Audit Policy
This tutorial demonstrates how to create a fine-grained audit policy that generates
an email alert when users violate the policy.

Related Topics

• Auditing Specific, Fine-Grained Activities
Use fine-grained auditing if you want to audit individual columns and use event
handlers.

About Fine-Grained Auditing
Fine-grained auditing enables you to create policies that define specific conditions that
must take place for the audit to occur.

You cannot create unified audit policies using fine-grained auditing but you can use
fine-grained auditing to create very customized audit settings, such as auditing the
times that data is accessed.

This enables you to monitor data access based on content. It provides granular
auditing of queries, and INSERT, UPDATE, and DELETE operations. You can use fine-
grained auditing to audit the following types of actions:

• Accessing a table between 9 p.m. and 6 a.m. or on Saturday and Sunday

• Using an IP address from outside the corporate network

• Selecting or updating a table column

• Modifying a value in a table column

In general, fine-grained audit policies are based on simple, user-defined SQL
predicates on table objects as conditions for selective auditing. During fetching,
whenever policy conditions are met for a row, the query is audited.

The audit policies described in Auditing Activities with Unified Audit Policies and the
AUDIT Statement can perform most of the operations that fine-grained audit policies
can perform, except for the following actions:

• Auditing specific columns. You can audit specific relevant columns that hold
sensitive information, such as salaries or Social Security numbers.

• Using event handlers. For example, you can write a function that sends an email
alert to a security administrator when an audited column that should not be
changed at midnight is updated.

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-92

Note:

• Fine-grained auditing is supported only with cost-based optimization. For
queries using rule-based optimization, fine-grained auditing checks
before applying row filtering, which could result in an unnecessary audit
event trigger.

• Policies currently in force on an object involved in a flashback query are
applied to the data returned from the specified flashback snapshot based
on time or system change number (SCN).

• If you want to use fine-grained auditing to audit data that is being directly
loaded (for example, using Oracle Warehouse Builder to execute DML
statements), then Oracle Database transparently makes all direct loads
that are performed in the database instance into conventional loads. If
you want to preserve the direct loading of data, consider using unified
audit policies instead.

Where Are Fine-Grained Audit Records Stored?
Fine-grained auditing records are stored in the AUDSYS schema.

These audit records are stored in the SYSAUX tablespace by default. You can supply a
new tablespace by using the DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_LOCATION
procedure. This tablespace can be an encrypted tablespace. To find the records have
been generated for the audit policies that are in effect, you can query
UNIFIED_AUDIT_TRAIL data dictionary view.

The audit trail captures an audit record for each reference of a table or a view within a
SQL statement. For example, if you run a UNION statement that references the
HR.EMPLOYEES table twice, then an audit policy for statement generates two audit
records, one for each access of the HR.EMPLOYEES table.

See Also:

• Activities That Are Mandatorily Audited

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_LOCATION
procedure

• Oracle Database Reference for more information about the
UNIFIED_AUDIT_TRAIL data dictionary view

Who Can Perform Fine-Grained Auditing?
Oracle provides roles for privileges needed to create fine-grained audit policies and to
view and analyze fine-grained audit policy data.

The fine-grained audit privileges are as follows:

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-93

• To create fine-grained audit policies, you must be granted d the AUDIT_ADMIN role
or the EXECUTE privilege on the DBMS_FGA package.

• To view and analyze fine-grained audit data, you must be granted the
AUDIT_VIEWER role.

The PL/SQL package is already granted to AUDIT_ADMIN role. As with all privileges,
grant these roles to trusted users only. You can find the roles that user have been
granted by querying the DBA_ROLE_PRIVS data dictionary view.

Fine-Grained Auditing on Tables or Views That Have Oracle VPD
Policies

The audit trail captures the VPD predicate for fine-grained audited tables or views that
are included in an Oracle VPD policy.

This behavior is similar to how the unified audit trail captures the VPD predicate for
unified audit policies.

The audit trail also captures internal predicates from Oracle Label Security and Oracle
Real Application Security policies.

You do not need to create a special audit policy to capture the VPD predicate audit
records. The predicate information is automatically stored in the RLS_INFO column of
the DBA_FGA_AUDIT_TRAIL and UNIFIED_AUDIT_TRAIL data dictionary views.

If there are multiple VPD policies applied to the same table or view, then by default the
predicates for these policies are concatenated in the RLS_INFO column. You can
reformat the output so that each predicate is in its own row (identified by its
corresponding VPD policy name and other information) by using the functions in the
DBMS_AUDIT_UTIL PL/SQL package.

See Also:

• Auditing of Oracle Virtual Private Database Predicates for more
information about the auditing of VPD predicates and for an example of
how to use the DBMS_AUDIT_UTIL package functions to format captured
audit data

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_AUDIT_UTIL PL/SQL package

Fine-Grained Auditing in a Multitenant Environment
You can create fine-grained audit policies in the CDB root, application root, CDB
PDBs, and application PDBs.

Note the following general rules about fine-grained audit policies in a multitenant
environment:

• You cannot create fine-grained audit policies on SYS objects.

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-94

• You cannot create fine-grained audit policies, either local or application common,
for extended data link objects.

• When you create a fine-grained audit policy in the CDB root, the policy cannot be
applied to all PDBs. It only applies to objects within the CDB root. (In other words,
there is no such thing as a common fine-grained audit policy for the CDB root.) If
you want to create a fine-grained audit policy to audit a common object’s access in
all the PDBs, then you must explicitly create that policy in each PDB and then
enable it on the common objects that is accessible in the PDB.

• When you create a fine-grained audit policy in a PDB, it applies only to objects
within the PDB.

• You can create application common fine-grained audit policies only if you are
connected to the application root and only within the BEGIN/END block. If you are
connected to the application root and create the fine-grained audit policy outside
the BEGIN/END block, then the fine-grained audit policy is created in the application
root.

• You cannot create application common fine-grained audit policies on local PDB
objects.

• If the application common fine-grained audit policy has a handler, then this handler
must be owned by either an application common user or a CDB common user.

• You can create an application fine-grained audit policy on local (PDB) objects and
CDB common objects. Because the policy is local to its container, the object on
which the policy is defined is audited only in the particular container where the
policy is defined. For example, if you create a fine-grained audit policy in the
hr_pdb PDB, the object for which you create this policy must exist in the hr_pdb
PDB.

• You cannot create local fine-grained audit policies in an application PDB on object
linked and extended data link objects. On metadata-linked objects are allowed in
the fine-grained audit policy.

• Application root local policies are allowed for all application common objects.

• When you create a fine-grained audit policy as a common audit policy in an
application root, it will be effective in each PDB that belongs to this application
root. Therefore, any access to the application common object and CDB common
object (on which the application common fine-grained audit policy is defined) from
the application PDB is audited in the fine-grained audit trail in that application
PDB.

• When you create scripts for application install, upgrade, patch, or uninstall
operations, you can include SQL statements within the ALTER PLUGGABLE
DATABASE app_name BEGIN INSTALL and ALTER PLUGGABLE DATABASE app_name
END INSTALL blocks to perform various operations. You can include fine-grained
audit policy statements only within these blocks.

• You can only enable, disable, or drop application common fine-grained audit
policies from the application root, and from within a ALTER PLUGGABLE DATABASE
app_name BEGIN INSTALL and ALTER PLUGGABLE DATABASE app_name END
INSTALL block in a script.

Fine-Grained Audit Policies with Editions
You can prepare an application for edition-based redefinition, and cover each table
that the application uses with an editioning view.

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-95

If you do this, then you must move the fine-grained audit polices that protect these
tables to the editioning view. You can find information about the currently configured
editions by querying the DBA_EDITIONS data dictionary view. To find information
about fine-grained audit policies, query DBA_AUDIT_POLICIES.

Using the DBMS_FGA PL/SQL Package to Manage Fine-Grained
Audit Policies

The DBMS_FGA PL/SQL package manages fine-grained audit policies.

• About the DBMS_FGA PL/SQL PL/SQL Package
The DBMS_FGA PL/SQL package can be used to combine statements into one
policy and perform other fine-grained auditing management tasks.

• The DBMS_FGA PL/SQL Package with Editions
You can create DBMS_FGA policies for use in an editions environment.

• The DBMS_FGA PL/SQL Package in a Multitenant Environment
In a multitenant environment, the DBMS_FGA PL/SQL package applies only to the
current local PDBs.

• Creating a Fine-Grained Audit Policy
The DBMS_FGA.ADD_POLICY procedure creates a fine-grained audit policy.

• Example: Using DBMS_FGA.ADD_POLICY to Create a Fine-Grained Audit Policy
The DBMS_FGA.ADD_POLICY procedure can create a fine-grained audit policy using
multiple statement types.

• Disabling a Fine-Grained Audit Policy
The DBMS_FGA.DISABLE_POLICY procedure disables a fine-grained audit policy.

• Enabling a Fine-Grained Audit Policy
The DBMS_FGA.ENABLE_POLICY procedure enables a fine-grained audit policy.

• Dropping a Fine-Grained Audit Policy
The DBMS_FGA.DROP_POLICY procedure drops a fine-grained audit policy.

About the DBMS_FGA PL/SQL PL/SQL Package
The DBMS_FGA PL/SQL package can be used to combine statements into one policy
and perform other fine-grained auditing management tasks.

However, unless you want to perform column-level auditing or use event handlers with
your audit policy, you should create audit policies as described in Auditing Activities
with Unified Audit Policies and the AUDIT Statement.

The DBMS_FGA PL/SQL package enables you to add all combinations of SELECT,
INSERT, UPDATE, and DELETE statements to one policy. You also can audit MERGE
statements, by auditing the underlying actions of INSERT and UPDATE. To audit MERGE
statements, configure fine-grained access on the INSERT and UPDATE statements. Only
one record is generated for each policy for successful MERGE operations.

To administer fine-grained audit policies, you must have be granted the AUDIT_ADMIN
role. Note also that the EXECUTE privilege for the DBMS_FGA package is mandatorily
audited.

The audit policy is bound to the table for which you created it. This simplifies the
management of audit policies because the policy only needs to be changed once in

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-96

the database, not in each application. In addition, no matter how a user connects to
the database—from an application, a Web interface, or through SQL*Plus or Oracle
SQL Developer—Oracle Database records any actions that affect the policy.

If any rows returned from a query match the audit condition that you define, then
Oracle Database inserts an audit entry into the fine-grained audit trail. This entry
excludes all the information that is reported in the regular audit trail. In other words,
only one row of audit information is inserted into the audit trail for every fine-grained
audit policy that evaluates to true.

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_FGA package

The DBMS_FGA PL/SQL Package with Editions
You can create DBMS_FGA policies for use in an editions environment.

If you plan to use the DBMS_FGA package policy across different editions, then you can
control the results of the policy: whether the results are uniform across all editions, or
specific to the edition in which the policy is used.

Related Topics

• How Editions Affects the Results of a Global Application Context PL/SQL Package
Global application context packages, Oracle Virtual Private Database packages,
and fine-grained audit policies can be used across multiple editions.

The DBMS_FGA PL/SQL Package in a Multitenant Environment
In a multitenant environment, the DBMS_FGA PL/SQL package applies only to the
current local PDBs.

You cannot create one policy for the entire multitenant environment. The policy must
be specific to objects within a PDB. To find PDBs, you can query the DBA_PDBS data
dictionary view. To find the name of the current PDB, issue the show con_name
command.

Creating a Fine-Grained Audit Policy
The DBMS_FGA.ADD_POLICY procedure creates a fine-grained audit policy.

• About Creating a Fine-Grained Audit Policy
The DBMS_FGA.ADD_POLICY procedure creates an audit policy using the supplied
predicate as the audit condition.

• Syntax for Creating a Fine-Grained Audit Policy
The DBMS_FGA.ADD_POLICY procedure includes many settings, such as the ability to
use a handler for complex auditing.

• Audits of Specific Columns and Rows
You can fine-tune audit behavior by targeting a specific column (relevant column)
to be audited if a condition is met.

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-97

About Creating a Fine-Grained Audit Policy
The DBMS_FGA.ADD_POLICY procedure creates an audit policy using the supplied
predicate as the audit condition.

By default, Oracle Database executes the policy predicate with the privileges of the
user who owns the policy. The maximum number of fine-grained policies on any table
or view object is 256. Oracle Database stores the policy in the data dictionary table,
but you can create the policy on any table or view that is not in the SYS schema. In a
multitenant environment, the fine grained policy is only created in the local PDB.

You cannot modify a fine-grained audit policy after you have created it. If you must
modify the policy, then drop and recreate it.

You can find information about a fine-grained audit policy by querying the
ALL_AUDIT_POLICIES, DBA_AUDIT_POLICIES, and ALL_AUDIT_POLICIES views. The
UNIFIED_AUDIT_TRAIL view contains a column entitled FGA_POLICY_NAME, which you
can use to filter out rows that were generated using a specific fine-grained audit policy.

Syntax for Creating a Fine-Grained Audit Policy
The DBMS_FGA.ADD_POLICY procedure includes many settings, such as the ability to
use a handler for complex auditing.

The DBMS_FGA.ADD_POLICY procedure syntax is as follows:

DBMS_FGA.ADD_POLICY(
 object_schema IN VARCHAR2 DEFAULT NULL
 object_name IN VARCHAR2,
 policy_name IN VARCHAR2,
 audit_condition IN VARCHAR2 DEFAULT NULL,
 audit_column IN VARCHAR2 DEFAULT NULL
 handler_schema IN VARCHAR2 DEFAULT NULL,
 handler_module IN VARCHAR2 DEFAULT NULL,
 enable IN BOOLEAN DEFAULT TRUE,
 statement_types IN VARCHAR2 DEFAULT SELECT,
 audit_trail IN BINARY_INTEGER DEFAULT NULL,
 audit_column_opts IN BINARY_INTEGER DEFAULT ANY_COLUMNS,
 policy_owner IN VARCHAR2 DEFAULT NULL);

In this specification:

• object_schema specifies the schema of the object to be audited. (If NULL, the
current log-on user schema is assumed.)

• object_name specifies the name of the object to be audited.

• policy_name specifies the name of the policy to be created. Ensure that this name
is unique.

• audit_condition specifies a Boolean condition in a row. NULL is allowed and acts
as TRUE. See Audits of Specific Columns and Rows for more information. If you
specify NULL or no audit condition, then any action on a table with that policy
creates an audit record, whether or not rows are returned.

Follow these guidelines:

– Do not include functions, which execute the auditable statement on the same
base table, in the audit_condition setting. For example, suppose you create

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-98

a function that executes an INSERT statement on the HR.EMPLOYEES table. The
policy's audit_condition contains this function and it is for INSERT statements
(as set by statement_types). When the policy is used, the function executes
recursively until the system has run out of memory. This can raise the error
ORA-1000: maximum open cursors exceeded or ORA-00036: maximum number
of recursive SQL levels (50) exceeded.

– Do not issue the DBMS_FGA.ENABLE_POLICY or DBMS_FGA.DISABLE_POLICY
statement from a function in a policy's condition.

• audit_column specifies one or more columns to audit, including hidden columns. If
set to NULL or omitted, all columns are audited. These can include Oracle Label
Security hidden columns or object type columns. The default, NULL, causes audit if
any column is accessed or affected.

• handler_schema: If an alert is used to trigger a response when the policy is
violated, specifies the name of the schema that contains the event handler. The
default, NULL, uses the current schema. See also Tutorial: Adding an Email Alert to
a Fine-Grained Audit Policy.

• handler_module specifies the name of the event handler. Include the package the
event handler is in. This function is invoked only after the first row that matches the
audit condition in the query is processed.

Follow these guidelines:

– Do not create recursive fine-grained audit handlers. For example, suppose you
create a handler that executes an INSERT statement on the HR.EMPLOYEES
table. The policy that is associated with this handler is for INSERT statements
(as set by the statement_types parameter). When the policy is used, the
handler executes recursively until the system has run out of memory. This can
raise the error ORA-1000: maximum open cursors exceeded or ORA-00036:
maximum number of recursive SQL levels (50) exceeded.

– Do not issue the DBMS_FGA.ENABLE_POLICY or DBMS_FGA.DISABLE_POLICY
statement from a policy handler. Doing so can raise the ORA-28144: Failed
to execute fine-grained audit handler error.

• enable enables or disables the policy using true or false. If omitted, the policy is
enabled. The default is TRUE.

• statement_types: Specifies the SQL statements to be audited: INSERT, UPDATE,
DELETE, or SELECT only. If you want to audit a MERGE operation, then set
statement_types to 'INSERT,UPDATE'. The default is SELECT.

• audit_trail: If you have migrated to unified auditing, then Oracle Database
ignores this parameter and writes the audit records immediately to the unified audit
trail. If you have migrated to unified auditing, then omit this parameter.

Be aware that sensitive data, such as credit card information, can be recorded in
clear text.

• audit_column_opts: If you specify more than one column in the audit_column
parameter, then this parameter determines whether to audit all or specific
columns. See Audits of Specific Columns and Rows for more information.

• policy_owner is the user who owns the fine-grained auditing policy. However, this
setting is not a user-supplied argument. The Oracle Data Pump client uses this
setting internally to recreate the fine-grained audit policies appropriately.

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-99

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_FGA.ADD_POLICY syntax

Audits of Specific Columns and Rows
You can fine-tune audit behavior by targeting a specific column (relevant column) to be
audited if a condition is met.

To accomplish this, you use the audit_column parameter to specify one or more
sensitive columns. In addition, you can audit data in specific rows by using the
audit_condition parameter to define a Boolean condition. (However, if your policy
needs only to audit for conditions, consider using an audit policy condition described in
Creating a Condition for a Unified Audit Policy.)

The following settings from Example 25-46 enable you to perform an audit if anyone in
Department 50 (DEPARTMENT_ID = 50) tries to access the SALARY and COMMISSION_PCT
columns.

audit_condition => 'DEPARTMENT_ID = 50',
audit_column => 'SALARY,COMMISSION_PCT,'

As you can see, this feature is enormously beneficial. It not only enables you to
pinpoint particularly important types of data to audit, but it provides increased
protection for columns that contain sensitive data, such as Social Security numbers,
salaries, patient diagnoses, and so on.

If the audit_column lists more than one column, then you can use the
audit_column_opts parameter to specify whether a statement is audited when the
query references any column specified in the audit_column parameter or only when all
columns are referenced. For example:

audit_column_opts => DBMS_FGA.ANY_COLUMNS,

audit_column_opts => DBMS_FGA.ALL_COLUMNS,

If you do not specify a relevant column, then auditing applies to all columns.

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the audit_condition, audit_column, and
audit_column_opts parameters in the DBMS_FGA.ADD_POLICY procedure (see
also the usage notes for the ADD_POLICY procedure in that section)

Example: Using DBMS_FGA.ADD_POLICY to Create a Fine-Grained Audit
Policy

The DBMS_FGA.ADD_POLICY procedure can create a fine-grained audit policy using
multiple statement types.

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-100

Example 25-46 shows how to audit statements INSERT, UPDATE, DELETE, and SELECT on
table HR.EMPLOYEES.

Note that this example omits the audit_column_opts parameter, because it is not a
mandatory parameter.

Example 25-46 Using DBMS_FGA.ADD_POLICY to Create a Fine-Grained Audit
Policy

BEGIN
 DBMS_FGA.ADD_POLICY(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'chk_hr_employees',
 audit_column => 'SALARY',
 enable => TRUE,
 statement_types => 'INSERT, UPDATE, SELECT, DELETE');
END;
/

After you create the policy, if you query the DBA_AUDIT_POLICIES view, you will find the
new policy listed:

SELECT POLICY_NAME FROM DBA_AUDIT_POLICIES;

POLICY_NAME

CHK_HR_EMPLOYEES

Afterwards, any of the following SQL statements log an audit event record.

SELECT COUNT(*) FROM HR.EMPLOYEES WHERE COMMISSION_PCT = 20 AND SALARY > 4500;

SELECT SALARY FROM HR.EMPLOYEES WHERE DEPARTMENT_ID = 50;

DELETE FROM HR.EMPLOYEES WHERE SALARY > 1000000;

Disabling a Fine-Grained Audit Policy
The DBMS_FGA.DISABLE_POLICY procedure disables a fine-grained audit policy.

• Use the following syntax to disable a fine-grained audit policy:

DBMS_FGA.DISABLE_POLICY(
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_name VARCHAR2);

For example, to disable the fine-grained audit policy that was created in
Example 25-46.

BEGIN
 DBMS_FGA.DISABLE_POLICY(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'chk_hr_employees');
END;
/

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-101

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DISABLE_POLICY syntax

Enabling a Fine-Grained Audit Policy
The DBMS_FGA.ENABLE_POLICY procedure enables a fine-grained audit policy.

• Use the following syntax to enable a fine-grained audit policy:

DBMS_FGA.ENABLE_POLICY(
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_name VARCHAR2,
 enable BOOLEAN);

For example, to reenable the chk_hr_emp policy by using the DBMS_FGA.ENABLE_POLICY
procedure

BEGIN
 DBMS_FGA.ENABLE_POLICY(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'chk_hr_employees',
 enable => TRUE);
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about the ENABLE_POLICY syntax

Dropping a Fine-Grained Audit Policy
The DBMS_FGA.DROP_POLICY procedure drops a fine-grained audit policy.

Oracle Database automatically drops the audit policy if you remove the object
specified in the object_name parameter of the DBMS_FGA.ADD_POLICY procedure, or if
you drop the user who created the audit policy.

• Use the following syntax to drop a fine-grained audit policy:

DBMS_FGA.DROP_POLICY(
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_name IVARCHAR2);

For example, to drop a fine-grained audit policy manually by using the
DBMS_FGA.DROP_POLICY procedure:

BEGIN
 DBMS_FGA.DROP_POLICY(
 object_schema => 'HR',

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-102

 object_name => 'EMPLOYEES',
 policy_name => 'chk_hr_employees');
END;
/

See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DROP_POLICY syntax

Tutorial: Adding an Email Alert to a Fine-Grained Audit Policy
This tutorial demonstrates how to create a fine-grained audit policy that generates an
email alert when users violate the policy.

• About This Tutorial
This tutorial shows how you can add an email alert to a fine-grained audit policy
that goes into effect when a user (or an intruder) violates the policy.

• Step 1: Install and Configure the UTL_MAIL PL/SQL Package
The UTL_MAIL PL/SQL manages email that includes commonly used email
features, such as attachments, CC, and BCC.

• Step 2: Create User Accounts
You must create an administrative account and an auditor user.

• Step 3: Configure an Access Control List File for Network Services
An access control list (ACL) file can be used to enable fine-grained access to
external network services.

• Step 4: Create the Email Security Alert PL/SQL Procedure
The email security alert PL/SQL procedure generates a message describing the
violation and then sends this message to the appropriate users.

• Step 5: Create and Test the Fine-Grained Audit Policy Settings
The fine-grained audit policy will trigger the alert when the policy is violated.

• Step 6: Test the Alert
With the components in place, you are ready to test the alert.

• Step 7: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

About This Tutorial
This tutorial shows how you can add an email alert to a fine-grained audit policy that
goes into effect when a user (or an intruder) violates the policy.

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-103

Note:

• To complete this tutorial, you must use a database that has an SMTP
server.

• If you are using a multitenant environment, then this tutorial applies to
the current PDB only.

To add an email alert to a fine-grained audit policy, you first must create a procedure
that generates the alert, and then use the following DBMS_FGA.ADD_POLICY parameters
to call this function when someone violates this policy:

• handler_schema: The schema in which the handler event is stored

• handler_module: The name of the event handler

The alert can come in any form that best suits your environment: an email or pager
notification, updates to a particular file or table, and so on. Creating alerts also helps to
meet certain compliance regulations, such as California Senate Bill 1386. In this
tutorial, you will create an email alert.

In this tutorial, you create an email alert that notifies a security administrator that a
Human Resources representative is trying to select or modify salary information in the
HR.EMPLOYEES table. The representative is permitted to make changes to this table, but
to meet compliance regulations, we want to create a record of all salary selections and
modifications to the table.

Step 1: Install and Configure the UTL_MAIL PL/SQL Package
The UTL_MAIL PL/SQL manages email that includes commonly used email features,
such as attachments, CC, and BCC.

You must install and configure this package before you can use it. It is not installed
and configured by default.

1. Log on as user SYS with the SYSDBA administrative privilege.

sqlplus sys as sysdba
Enter password: password

2. In a multitenant environment, connect to the appropriate PDB.

For example:

CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

To find the available PDBs, run the show pdbs command. To check the current
PDB, run the show con_name command.

3. Install the UTL_MAIL package.

@$ORACLE_HOME/rdbms/admin/utlmail.sql
@$ORACLE_HOME/rdbms/admin/prvtmail.plb

The UTL_MAIL package enables you to manage email.

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-104

Be aware that currently, the UTL_MAIL PL/SQL package does not support SSL
servers.

4. Check the current value of the SMTP_OUT_SERVER initialization parameter, and make
a note of this value so that you can restore it when you complete this tutorial.

For example:

SHOW PARAMETER SMTP_OUT_SERVER

If the SMTP_OUT_SERVER parameter has already been set, then output similar to the
following appears:

NAME TYPE VALUE
----------------------- ----------------- ----------------------------------
SMTP_OUT_SERVER string some_imap_server.example.com

5. Issue the following ALTER SYSTEM statement:

ALTER SYSTEM SET SMTP_OUT_SERVER="imap_mail_server.example.com";

Replace imap_mail_server.example.com with the name of your SMTP server,
which you can find in the account settings in your email tool. Enclose these
settings in quotation marks. For example:

ALTER SYSTEM SET SMTP_OUT_SERVER="my_imap_server.example.com";

6. Connect as SYS using the SYSOPER privilege and then restart the database.

CONNECT SYS AS SYSOPER -- Or, CONNECT SYS@hrpdb AS SYSOPER
Enter password: password

SHUTDOWN IMMEDIATE
STARTUP

7. Ensure that the SMTP_OUT_SERVER parameter setting is correct.

CONNECT SYS AS SYSDBA -- Or, CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

SHOW PARAMETER SMTP_OUT_SERVER

Output similar to the following appears:

NAME TYPE VALUE
----------------------- ----------------- ----------------------------------
SMTP_OUT_SERVER string my_imap_server.example.com

See Also:

Oracle Database PL/SQL Packages and Types Reference for more
information about the UTL_MAIL package

Step 2: Create User Accounts
You must create an administrative account and an auditor user.

1. Ensure that you are connected as SYS using the SYSDBA administrative privilege,
and then create the fga_admin user, who will create the fine-grained audit policy.

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-105

For example:

CONNECT SYS AS SYSDBA -- Or, CONNECT SYS@hrpdb AS SYSDBA
Enter password: password

CREATE USER fga_admin IDENTIFIED BY password;
GRANT CREATE SESSION, CREATE PROCEDURE, AUDIT_ADMIN TO fga_admin;
GRANT EXECUTE ON UTL_TCP TO fga_admin;
GRANT EXECUTE ON UTL_SMTP TO fga_admin;
GRANT EXECUTE ON UTL_MAIL TO fga_admin;
GRANT EXECUTE ON DBMS_NETWORK_ACL_ADMIN TO fga_admin;

Follow the guidelines in Minimum Requirements for Passwordsto replace
password with a password that is secure.

The UTL_TCP, UTL_SMTP, UTL_MAIL, and DBMS_NETWORK_ACL_ADMIN PL/SQL
packages are used by the email security alert that you create.

2. Create the auditor user, who will check the audit trail for this policy.

GRANT CREATE SESSION TO fga_auditor IDENTIFIED BY password;
GRANT AUDIT_VIEWER TO fga_auditor;

3. Connect as user SYSTEM.

CONNECT SYSTEM -- Or, CONNECT SYSTEM@hrpdb
Enter password: password

4. Ensure that the HR schema account is unlocked and has a password. If necessary,
unlock HR and grant this user a password.

SELECT USERNAME, ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = 'HR';

The account status should be OPEN. If the DBA_USERS view lists user HR as locked
and expired, then enter the following statement to unlock the HR account and
create a new password:

ALTER USER HR ACCOUNT UNLOCK IDENTIFIED BY password;

Follow the guidelines in Minimum Requirements for Passwords to create a
password that is secure. For greater security, do not give the HR account the same
password from previous releases of Oracle Database.

5. Create a user account for Susan Mavris, who is an HR representative whose
actions you will audit, and then grant this user access to the HR.EMPLOYEES table.

GRANT CREATE SESSION TO smavris IDENTIFIED BY password;
GRANT SELECT, INSERT, UPDATE, DELETE ON HR.EMPLOYEES TO SMAVRIS;

Step 3: Configure an Access Control List File for Network Services
An access control list (ACL) file can be used to enable fine-grained access to external
network services.

Before you can use PL/SQL network utility packages such as UTL_MAIL, you must
configure this type of access control list (ACL) file.

1. Connect to SQL*Plus as user fga_admin.

CONNECT fga_admin -- Or, CONNECT fga_admin@hrpdb
Enter password: password

2. Configure the following access control setting and its privilege definitions.

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-106

BEGIN
 DBMS_NETWORK_ACL_ADMIN.APPEND_HOST_ACE(
 host => 'SMTP_OUT_SERVER_setting',
 lower_port => 25,
 ace => xs$ace_type(privilege_list => xs$name_list('smtp'),
 principal_name => 'FGA_ADMIN',
 principal_type => xs_acl.ptype_db));
END;
/

In this example:

• SMTP_OUT_SERVER_setting: Enter the SMTP_OUT_SERVER setting that you set for
the SMTP_OUT_SERVER parameter in Step 1: Install and Configure the
UTL_MAIL PL/SQL Package. This setting should match exactly the setting
that your email tool specifies for its outgoing server.

• lower_port: Enter the port number that your email tool specifies for its
outgoing server. Typically, this setting is 25. Enter this value for the
lower_port setting. (Currently, the UTL_MAIL package does not support SSL. If
your email server is an SSL server, then enter 25 for the port number, even if
the email server uses a different port number.)

• ace: Define the privileges here.

See Also:

Managing Fine-Grained Access in PL/SQL Packages and Types for detailed
information about configuring an access control list (ACL) file

Step 4: Create the Email Security Alert PL/SQL Procedure
The email security alert PL/SQL procedure generates a message describing the
violation and then sends this message to the appropriate users.

• As user fga_admin, create the following procedure.

CREATE OR REPLACE PROCEDURE email_alert (sch varchar2, tab varchar2,
pol varchar2)
AS
msg varchar2(20000) := 'HR.EMPLOYEES table violation. The time is: ';
BEGIN
 msg := msg||TO_CHAR(SYSDATE, 'Day DD MON, YYYY HH24:MI:SS');
UTL_MAIL.SEND (
 sender => 'youremail@example.com',
 recipients => 'recipientemail@example.com',
 subject => 'Table modification on HR.EMPLOYEES',
 message => msg);
END email_alert;
/

In this example:

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-107

– CREATE OR REPLACE PROCEDURE ...AS: You must include a signature that
describes the schema name (sch), table name (tab), and the name of the
audit procedure (pol) that you will define in audit policy in the next step.

– sender and recipients: Replace youremail@example.com with your email
address, and recipientemail@example.com with the email address of the
person you want to receive the notification.

Step 5: Create and Test the Fine-Grained Audit Policy Settings
The fine-grained audit policy will trigger the alert when the policy is violated.

1. As user fga_admin, create the chk_hr_emp policy fine-grained audit policy as
follows.

BEGIN
 DBMS_FGA.ADD_POLICY (
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'CHK_HR_EMP',
 audit_column => 'SALARY',
 handler_schema => 'FGA_ADMIN',
 handler_module => 'EMAIL_ALERT',
 enable => TRUE,
 statement_types => 'SELECT, UPDATE');
END;
/

2. Commit the changes you have made to the database.

COMMIT;

3. Test the settings that you have created so far.

EXEC email_alert ('hr', 'employees', 'chk_hr_emp');

SQL*Plus should display a PL/SQL procedure successfully completed
message, and in a moment, depending on the speed of your email server, you
should receive the email alert.

If you receive an ORA-24247: network access denied by access control list
(ACL) error followed by ORA-06512: at stringline string errors, then check the
settings in the access control list file.

Step 6: Test the Alert
With the components in place, you are ready to test the alert.

1. Connect to SQL*Plus as user smavris, check your salary, and give yourself a nice
raise.

CONNECT smavris -- Or, CONNECT smavris@hrpdb
Enter password: password

SELECT SALARY FROM HR.EMPLOYEES WHERE LAST_NAME = 'Mavris';

SALARY

6500

UPDATE HR.EMPLOYEES SET SALARY = 38000 WHERE LAST_NAME = 'Mavris';

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-108

By now, depending on the speed of your email server, you (or your recipient)
should have received an email with the subject header Table modification on
HR.EMPLOYEES notifying you of the tampering of the HR.EMPLOYEES table. Now all
you need to do is to query the UNIFIED_AUDIT_TRAIL data dictionary view to find
who the violator is.

2. As user fga_auditor, query the UNIFIED_AUDIT_TRAIL data dictionary view as
follows:

CONNECT fga_auditor -- Or, CONNECT fga_auditor@hrpdb
Enter password: password

col dbusername format a20
col sql_text format a66
col audit_type format a17

SELECT DBUSERNAME, SQL_TEXT, AUDIT_TYPE
FROM UNIFIED_AUDIT_TRAIL
WHERE OBJECT_SCHEMA = 'HR' AND OBJECT_NAME = 'EMPLOYEES';

Output similar to the following appears:

DBUSERNAME SQL_TEXT AUDIT_TYPE
---------- --- ----------------
SMAVRIS UPDATE HR.EMPLOYEES SET SALARY = 38000 WHERE LAST_NAME = 'Mavris' FineGrainedAudit

The audit trail captures the SQL statement that Susan Mavris ran that affected the
SALARY column in the HR.EMPLOYEES table. The first statement she ran, in which
she asked about her current salary, was not recorded because it was not affected
by the audit policy. This is because Oracle Database executes the audit function
as an autonomous transaction, committing only the actions of the handler_module
setting and not any user transaction. The function has no effect on any user SQL
transaction.

Step 7: Remove the Components of This Tutorial
If you no longer need the components of this tutorial, then you can remove them.

1. Connect to SQL*Plus as user SYSTEM privilege, and then drop users fga_admin
(including the objects in the fga_admin schema), fga_auditor, and smavris.

CONNECT SYSTEM -- Or, CONNECT SYSTEM@hrpdb
Enter password: password

DROP USER fga_admin CASCADE;
DROP USER fga_auditor;
DROP USER smavris;

2. Connect as user HR and remove the loftiness of Susan Mavris's salary.

CONNECT HR -- Or, CONNECT HR@hrpdb
Enter password: password

UPDATE HR.EMPLOYEES SET SALARY = 6500 WHERE LAST_NAME = 'Mavris';

3. If you want, lock and expire HR, unless other users want to use this account:

ALTER USER HR PASSWORD EXPIRE ACCOUNT LOCK;

Chapter 25
Auditing Specific Activities with Fine-Grained Auditing

25-109

4. Issue the following ALTER SYSTEM statement to restore the SMTP_OUT_SERVER
parameter to the previous value, from Step 5 under Step 1: Install and Configure
the UTL_MAIL PL/SQL Package:

ALTER SYSTEM SET SMTP_OUT_SERVER="previous_value";

Enclose this setting in quotation marks. For example:

ALTER SYSTEM SET SMTP_OUT_SERVER="some_imap_server.example.com"

5. Restart the database instance.

Audit Policy Data Dictionary Views
Data dictionary and dynamic views can be used to find detailed auditing information.

Table 25-20 lists these views.

Tip:

To find error information about audit policies, check the trace files. The
USER_DUMP_DEST initialization parameter sets the location of the trace files.

Table 25-20 Views That Display Information about Audited Activities

View Description

ALL_AUDIT_POLICIES Displays information about all fine-grained audit policies

ALL_DEF_AUDIT_OPTS Lists default object-auditing options that are to be applied when objects
are created

AUDIT_UNIFIED_CONTEXTS Describes application context values that have been configured to be
captured in the audit trail

AUDIT_UNIFIED_ENABLED_POLICIES Describes all unified audit policies that are enabled in the database

AUDIT_UNIFIED_POLICIES Describes all unified audit policies created in the database

AUDIT_UNIFIED_POLICY_COMMENTS Shows the description of each unified audit policy, if a description was
entered for the unified audit policy using the COMMENT SQL statement

AUDITABLE_SYSTEM_ACTIONS Maps the auditable system action numbers to the action names

CDB_UNIFIED_AUDIT_TRAIL Similar to the UNIFIED_AUDIT_TRAIL view, displays the audit records
but from all PDBs in a multitenant environment. This view is available
only in the CDB root and must be queried from there.

DBA_AUDIT_POLICIES Displays information about fine-grained audit policies

DBA_SA_AUDIT_OPTIONS Describes audited Oracle Label Security events performed by users,
and indicates if the user's action failed or succeeded

DBA_XS_AUDIT_TRAIL Displays audit trail information related to Oracle Database Real
Application Security

DV$CONFIGURATION_AUDIT Displays configuration changes made by Oracle Database Vault
administrators

DV$ENFORCEMENT_AUDIT Displays user activities that are affected by Oracle Database Vault
policies

Chapter 25
Audit Policy Data Dictionary Views

25-110

Table 25-20 (Cont.) Views That Display Information about Audited Activities

View Description

SYSTEM_PRIVILEGE_MAP (table) Describes privilege (auditing option) type codes. This table can be used
to map privilege (auditing option) type numbers to type names.

USER_AUDIT_POLICIES Displays information about all fine-grained audit policies on table and
views owned by the current user

UNIFIED_AUDIT_TRAIL Displays all audit records

V$OPTION You can query the PARAMETER column for Unified Auditing to find if
unified auditing is enabled

V$XML_AUDIT_TRAIL Displays standard, fine-grained, SYS, and mandatory audit records
written in XML format files.

See Also:

Oracle Database Reference for detailed information about these views

Chapter 25
Audit Policy Data Dictionary Views

25-111

26
Administering the Audit Trail

Users who have been granted the AUDIT_ADMIN role can manage the audit trail,
archive the audit trail, and purge audit trail records.

• Managing the Unified Audit Trail
Auditing is enabled by default, but you can control when audit records are written
to disk.

• Archiving the Audit Trail
You can archive the traditional operating system, unified database, and traditional
database audit trails.

• Purging Audit Trail Records
The DBMS_AUDIT_MGMT PL/SQL package can schedule automatic purge jobs,
manually purge audit records, and perform other audit trail operations.

• Audit Trail Management Data Dictionary Views
Oracle Database provides data dictionary views that list information about audit
trail management settings.

Managing the Unified Audit Trail
Auditing is enabled by default, but you can control when audit records are written to
disk.

• When and Where Are Audit Records Created?
Auditing is always enabled. Oracle Database generates audit records during or
after the execution phase of the audited SQL statements.

• Activities That Are Mandatorily Audited
Certain security sensitive database activities are always audited and such audit
configuration cannot be disabled.

• How Do Cursors Affect Auditing?
For each execution of an auditable operation within a cursor, Oracle Database
inserts one audit record into the audit trail.

• Writing the Unified Audit Trail Records to the AUDSYS Schema
Oracle Database automatically writes audit records to an internal relational table in
the AUDSYS schema.

• Writing the Unified Audit Trail Records to SYSLOG or the Windows Event Viewer
You can write the unified audit trail records to SYSLOG or the Windows Event
Viewer by setting an initialization parameter.

• When Audit Records Are Written to the Operating System
In situations where the database table is unable to accept unified audit records,
these records will be written to operating system spillover audit files (.bin format).

• Moving Operating System Audit Records into the Unified Audit Trail
Audit records that have been written to the spillover audit files can be moved to the
unified audit trail database table.

26-1

• Disabling Unified Auditing
You can disable unified auditing.

• Exporting and Importing the Unified Audit Trail Using Oracle Data Pump
You can include the unified audit trail in Oracle Database Pump export and import
dump files.

Related Topics

• Purging Audit Trail Records
The DBMS_AUDIT_MGMT PL/SQL package can schedule automatic purge jobs,
manually purge audit records, and perform other audit trail operations.

When and Where Are Audit Records Created?
Auditing is always enabled. Oracle Database generates audit records during or after
the execution phase of the audited SQL statements.

Oracle Database individually audits SQL statements inside PL/SQL program units, as
necessary, when the program unit is run.

To improve read performance of the unified audit trail, the unified audit records are
written immediately to disk to an internal relational table in the AUDSYS schema. In the
previous release, the unified audit records were written to SecureFile LOBs. If you had
migrated to unified auditing in Oracle Database 12c release 1 (12.1), then you can
manually transfer the unified audit records from the SecureFile LOBS to this internal
table. If the version of the database that you are using supports partitioned tables, then
this internal table is a partitioned table. In this case, you can modify the partition
interval of the table by using the DBMS_AUDIT_MGMT.ALTER_PARTITION_INTERVAL
procedure. The partitioned version of this table is based on the EVENT_TIMESTAMP
timestamp as a partition key with a default partition interval of one month. If the
database version does not support partitioning, then the internal table is a regular,
non-partitioned table.

The generation and insertion of an audit trail record is independent of the user
transaction being committed. That is, even if a user transaction is rolled back, the audit
trail record remains committed.

Statement and privilege audit options from unified audit policies that are in effect at the
time a database user connects to the database remain in effect for the duration of the
session. When the session is already active, setting or changing statement or privilege
unified audit options does not take effect in that session. The modified statement or
privilege audit options take effect only when the current session ends and a new
session is created.

In contrast, changes to schema object audit options become immediately effective for
current sessions.

By default, audit trail records are written to the AUDSYS schema in the SYSAUX
tablespace. You can designate a different tablespace, including one that is encrypted,
by using the DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_LOCATION procedure.

Chapter 26
Managing the Unified Audit Trail

26-2

See Also:

• Writing the Unified Audit Trail Records to the AUDSYS Schema for more
information about how audit records are written to AUDSYS

• Oracle Database Upgrade Guide for information about transferring
unified audit records after an upgrade

Activities That Are Mandatorily Audited
Certain security sensitive database activities are always audited and such audit
configuration cannot be disabled.

The UNIFIED_AUDIT_TRAIL data dictionary view captures activities from administrative
users such as SYSDBA, SYSBACKUP, and SYSKM. You do not need to audit the unified
audit trail. The unified audit trail resides in a read-only table in the AUDSYS schema.
Hence, DMLs are not permitted on the unified audit trail views. Even DML and DDL
operations on the underlying dictionary tables from AUDSYS schema are not permitted.

The SYSTEM_PRIVILEGE_USED column shows the type of administrative privilege that
was used for the activity.

The following audit-related activities, such as modifications to audit policies, are
mandatorily audited:

• CREATE AUDIT POLICY

• ALTER AUDIT POLICY

• DROP AUDIT POLICY

• AUDIT

• NOAUDIT

• EXECUTE of the DBMS_FGA PL/SQL package

• EXECUTE of the DBMS_AUDIT_MGMT PL/SQL package

• ALTER TABLE attempts on the AUDSYS audit trail table (remember that this table
cannot be altered)

• Top level statements by the administrative users SYS, SYSDBA, SYSOPER, SYSASM,
SYSBACKUP, SYSDG, and SYSKM, until the database opens. When the database
opens, Oracle Database audits these users using the audit configurations in the
system—not just the ones that were applied using the BY clause in the AUDIT
statement, for example, but those that were applied for all users when AUDIT
statement does not have a BY clause or when the EXCEPT clause was used and
these users were not excluded.

• All user-issued DML statements on the SYS.AUD$ and SYS.FGA_LOG$ dictionary
tables

• Any attempts to modify the data or metadata of the unified audit internal table.
SELECT statements on this table are not audited by default or mandatorily.

• All configuration changes that are made to Oracle Database Vault

Chapter 26
Managing the Unified Audit Trail

26-3

Related Topics

• Auditing Administrative Users
You can create unified audit policies to capture the actions of administrative user
accounts, such as SYS.

How Do Cursors Affect Auditing?
For each execution of an auditable operation within a cursor, Oracle Database inserts
one audit record into the audit trail.

Events that cause cursors to be reused include the following:

• An application, such as Oracle Forms, holding a cursor open for reuse

• Subsequent execution of a cursor using new bind variables

• Statements executed within PL/SQL loops where the PL/SQL engine optimizes the
statements to reuse a single cursor

Auditing is not affected by whether or not a cursor is shared. Each user creates her or
his own audit trail records on first execution of the cursor.

Writing the Unified Audit Trail Records to the AUDSYS Schema
Oracle Database automatically writes audit records to an internal relational table in the
AUDSYS schema.

In Oracle Database 12c release 1 (12.1), you had the option of queuing the audit
records in memory (queued-write mode) and be written periodically to the AUDSYS
schema audit table. However, starting with Oracle Database 12c release 2 (12.2),
immediate-write mode and queued-write mode are deprecated. The parameters that
controlled them (UNIFIED_AUDIT_SGA_QUEUE_SIZE,
DBMS_AUDIT_MGMT.AUDIT_TRAIL_IMMEDIATE_WRITE, and
DBMS_AUDIT_MGMT.AUDIT_TRAIL_QUEUED_WRITE), while still viewable, no longer have
any functionality.

The new functionality of having audit records always written to a relational table in the
AUDSYS schema prevents the risk of audit records being lost in the event of an instance
crash or during a SHUTDOWN ABORT operation. The new functionality also improves the
performance of the audit trail and the database as a whole.

If you have upgraded from Oracle Database 12c release 1 (12.1) and migrated to
unified auditing in that release, then Oracle recommends that you use the
DBMS_AUDIT_MGMT.TRANSFER_UNIFIED_AUDIT_RECORDS procedure to transfer the audit
records as generated in the previous release to the AUDSYS audit internal table. Oracle
Database Upgrade Guide provides information about transferring unified audit records
after an upgrade.

Related Topics

• Oracle Database Upgrade Guide

Chapter 26
Managing the Unified Audit Trail

26-4

Writing the Unified Audit Trail Records to SYSLOG or the Windows
Event Viewer

You can write the unified audit trail records to SYSLOG or the Windows Event Viewer
by setting an initialization parameter.

• About Writing the Unified Audit Trail Records to SYSLOG or the Windows Event
Viewer
With this feature, you can write some of the key Unified Audit fields to SYSLOG or
the Windows Event Viewer.

• Enabling syslog and Windows Event Viewer Captures for the Unified Audit Trail
To write a subset of unified audit trail records to the UNIX syslog or to the
Windows Event Viewer, you must set the UNIFIED_AUDIT_SYSTEMLOG initialization
parameter.

About Writing the Unified Audit Trail Records to SYSLOG or the Windows
Event Viewer

With this feature, you can write some of the key Unified Audit fields to SYSLOG or the
Windows Event Viewer.

You can configure this feature on both UNIX and Microsoft Windows systems. On
Windows systems, you either enable it or disable it. If enabled, it writes the records to
the Windows Event Viewer.

On UNIX systems, you can fine-tune the capture of unified audit trail records for
SYSLOG to specify the facility where the SYSLOG records are sent and the severity
level of the records (for example, DEBUG if it is capturing debugging-related messages).

Table 26-1 maps the names given to the unified audit records fields that are written to
SYSLOG and the Windows Event Viewer to the corresponding column names in the
UNIFIED_AUDIT_TRAIL view.

Table 26-1 Audit Record Field Names for SYSLOG and the Windows Event
Viewer

Field Name Column Name in
UNIFIED_AUDIT_TR
AIL

Column Type Column Description

TYPE AUDIT_TYPE NUMBER Type of the audit
record

DBID DBID NUMBER Database identifier

SESID SESSION_ID NUMBER Session identifier

CLIENTID CLIENT_IDENTIFIER VARCHAR2 Client identifier in the
session

ENTRYID ENTRY_ID NUMBER Identifier for each
audit record in the
system

Chapter 26
Managing the Unified Audit Trail

26-5

Table 26-1 (Cont.) Audit Record Field Names for SYSLOG and the Windows
Event Viewer

Field Name Column Name in
UNIFIED_AUDIT_TR
AIL

Column Type Column Description

STMTID STATEMENT_ID NUMBER Identifier for each
statement run in the
system

DBUSER DB_USERNAME VARCHAR2 Session user

CURUSER CURRENT_USER VARCHAR2 Effective user for the
audited event

ACTION ACTION NUMBER Action code of the
audited event

RETCODE RETURN_CODE NUMBER Return code for the
audited event

SCHEMA OBJECT_SCHEMA VARCHAR2 Schema name of the
object

OBJNAME OBJECT_NAME VARCHAR2 Name of the object

PDB_GUID NULL (there are no
columns in
UNIFIED_AUDIT_TRA
IL for this field)

VARCHAR2 GUID of the container
in which the unified
audit record is
generated

Enabling syslog and Windows Event Viewer Captures for the Unified Audit Trail
To write a subset of unified audit trail records to the UNIX syslog or to the Windows
Event Viewer, you must set the UNIFIED_AUDIT_SYSTEMLOG initialization parameter.

The default for UNIFIED_AUDIT_SYSTEMLOG is FALSE on Microsoft Windows systems. On
UNIX systems, there is no default. In an Oracle Database Real Application Clusters
(Oracle RAC) environment, set this parameter to the same value on each Oracle RAC
instance.

1. Locate the init.ora initialzation file, which by default is in the
the $ORACLE_HOME/dbs directory.

2. Edit the init.ora file to include the UNIFIED_AUDIT_SYSTEMLOG parameter.

• On Windows, set UNIFIED_AUDIT_SYSTEMLOG to either TRUE or FALSE. TRUE
writes the syslog values to the Windows Event Viewer; FALSE disables the
parameter. For example:

UNIFIED_AUDIT_SYSTEMLOG = TRUE

• On UNIX systems, use the following syntax:

UNIFIED_AUDIT_SYSTEMLOG = 'facility_clause.priority_clause'

In this specification:

– facility_clause refers to the facility to which you will write the audit trail
records. Valid choices are USER and LOCAL. If you enter LOCAL, then

Chapter 26
Managing the Unified Audit Trail

26-6

optionally append 0–7 to designate a local custom facility for the syslog
records.

– priority_clause refers to the type of warning in which to categorize the
record. Valid choices are NOTICE, INFO, DEBUG, WARNING, ERR, CRIT, ALERT,
and EMERG.

For example:

UNIFIED_AUDIT_SYSTEMLOG = 'LOCAL7.EMERG'

3. Exit SQL*Plus.

4. Add the audit file destination to the syslog configuration file /etc/syslog.conf.

For example, assuming you had set the UNIFIED_AUDIT_SYSTEMLOG to
LOCAL7.EMERG, enter the following:

local7.emerg /var/log/audit.log

This setting logs all emergency messages to the /var/log/audit.log file.

5. Restart the syslog logger.

$/etc/rc.d/init.d/syslog restart

Now, all audit records will be captured in the file /var/log/audit.log through the
syslog daemon.

6. Log back in to the database instance.

7. Restart the database.

For example:

SHUTDOWN IMMEDIATE
STARTUP

Related Topics

• Oracle Database Reference

When Audit Records Are Written to the Operating System
In situations where the database table is unable to accept unified audit records, these
records will be written to operating system spillover audit files (.bin format).

The ability to write to the database table can fail in situations such as the following: the
audit tablespace is offline, the tablespace is read-only, the tablespace is full, the
database is read-only, and so on. The unified audit records will continue to be written
to OS spillover files until the OS disk space becomes full. At this point, when there is
no room in the OS for the audit records, user auditable transactions will fail with
ORA-02002 error while writing to audit trail errors. To prevent this problem,
Oracle recommends that you purge the audit trail on a regular basis.

Related Topics

• Purging Audit Trail Records
The DBMS_AUDIT_MGMT PL/SQL package can schedule automatic purge jobs,
manually purge audit records, and perform other audit trail operations.

Chapter 26
Managing the Unified Audit Trail

26-7

Moving Operating System Audit Records into the Unified Audit Trail
Audit records that have been written to the spillover audit files can be moved to the
unified audit trail database table.

When the database is not writable (such as during database mounts), if the database
is closed, or if it is read-only, then Oracle Database writes the audit records to these
external files. The default location for these external files is the $ORACLE_BASE/
audit/$ORACLE_SID directory.

You can load the files into the database by running the
DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES procedure. Be aware that if you are
moving a large number of operating system audit records in the external files,
performance may be affected.

To move the audit records in these files to the AUDSYS schema audit table when the
database is writable:

1. Log into the database instance as a user who has been granted the AUDIT_ADMIN
role.

For example:

CONNECT aud_admin
Enter password: password
Connected.

In a multitenant environment, log into the PDB in which you want to move the audit
trail records to the unified audit trail.

For example:

CONNECT aud_admin@hrpdb
Enter password: password
Connected.

To find the available PDBs, run the show pdbs command. To check the current
PDB, run the show con_name command.

2. Ensure that the database is open and writable.

For a non-CDB architecture, to find if the database is open and writable, query the
V$DATABASE view.

For example, in a CDB environment:

SELECT NAME, OPEN_MODE FROM V$DATABASE;

NAME OPEN_MODE
--------------- ----------
HRPDB READ WRITE

In a multitenant environment, you can run the show pdbs command to find
information about PDBs associated with the current instance.

3. Run the DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES procedure.

EXEC DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES;

The audit records are loaded into the AUDSYS schema audit table immediately, and
then deleted from the $ORACLE_BASE/audit/$ORACLE_SID directory.

Chapter 26
Managing the Unified Audit Trail

26-8

Disabling Unified Auditing
You can disable unified auditing.

1. Disable any unified audit policies that are currently enabled.

This step prevents the database from going into mixed mode auditing after you
complete this procedure.

a. Log into the database instance as a user who has been granted the
AUDIT_ADMIN role.

b. Query the POLICY_NAME and ENABLED_OPT columns of the
AUDIT_UNIFIED_ENABLED_POLICIES data dictionary view to find unified audit
policies that are enabled.

c. Run the NOAUDIT POLICY statement to disable each enabled policy.

For example, to disable a policy that had been applied to user psmith:

NOAUDIT POLICY audit_pol BY psmith;

2. Connect as user SYS with the SYSOPER privilege.

CONNECT sys as sysoper
Enter password: password

In a multitenant environment, this command connects you to the root.

3. Shut down the database.

For example:

SHUTDOWN IMMEDIATE

In a multitenant environment, this command shuts down all PDBs in the CDB.

4. Depending on your platform, do the following:

• UNIX systems: Run the following commands:

cd $ORACLE_HOME/rdbms/lib
make -f ins_rdbms.mk uniaud_off ioracle

• Windows systems: Rename the %ORACLE_HOME%/bin/orauniaud12.dll file to
%ORACLE_HOME%/bin/orauniaud12.dll.dbl.

In a multitenant environment, these actions disable unified auditing in all PDBs in
the CDB.

5. In SQL*Plus, restart the database.

STARTUP

In a multitenant environment, this command restarts all PDBs in the CDB.

Related Topics

• About Mixed Mode Auditing
Mixed mode auditing enables both traditional (that is, the audit facility from
releases earlier than release 12c) and the new audit facilities (unified auditing).

• Disabling Unified Audit Policies
You can use the NOAUDIT POLICY statement to disable a unified audit policy.

Chapter 26
Managing the Unified Audit Trail

26-9

Exporting and Importing the Unified Audit Trail Using Oracle Data
Pump

You can include the unified audit trail in Oracle Database Pump export and import
dump files.

The unified audit trail is automatically included in either full database or partial
database export and import operations using Oracle Data Pump. For example, for a
partial database export operation, if you wanted to export only the unified audit trail
tables, then you could enter the following expdp command:

expdp system
full=y
directory=aud_dp_dir
logfile=audexp_log.log
dumpfile=audexp_dump.dmp
version=18.02.00.02.00
INCLUDE=AUDIT_TRAILS

Password: password

Next, you can import all the exported content by reading the export dump file. This
operation imports only the unified audit trial tables.

impdp system
full=y
directory=aud_dp_dir
dumpfile=audexp_dump.dmp
logfile=audimp_log.log

Password: password

You do not need to perform any special configuration to achieve this operation.
However, you must have the EXP_FULL_DATABASE role if you are performing the export
operation and the IMP_FULL_DATABASE role if you are performing the import operation.

Archiving the Audit Trail
You can archive the traditional operating system, unified database, and traditional
database audit trails.

• Archiving the Traditional Operating System Audit Trail
You can create an archive of the traditional operating system audit files after you
have upgraded Oracle Database.

• Archiving the Unified and Traditional Database Audit Trails
You should periodically archive and then purge the audit trail to prevent it from
growing too large.

Chapter 26
Archiving the Audit Trail

26-10

Archiving the Traditional Operating System Audit Trail
You can create an archive of the traditional operating system audit files after you have
upgraded Oracle Database.

To archive the traditional operating system audit trail from an upgraded database, use
your platform-specific operating system tools to create an archive of the traditional
operating system audit files.

• Use the following methods to archive the traditional operating system audit files:

– Use Oracle Audit Vault and Database Firewall. You install Oracle Audit
Vault and Database Firewall separately from Oracle Database.

– Create tape or disk backups. You can create a compressed file of the audit
files, and then store it on tapes or disks. Consult your operating system
documentation for more information.

Afterwards, you should purge (delete) the traditional operating system audit records
both to free audit trail space and to facilitate audit trail management.

Related Topics

• Moving Operating System Audit Records into the Unified Audit Trail
Audit records that have been written to the spillover audit files can be moved to the
unified audit trail database table.

• Purging Audit Trail Records
The DBMS_AUDIT_MGMT PL/SQL package can schedule automatic purge jobs,
manually purge audit records, and perform other audit trail operations.

Archiving the Unified and Traditional Database Audit Trails
You should periodically archive and then purge the audit trail to prevent it from growing
too large.

Archiving and purging both frees audit trail space and facilitates the purging of the
database audit trail.

You can create an archive of the unified and traditional database audit trail by using
Oracle Audit Vault and Database Firewall. You install Oracle Audit Vault and Database
Firewall separately from Oracle Database.

After you complete the archive, you can purge the database audit trail contents.

• To archive the unified, traditional standard, and traditional fine-grained audit
records, copy the relevant records to a normal database table.

For example:

INSERT INTO table SELECT ... FROM UNIFIED_AUDIT_TRAIL ...;
INSERT INTO table SELECT ... FROM SYS.AUD$...;
INSERT INTO table SELECT ... FROM SYS.FGA_LOG$...;

Related Topics

• Purging Audit Trail Records
The DBMS_AUDIT_MGMT PL/SQL package can schedule automatic purge jobs,
manually purge audit records, and perform other audit trail operations.

Chapter 26
Archiving the Audit Trail

26-11

Purging Audit Trail Records
The DBMS_AUDIT_MGMT PL/SQL package can schedule automatic purge jobs, manually
purge audit records, and perform other audit trail operations.

• About Purging Audit Trail Records
You can use a variety of ways to purge audit trail records.

• Selecting an Audit Trail Purge Method
You can perform the purge on a regularly scheduled basis or at a specified times.

• Scheduling an Automatic Purge Job for the Audit Trail
Scheduling an automatic purge job requires planning beforehand, such as tuning
the online and archive redo log sizes.

• Manually Purging the Audit Trail
You can use the DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL procedure to manually
purge the audit trail.

• Other Audit Trail Purge Operations
Other kinds of audit trail purge include enabling or disabling the audit trail purge
job or setting the default audit trail purge job interval.

• Example: Directly Calling a Unified Audit Trail Purge Operation
You can create a customized archive procedure to directly call a unified audit trail
purge operation.

Related Topics

• Managing the Unified Audit Trail
Auditing is enabled by default, but you can control when audit records are written
to disk.

About Purging Audit Trail Records
You can use a variety of ways to purge audit trail records.

You should periodically archive and then delete (purge) audit trail records. You can
purge a subset of audit trail records or create a purge job that performs at a specified
time interval. Oracle Database either purges the audit trail records that were created
before the archive timestamp, or it purges all audit trail records. You can purge audit
trail records in both read-write and read-only databases.

The purge process takes into account not just the unified audit trail, but audit trails
from earlier releases of Oracle Database. For example, if you have migrated an
upgraded database that still has operating system or XML audit records, then you can
use the procedures in this section to archive and purge them.

To perform the audit trail purge tasks, you use the DBMS_AUDIT_MGMT PL/SQL package.
You must have the AUDIT_ADMIN role before you can use the DBMS_AUDIT_MGMT
package. Oracle Database mandatorily audits all executions of the DBMS_AUDIT_MGMT
PL/SQL package procedures.

If you have Oracle Audit Vault and Database Firewall installed, the audit trail purge
process differs from the procedures described in this manual. For example, Oracle
Audit Vault archives the audit trail for you.

Chapter 26
Purging Audit Trail Records

26-12

Note:

Oracle Database audits all deletions from the audit trail, without exception.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_AUDIT_MGMT PL/SQL package

• Oracle Database Reference for detailed information about the
DBA_AUDIT_MGMT-related views

Selecting an Audit Trail Purge Method
You can perform the purge on a regularly scheduled basis or at a specified times.

• Purging the Audit Trail on a Regularly Scheduled Basis
You can purge all audit records, or audit records that were created before a
specified timestamp, on a regularly scheduled basis.

• Manually Purging the Audit Trail at a Specific Time
You can manually purge the audit records right away in a one-time operation,
rather than creating a purge schedule.

Purging the Audit Trail on a Regularly Scheduled Basis
You can purge all audit records, or audit records that were created before a specified
timestamp, on a regularly scheduled basis.

For example, you can schedule the purge for every Saturday at 2 a.m.

1. If necessary, tune online and archive redo log sizes to accommodate the
additional records generated during the audit table purge process.

2. Plan a timestamp and archive strategy.

3. Optionally, set an archive timestamp for the audit records.

4. Create and schedule the purge job.

Related Topics

• Scheduling an Automatic Purge Job for the Audit Trail
Scheduling an automatic purge job requires planning beforehand, such as tuning
the online and archive redo log sizes.

Manually Purging the Audit Trail at a Specific Time
You can manually purge the audit records right away in a one-time operation, rather
than creating a purge schedule.

Chapter 26
Purging Audit Trail Records

26-13

1. If necessary, tune online and archive redo log sizes to accommodate the
additional records generated during the audit table purge process.

2. Plan a timestamp and archive strategy.

3. Optionally, set an archive timestamp for the audit records.

4. Run the purge operation.

Related Topics

• Manually Purging the Audit Trail
You can use the DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL procedure to manually
purge the audit trail.

Scheduling an Automatic Purge Job for the Audit Trail
Scheduling an automatic purge job requires planning beforehand, such as tuning the
online and archive redo log sizes.

• About Scheduling an Automatic Purge Job
You can purge the entire audit trail, or only a portion of the audit trail that was
created before a timestamp.

• Step 1: If Necessary, Tune Online and Archive Redo Log Sizes
The purge process may generate additional redo logs.

• Step 2: Plan a Timestamp and Archive Strategy
You must record the timestamp of the audit records before you can archive them.

• Step 3: Optionally, Set an Archive Timestamp for Audit Records
If you want to delete all of the audit trail, then you can bypass this step.

• Step 4: Create and Schedule the Purge Job
You can use the DBMS_AUDIT_MGMT PL/SQL package to create and schedule the
purge job.

About Scheduling an Automatic Purge Job
You can purge the entire audit trail, or only a portion of the audit trail that was created
before a timestamp.

The individual audit records created before the timestamp can be purged.

Be aware that purging the audit trail, particularly a large one, can take a while to
complete. Consider scheduling the purge job so that it runs during a time when the
database is not busy.

You can create multiple purge jobs for different audit trail types, so long as they do not
conflict. For example, you can create a purge job for the standard audit trail table and
then the fine-grained audit trail table. However, you cannot then create a purge job for
both or all types, that is, by using the DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD or
DBMS_AUDIT_MGMT.AUDIT_TRAIL_ALL property. In addition, be aware that the jobs
created by the DBMS_SCHEDULER PL/SQL package do not execute on a read-only
database. An automatic purge job created with DBMS_AUDIT_MGMT uses the
DBMS_SCHEDULER package to schedule the tasks. Therefore, these jobs cannot run on a
database or PDB that is open in read-only mode.

Chapter 26
Purging Audit Trail Records

26-14

Step 1: If Necessary, Tune Online and Archive Redo Log Sizes
The purge process may generate additional redo logs.

• If necessary, tune online and archive redo log sizes to accommodate the
additional records generated during the audit table purge process.

In a unified auditing environment, the purge process does not generate as many redo
logs as in a mixed mode auditing environment, so if you have migrated to unified
auditing, then you may want to bypass this step.

See Also:

Oracle Database Administrator’s Guide for more information about tuning log
files

Step 2: Plan a Timestamp and Archive Strategy
You must record the timestamp of the audit records before you can archive them.

• To find the timestamp date, query the DBA_AUDIT_MGMT_LAST_ARCH_TS data
dictionary view.

Later on, when the purge takes place, Oracle Database purges only the audit trail
records that were created before the date of this archive timestamp.

After you have timestamped the records, you are ready to archive them.

Related Topics

• Step 3: Optionally, Set an Archive Timestamp for Audit Records
If you want to delete all of the audit trail, then you can bypass this step.

• Archiving the Audit Trail
You can archive the traditional operating system, unified database, and traditional
database audit trails.

Step 3: Optionally, Set an Archive Timestamp for Audit Records
If you want to delete all of the audit trail, then you can bypass this step.

You can set a timestamp for when the last audit record was archived. Setting an
archive timestamp provides the point of cleanup to the purge infrastructure. If you are
setting a timestamp for a read-only database, then you can use the
DBMS_AUDIT.MGMT.GET_LAST_ARCHIVE_TIMESTAMP function to find the last archive
timestamp that was configured for the instance on which it was run. For a read-write
database, you can query the DBA_AUDIT_MGMT_LAST_ARCH_TS data dictionary view.

To find the last archive timestamps for the unified audit trail, you can query the
DBA_AUDIT_MGMT_LAST_ARCH_TS data dictionary view. After you set the timestamp, all
audit records in the audit trail that indicate a time earlier than that timestamp are
purged when you run the DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL PL/SQL procedure. If
you want to clear the archive timestamp setting, see Clearing the Archive Timestamp
Setting.

Chapter 26
Purging Audit Trail Records

26-15

If you are using Oracle Database Real Application Clusters, then use Network Time
Protocol (NTP) to synchronize the time on each computer where you have installed an
Oracle Database instance. For example, suppose you set the time for one Oracle RAC
instance node at 11:00:00 a.m. and then set the next Oracle RAC instance node at
11:00:05. As a result, the two nodes have inconsistent times. You can use Network
Time Protocol (NTP) to synchronize the times for these Oracle RAC instance nodes.

To set the timestamp for the purge job:

1. Log into the database instance as a user who has been granted the AUDIT_ADMIN
role.

In a multitenant environment, log into either the root or the PDB in which you want
to schedule the purge job. In most cases, you may want to schedule the purge job
on individual PDBs.

For example, to log into a PDB called hrpdb:

CONNECT aud_admin@hrpdb
Enter password: password
Connected.

2. Run the DBMS_AUDIT_MGMT.SET_LAST_ARCHIVE_TIMESTAMP PL/SQL procedure to
set the timestamp.

For example:

BEGIN
 DBMS_AUDIT_MGMT.SET_LAST_ARCHIVE_TIMESTAMP(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED,
 LAST_ARCHIVE_TIME => '12-OCT-2013 06:30:00.00',
 RAC_INSTANCE_NUMBER => 1,
 CONTAINER => DBMS_AUDIT_MGMT.CONTAINER_CURRENT);
END;
/

In this example:

• AUDIT_TRAIL_TYPE specifies the audit trail type.
DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED sets it for the unified audit trail.

For upgraded databases that still have traditional audit data from previous
releases:

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD is used for the traditional
standard audit trail table, AUD$. (This setting does not apply to read-only
databases.)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD is used for the traditional fine-
grained audit trail table, FGA_LOG$. (This setting does not apply to read-
only databases.)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS is used for the traditional operating
system audit trail files with the .aud extension. (This setting does not apply
to Windows Event Log entries.)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML is used for the XML traditional
operating system audit trail files.

• LAST_ARCHIVE_TIME specifies the timestamp in YYYY-MM-DD HH:MI:SS.FF UTC
(Coordinated Universal Time) format for AUDIT_TRAIL_UNIFIED,
AUDIT_TRAIL_AUD_STD, and AUDIT_TRAIL_FGA_STD, and in the Local Time Zone
for AUDIT_TRAIL_OS and AUDIT_TRAIL_XML.

Chapter 26
Purging Audit Trail Records

26-16

• RAC_INSTANCE_NUMBER specifies the instance number for an Oracle RAC
installation. This setting is not relevant for single instance databases. If you
specified the DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD or
DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD audit trail types, then you can omit
the RAC_INSTANCE_NUMBER argument. This is because there is only one AUD$ or
FGA_LOG$ table, even for an Oracle RAC installation. The default is NULL. You
can find the instance number for the current instance by issuing the SHOW
PARAMETER INSTANCE_NUMBER command in SQL*Plus.

• CONTAINER applies the timestamp to a multitenant environment.
DBMS_AUDIT_MGMT.CONTAINER_CURRENT specifies the current PDB;
DBMS_AUDIT_MGMT.CONTAINER_ALL applies to all PDBs in the multitenant
environment.

Note that you can set CONTAINER to DBMS_MGMT.CONTAINER_ALL only from the
root, and DBMS_MGMT.CONTAINER_CURRENT only from a PDB.

Typically, after you set the timestamp, you can use the
DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL PL/SQL procedure to remove the audit
records that were created before the timestamp date.

Step 4: Create and Schedule the Purge Job
You can use the DBMS_AUDIT_MGMT PL/SQL package to create and schedule the purge
job.

• Create and schedule the purge job by running the
DBMS_AUDIT_MGMT.CREATE_PURGE_JOB PL/SQL procedure.

For example:

CONNECT aud_admin@hrpdb
Enter password: password
Connected.

BEGIN
 DBMS_AUDIT_MGMT.CREATE_PURGE_JOB (
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED,
 AUDIT_TRAIL_PURGE_INTERVAL => 12,
 AUDIT_TRAIL_PURGE_NAME => 'Audit_Trail_PJ',
 USE_LAST_ARCH_TIMESTAMP => TRUE,
 CONTAINER => DBMS_AUDIT_MGMT.CONTAINER_CURRENT);
END;
/

In this example:

• AUDIT_TRAIL_TYPE: Specifies the audit trail type.
DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED sets it for the unified audit trail.

For upgraded databases that still have audit data from previous releases:

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD is used for the standard audit trail
table, AUD$. (This setting does not apply to read-only databases.)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD is used for the fine-grained audit trail
table, FGA_LOG$. (This setting does not apply to read-only databases.)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD is used for both standard and fine-
grained audit trail tables. (This setting does not apply to read-only databases.)

Chapter 26
Purging Audit Trail Records

26-17

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS is used for the operating system audit trail
files with the .aud extension. (This setting does not apply to Windows Event
Log entries.)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML is used for the XML operating system
audit trail files.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FILES is used for both operating system and
XML audit trail files.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_ALL is used for all audit trail records, that is,
both database audit trail and operating system audit trail types. (This setting
does not apply to read-only databases.)

• AUDIT_TRAIL_PURGE_INTERVAL specifies the hourly interval for this purge job to run.
The timing begins when you run the DBMS_AUDIT_MGMT.CREATE_PURGE_JOB
procedure, in this case, 12 hours after you run this procedure. Later on, if you want
to update this value, run the DBMS_AUDIT_MGMT.SET_PURGE_JOB_INTERVAL
procedure.

• USE_LAST_ARCH_TIMESTAMP accepts either of the following settings:

– TRUE deletes audit records created before the last archive timestamp. To
check the last recorded timestamp, query the LAST_ARCHIVE_TS column of the
DBA_AUDIT_MGMT_LAST_ARCH_TS data dictionary view for read-write databases
and the DBMS_AUDIT_MGMT.GET_LAST_ARCHIVE_TIMESTAMP function for read-
only databases. The default value is TRUE. Oracle recommends that you set
USE_LAST_ARCH_TIMESTAMP to TRUE.

– FALSE deletes all audit records without considering last archive timestamp. Be
careful about using this setting, in case you inadvertently delete audit records
that should not have been deleted.

• CONTAINER is used for a multitenant environment to define where to create the
purge job. If you set CONTAINER to DBMS_AUDIT_MGMT.CONTAINER_CURRENT, then it is
available, visible, and managed only from the current PDB. The
DBMS_AUDIT_MGMT.CONTAINER_ALL setting creates the job in the root. This defines
the job as a global job, which runs according to the defined job schedule. When
the job is invoked, it cleans up audit trails in all the PDBs in the multitenant
environment. If you create the job in the root, then it is visible only in the root.
Hence, you can enable, disable, and drop it from the root only.

Manually Purging the Audit Trail
You can use the DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL procedure to manually purge
the audit trail.

• About Manually Purging the Audit Trail
You can manually purge the audit trail right away, without scheduling a purge job.

• Using DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL to Manually Purge the Audit
Trail
After you complete preparatory steps, you can use the
DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL procedure to manually purge the audit trail.

About Manually Purging the Audit Trail
You can manually purge the audit trail right away, without scheduling a purge job.

Chapter 26
Purging Audit Trail Records

26-18

Similar to a purge job, you can purge audit trail records that were created before an
archive timestamp date or all the records in the audit trail. Only the current audit
directory is cleaned up when you run this procedure.

For upgraded databases that may still have audit trails from earlier releases, note the
following about the DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL PL/SQL procedure:

• On Microsoft Windows, because the DBMS_AUDIT_MGMT package does not support
cleanup of Windows Event Viewer, setting the AUDIT_TRAIL_TYPE property to
DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS has no effect. This is because operating
system audit records on Windows are written to Windows Event Viewer. The
DBMS_AUDIT_MGMT package does not support this type of cleanup operation.

• On UNIX platforms, if you had set the AUDIT_SYSLOG_LEVEL initialization
parameter, then Oracle Database writes the operating system log files to syslog
files. (Be aware that when you configure the use of syslog files, the messages are
sent to the syslog daemon process. The syslog daemon process does not return
an acknowledgement to Oracle Database indicating a committed write to the
syslog files.) If you set the AUDIT_TRAIL_TYPE property to
DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS, then the procedure only removes .aud files
under audit directory (This directory is specified by the AUDIT_FILE_DEST
initialization parameter).

Using DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL to Manually Purge the
Audit Trail

After you complete preparatory steps, you can use the
DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL procedure to manually purge the audit trail.

1. Follow these steps under Scheduling an Automatic Purge Job for the Audit Trail:

• Step 1: If Necessary, Tune Online and Archive Redo Log Sizes

• Step 2: Plan a Timestamp and Archive Strategy

• Step 3: Optionally, Set an Archive Timestamp for Audit Records

2. If you are using a multitenant environment, then connect to the database in which
you created the purge job.

If you created the purge job in the root, then you must log into the root. If you
created the purge job in a specific PDB, then log into that PDB.

For example:

CONNECT aud_admin@hrpdb
Enter password: password
Connected.

3. Purge the audit trail records by running the DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL
PL/SQL procedure.

For example:

BEGIN
 DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED,
 USE_LAST_ARCH_TIMESTAMP => TRUE,
 CONTAINER => DBMS_AUDIT_MGMT.CONTAINER_CURRENT);
END;
/

Chapter 26
Purging Audit Trail Records

26-19

In this example:

• AUDIT_TRAIL_TYPE: Specifies the audit trail type.
DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED sets it for the unified audit trail.

For upgraded databases that still have audit data from previous releases:

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD: Standard audit trail table, AUD$.
(This setting does not apply to read-only databases.)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD: Fine-grained audit trail table,
FGA_LOG$. (This setting does not apply to read-only databases.)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD: Both standard and fine-grained
audit trail tables. (This setting does not apply to read-only databases)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS: Operating system audit trail files with
the .aud extension. (This setting does not apply to Windows Event Log
entries.)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML: XML Operating system audit trail
files.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FILES: Both operating system and XML
audit trail files.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_ALL: All audit trail records, that is, both
database audit trail and operating system audit trail types. (This setting
does not apply to read-only databases.)

• USE_LAST_ARCH_TIMESTAMP: Enter either of the following settings:

– TRUE: Deletes audit records created before the last archive timestamp. To
set the archive timestamp, see Step 3: Optionally, Set an Archive
Timestamp for Audit Records. The default (and recommended) value is
TRUE. Oracle recommends that you set USE_LAST_ARCH_TIMESTAMP to TRUE.

– FALSE: Deletes all audit records without considering last archive
timestamp. Be careful about using this setting, in case you inadvertently
delete audit records that should have been deleted.

• CONTAINER: Applies the cleansing to a multitenant environment.
DBMS_AUDIT_MGMT.CONTAINER_CURRENT specifies the local PDB;
DBMS_AUDIT_MGMT.CONTAINER_ALL applies to all databases.

Other Audit Trail Purge Operations
Other kinds of audit trail purge include enabling or disabling the audit trail purge job or
setting the default audit trail purge job interval.

• Enabling or Disabling an Audit Trail Purge Job
The DBMS_AUDIT_MGMT.SET_PURGE_JOB_STATUS procedure enables or disables an
audit trail purge job.

• Setting the Default Audit Trail Purge Job Interval for a Specified Purge Job
You can set a default purge operation interval, in hours, that must pass before the
next purge job operation takes place.

• Deleting an Audit Trail Purge Job
You can delete existing audit trail purge jobs.

Chapter 26
Purging Audit Trail Records

26-20

• Clearing the Archive Timestamp Setting
The DBMS_AUDIT_MGMT.CLEAR_LAST_ARCHIVE_TIMESTAMP procedure can clear the
archive timestamp setting.

Enabling or Disabling an Audit Trail Purge Job
The DBMS_AUDIT_MGMT.SET_PURGE_JOB_STATUS procedure enables or disables an audit
trail purge job.

In a multitenant environment, where you run the
DBMS_AUDIT_MGMT.SET_PURGE_JOB_STATUS procedure depends on the location of the
purge job, which is determined by the CONTAINER parameter of the
DBMS_MGMT.CREATE_PURGE_JOB procedure. If you had set CONTAINER to CONTAINER_ALL
(to create the purge job in the root), then you must run the
DBMS_AUDIT_MGMT.SET_PURGE_JOB_STATUS procedure from the root. If you had set
CONTAINER to CONTAINER_CURRENT, then you must run the
DBMS_AUDIT_MGMT.SET_PURGE_JOB_STATUS procedure from the PDB in which it was
created.

• To enable or disable an audit trail purge job, use the
DBMS_AUDIT_MGMT.SET_PURGE_JOB_STATUS PL/SQL procedure.

For example, assuming that you had created the purge job in a the hrpdb PDB:

CONNECT aud_admin@hrpdb
Enter password: password
Connected.

BEGIN
 DBMS_AUDIT_MGMT.SET_PURGE_JOB_STATUS(
 AUDIT_TRAIL_PURGE_NAME => 'Audit_Trail_PJ',
 AUDIT_TRAIL_STATUS_VALUE => DBMS_AUDIT_MGMT.PURGE_JOB_ENABLE);
END;
/

In this example:

• AUDIT_TRAIL_PURGE_NAME specifies a purge job called Audit_Trail_PJ. To find
existing purge jobs, query the JOB_NAME and JOB_STATUS columns of the
DBA_AUDIT_MGMT_CLEANUP_JOBS data dictionary view.

• AUDIT_TRAIL_STATUS_VALUE accepts either of the following properties:

– DBMS_AUDIT_MGMT.PURGE_JOB_ENABLE enables the specified purge job.

– DBMS_AUDIT_MGMT.PURGE_JOB_DISABLE disables the specified purge job.

Setting the Default Audit Trail Purge Job Interval for a Specified Purge Job
You can set a default purge operation interval, in hours, that must pass before the next
purge job operation takes place.

The interval setting that is used in the DBMS_AUDIT_MGMT.CREATE_PURGE_JOB procedure
takes precedence over this setting.

• To set the default audit trail purge job interval for a specific purge job, run the
DBMS_AUDIT_MGMT.SET_PURGE_JOB_INTERVAL procedure.

For example, assuming that you had created the purge job in the hrpdb PDB:

Chapter 26
Purging Audit Trail Records

26-21

CONNECT aud_admin@hrpdb
Enter password: password
Connected.

BEGIN
 DBMS_AUDIT_MGMT.SET_PURGE_JOB_INTERVAL(
 AUDIT_TRAIL_PURGE_NAME => 'Audit_Trail_PJ',
 AUDIT_TRAIL_INTERVAL_VALUE => 24);
END;
/

In this example:

• AUDIT_TRAIL_PURGE_NAME specifies the name of the audit trail purge job. To find a
list of existing purge jobs, query the JOB_NAME and JOB_STATUS columns of the
DBA_AUDIT_MGMT_CLEANUP_JOBS data dictionary view.

• AUDIT_TRAIL_INTERVAL_VALUE updates the default hourly interval set by the
DBMS_AUDIT_MGMT.CREATE_PURGE_JOB procedure. Enter a value between 1 and
999. The timing begins when you run the purge job.

In a multitenant environment, where you run the
DBMS_AUDIT_MGMT.SET_PURGE_JOB_INTERVAL procedure depends on the location of the
purge job, which is determined by the CONTAINER parameter of the
DBMS_MGMT.CREATE_PURGE_JOB procedure. If you had set CONTAINER to CONTAINER_ALL,
then the purge job exists in the root, so you must run the
DBMS_AUDIT_MGMT.SET_PURGE_JOB_STATUS procedure from the root. If you had set
CONTAINER to CONTAINER_CURRENT, then you must run the
DBMS_AUDIT_MGMT.SET_PURGE_JOB_INTERVAL procedure from the PDB in which it was
created.

Deleting an Audit Trail Purge Job
You can delete existing audit trail purge jobs.

To find existing purge jobs, query the JOB_NAME and JOB_STATUS columns of the
DBA_AUDIT_MGMT_CLEANUP_JOBS data dictionary view.

• To delete an audit trail purge job, use the DBMS_AUDIT_MGMT.DROP_PURGE_JOB
PL/SQL procedure.

For example, assuming that you had created the purge job in the hrpdb PDB:

CONNECT aud_admin@hrpdb
Enter password: password
Connected.

BEGIN
 DBMS_AUDIT_MGMT.DROP_PURGE_JOB(
 AUDIT_TRAIL_PURGE_NAME => 'Audit_Trail_PJ');
END;
/

In a multitenant environment, where you run the DBMS_AUDIT_MGMT.DROP_PURGE_JOB
procedure depends on the location of the purge job, which is determined by the
CONTAINER parameter of the DBMS_MGMT.CREATE_PURGE_JOB procedure. If you had set
CONTAINER to CONTAINER_ALL, then the purge job exists in the root, so you must run the
DBMS_AUDIT_MGMT.SET_PURGE_JOB_STATUS procedure from the root. If you had set
CONTAINER to CONTAINER_CURRENT, then you must run the

Chapter 26
Purging Audit Trail Records

26-22

DBMS_AUDIT_MGMT.DROP_PURGE_JOB_INTERVAL procedure from the PDB in which it was
created.

Clearing the Archive Timestamp Setting
The DBMS_AUDIT_MGMT.CLEAR_LAST_ARCHIVE_TIMESTAMP procedure can clear the
archive timestamp setting.

To find a history of audit trail log cleanup, you can query the UNIFIED_AUDIT_TRAIL
data dictionary view, using the following criteria: OBJECT_NAME is DBMS_AUDIT_MGMT,
OBJECT_SCHEMA is SYS, and SQL_TEXT is set to LIKE
%DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL%.

• To clear the archive timestamp setting, use the
DBMS_AUDIT_MGMT.CLEAR_LAST_ARCHIVE_TIMESTAMP PL/SQL procedure to specify
the audit trail type and for a multitenant environment, the container type.

For example, assuming that you had created the purge job in the hrpdb PDB:

CONNECT aud_admin@hrpdb
Enter password: password
Connected.

BEGIN
 DBMS_AUDIT_MGMT.CLEAR_LAST_ARCHIVE_TIMESTAMP(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED,
 CONTAINER => DBMS_AUDIT_MGMT.CONTAINER_CURRENT);
END;
/

In this example:

• AUDIT_TRAIL_TYPE is set for the unified audit trail. If the AUDIT_TRAIL_TYPE
property is set to DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS or
DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML, then you cannot set RAC_INSTANCE_NUMBER to
0. You can omit the RAC_INSTANCE_NUMBER setting if you set AUDIT_TRAIL_TYPE to
DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED.

• CONTAINER applies the timestamp to a multitenant environment.
DBMS_AUDIT_MGMT.CONTAINER_CURRENT specifies the local PDB;
DBMS_AUDIT_MGMT.CONTAINER_ALL applies to all databases.

Example: Directly Calling a Unified Audit Trail Purge Operation
You can create a customized archive procedure to directly call a unified audit trail
purge operation.

The pseudo code in Example 26-1 creates a database audit trail purge operation that
the user calls by invoking the DBMS_ADUIT.CLEAN_AUDIT_TRAIL procedure for the
unified audit trail.

The purge operation deletes records that were created before the last archived
timestamp by using a loop. The loop archives the audit records, calculates which audit
records were archived and uses the SetCleanUpAuditTrail call to set the last archive
timestamp, and then calls the CLEAN_AUDIT_TRAIL procedure. In this example, major
steps are in bold typeface.

Chapter 26
Purging Audit Trail Records

26-23

Example 26-1 Directly Calling a Database Audit Trail Purge Operation

-- 1. Set the last archive timestamp:
PROCEDURE SetCleanUpAuditTrail()
 BEGIN
 CALL FindLastArchivedTimestamp(AUD$);
 DBMS_AUDIT_MGMT.SET_LAST_ARCHIVE_TIMESTAMP(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED,
 LAST_ARCHIVE_TIME => '23-AUG-2013 12:00:00',
 CONTAINER => DBMS_AUDIT_MGMT.CONTAINER_CURRENT);
 END;
/
-- 2. Run a customized archive procedure to purge the audit trail records:
BEGIN
 CALL MakeAuditSettings();
 LOOP (/* How long to loop*/)
 -- Invoke function for audit record archival
 CALL DoUnifiedAuditRecordArchival();

 CALL SetCleanUpAuditTrail();
 IF(/* Clean up is needed immediately */)
 DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_UNIFIED,
 USE_LAST_ARCH_TIMESTAMP => TRUE,
 CONTAINER => DBMS_AUDIT_MGMT.CONTAINER_CURRENT);
 END IF
 END LOOP /*LOOP*/
END; /* PROCEDURE */
/

If you want to modify this example for other audit trail types, be aware that additional
steps may be required. For more information, see the Oracle Database 11g Release 2
(11.2) version of Oracle Database Security Guide, which is available from the following
documentation library:

http://www.oracle.com/pls/db112/homepage

Audit Trail Management Data Dictionary Views
Oracle Database provides data dictionary views that list information about audit trail
management settings.

Table 26-2 lists these views.

Chapter 26
Audit Trail Management Data Dictionary Views

26-24

http://www.oracle.com/pls/db112/homepage

Table 26-2 Views That Display Information about Audit Trail Management Settings

View Description

DBA_AUDIT_MGMT_CLEAN_EVENTS Displays the history of purge events of the traditional (that is, non-
unified) audit trails. Periodically, as a user who has been granted the
AUDIT_ADMIN role, you should delete the contents of this view so that
it does not grow too large. For example:

DELETE FROM DBA_AUDIT_MGMT_CLEAN_EVENTS;

This view applies to read-write databases only. For read-only
databases, a history of purge events is in the alert log.

For unified auditing, you can find a history of purged events by
querying the UNIFIED_AUDIT_TRAIL data dictionary view, using the
following criteria: OBJECT_NAME is DBMS_AUDIT_MGMT,
OBJECT_SCHEMA is SYS, and SQL_TEXT is set to LIKE
%DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL%.

DBA_AUDIT_MGMT_CLEANUP_JOBS Displays the currently configured audit trail purge jobs

DBA_AUDIT_MGMT_CONFIG_PARAMS Displays the currently configured audit trail properties that are used by
the DBMS_AUDIT_MGMT PL/SQL package

DBA_AUDIT_MGMT_LAST_ARCH_TS Displays the last archive timestamps that have set for audit trail purges

See Also:

Oracle Database Reference for detailed information about these views

Chapter 26
Audit Trail Management Data Dictionary Views

26-25

Part VII
Appendixes

Part VII contains a set of reference appendixes.

• Keeping Your Oracle Database Secure
Oracle provides guidelines for keeping your database secure, such as advice on
securing user accounts, privileges, roles, passwords, and data.

• Data Encryption and Integrity Parameters
The sqlnet.ora file has data encryption and integrity parameters.

• Kerberos, SSL, and RADIUS Authentication Parameters
The sqlnet.ora and the database initialization files provide Kerberos, RADIUS, or
SSL authentication parameters.

• Integrating Authentication Devices Using RADIUS
The RADIUS challenge-response user interface further enhances authentication in
a RADIUS configuration.

• Oracle Database FIPS 140-2 Settings
Oracle supports the Federal Information Processing Standard (FIPS) standard for
140-2.

• Managing Public Key Infrastructure (PKI) Elements
You can use the orapki command line utility and sqlnet.ora parameters to
manage public key infrastructure (PKI) elements.

• How the Unified Auditing Migration Affects Individual Audit Features
Most of the pre-Oracle Database 12c release 1 (12.1) auditing features can be
used before a unified auditing migration.

A
Keeping Your Oracle Database Secure

Oracle provides guidelines for keeping your database secure, such as advice on
securing user accounts, privileges, roles, passwords, and data.

• About the Oracle Database Security Guidelines
Information security, and privacy and protection of corporate assets and data are
critical in any business.

• Downloading Security Patches and Contacting Oracle Regarding Vulnerabilities
You should always apply security patches as soon as they are available. If
problems arise, then you should contact Oracle regarding vulnerabilities.

• Guidelines for Securing User Accounts and Privileges
Oracle provides guidelines to secure user accounts and privileges.

• Guidelines for Securing Roles
Oracle provides guidelines for role management.

• Guidelines for Securing Passwords
Oracle provides guidelines for securing passwords.

• Guidelines for Securing Data
Oracle provides guidelines for securing data on your system.

• Guidelines for Securing the ORACLE_LOADER Access Driver
Oracle provides guidelines to secure the ORACLE_LOADER access driver.

• Guidelines for Securing a Database Installation and Configuration
Oracle provides guidelines to secure the database installation and configuration.

• Guidelines for Securing the Network
Security for network communications is improved by using client, listener, and
network guidelines to ensure thorough protection.

• Guideline for Securing External Procedures
The ENFORCE_CREDENTIAL environment variable controls how an extproc process
authenticates user credentials and callout functions.

• Guidelines for Auditing
Oracle provides guidelines for auditing.

• Addressing the CONNECT Role Change
The CONNECT role, introduced with Oracle Database version 7, added new and
robust support for database roles.

About the Oracle Database Security Guidelines
Information security, and privacy and protection of corporate assets and data are
critical in any business.

Oracle Database comprehensively addresses the need for information security by
providing cutting-edge security features such as deep data protection, auditing,
scalable security, secure hosting, and data exchange.

A-1

Oracle Database leads the industry in security. To maximize the security features
offered by Oracle Database in any business environment, it is imperative that the
database itself be well protected.

Security guidelines provide advice about how to configure Oracle Database to be
secure by adhering to and recommending industry-standard and advisable security
practices for operational database deployments. Many of the guidelines described in
this section address common regulatory requirements such as those described in the
Sarbanes-Oxley Act. For more information about how Oracle Database addresses
regulatory compliance, protection of personally identifiable information, and internal
threats, visit:

http://www.oracle.com/technetwork/topics/security/whatsnew/index.html

Downloading Security Patches and Contacting Oracle
Regarding Vulnerabilities

You should always apply security patches as soon as they are available. If problems
arise, then you should contact Oracle regarding vulnerabilities.

• Downloading Security Patches and Workaround Solutions
Security patches apply to the operating system on which Oracle Database resides,
Oracle Database itself, and all installed Oracle Database options and components.

• Contacting Oracle Security Regarding Vulnerabilities in Oracle Database
You can contact Oracle Security regarding vulnerabilities in Oracle Database.

Downloading Security Patches and Workaround Solutions
Security patches apply to the operating system on which Oracle Database resides,
Oracle Database itself, and all installed Oracle Database options and components.

• To download security patches and workaround solutions:

– For security patches, periodically check the security site on Oracle Technology
Network for details about security alerts released by Oracle at http://
www.oracle.com/technetwork/topics/security/alerts-086861.html

– Check the Oracle Worldwide Support Service site, My Oracle Support, for
details about available and upcoming security-related patches at

https://support.oracle.com

Contacting Oracle Security Regarding Vulnerabilities in Oracle
Database

You can contact Oracle Security regarding vulnerabilities in Oracle Database.

• Contact Oracle Security using either of the following methods:

– If you are an Oracle customer or an Oracle partner, use My Oracle Support to
submit a Service Request on any potential Oracle product security
vulnerability.

Appendix A
Downloading Security Patches and Contacting Oracle Regarding Vulnerabilities

A-2

http://www.oracle.com/technetwork/topics/security/whatsnew/index.html
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
https://support.oracle.com

– Send an email to secalert_us@oracle.com with a complete description of the
problem, including product version and platform, together with any scripts and
examples. Oracle encourages those who want to contact Oracle Security to
employ email encryption, using our encryption key.

Guidelines for Securing User Accounts and Privileges
Oracle provides guidelines to secure user accounts and privileges.

1. Lock and expire default (predefined) user accounts.

Oracle Database installs with several default database user accounts. Upon
successful installation of the database, the Database Configuration Assistant
automatically locks and expires most default database user accounts.

If you perform a manual (without using Database Configuration Assistant)
installation of Oracle Database, then no default database users are locked upon
successful installation of the database server. Or, if you have upgraded from a
previous release of Oracle Database, you may have default accounts from earlier
releases. Left open in their default states, these user accounts can be exploited, to
gain unauthorized access to data or disrupt database operations.

You should lock and expire all default database user accounts. Oracle Database
provides SQL statements to perform these operations. For example:

ALTER USER ANONYMOUS PASSWORD EXPIRE ACCOUNT LOCK;

See Oracle Database SQL Language Reference for more information about the
ALTER USER statement.

Installing additional products and components after the initial installation also
results in creating more default database accounts. Database Configuration
Assistant automatically locks and expires all additionally created database user
accounts. Unlock only those accounts that need to be accessed on a regular basis
and assign a strong, meaningful password to each of these unlocked accounts.
Oracle provides SQL and password management to perform these operations.

If any default database user account other than the ones left open is required for
any reason, then a database administrator (DBA) must unlock and activate that
account with a new, secure password.

If a default database user account, other than the ones left open, is required for
any reason, then a database administrator (DBA) can unlock and activate that
account with a new, secure password.

Securing Oracle Enterprise Manager Accounts

If you install Oracle Enterprise Manager, the SYSMAN and DBSNMP accounts are
open, unless you configure Oracle Enterprise Manager for central administration.
In this case, the SYSMAN account (if present) will be locked.

If you do not install Oracle Enterprise Manager, then only the SYS and SYSTEM
accounts are open. Database Configuration Assistant locks and expires all other
accounts (including SYSMAN and DBSNMP).

2. Discourage users from using the NOLOGGING clause in SQL statements.

In some SQL statements, the user has the option of specifying the NOLOGGING
clause, which indicates that the database operation is not logged in the online redo
log file. Even though the user specifies the clause, a redo record is still written to

Appendix A
Guidelines for Securing User Accounts and Privileges

A-3

the online redo log file. However, there is no data associated with this record.
Because of this, using NOLOGGING has the potential for malicious code to be
entered can be accomplished without an audit trail.

3. Practice the principle of least privilege.

Oracle recommends the following guidelines:

a. Grant necessary privileges only.

Do not provide database users or roles more privileges than are necessary. (If
possible, grant privileges to roles, not users.) In other words, the principle of
least privilege is that users be given only those privileges that are actually
required to efficiently perform their jobs.

To implement this principle, restrict the following as much as possible:

• The number of SYSTEM and OBJECT privileges granted to database users.

• The number of people who are allowed to make SYS-privileged
connections to the database.

• The number of users who are granted the ANY privileges, such as the DROP
ANY TABLE privilege. For example, there is generally no need to grant
CREATE ANY TABLE privileges to a non-DBA-privileged user.

• The number of users who are allowed to perform actions that create,
modify, or drop database objects, such as the TRUNCATE TABLE, DELETE
TABLE, DROP TABLE statements, and so on.

b. Limit granting the CREATE ANY EDITION and DROP ANY EDITION
privileges.

To maintain additional versions of objects, editions can increase resource and
disk space consumption in the database. Only grant the CREATE ANY EDITION
and DROP ANY EDITION privileges to trusted users who are responsible for
performing upgrades.

c. Re-evaluate the SELECT object privilege and SELECT ANY TABLE
system privileges that you have granted to users.

If you want to restrict users to only being able to query tables, views,
materialized views, and synonyms, then grant users the READ object privilege,
or for trusted users only, the READ ANY TABLE system privilege. If in addition to
performing query operations, you want users to be able to lock tables in
exclusive mode or perform SELECT ... FOR UPDATE statements, then grant the
user the SELECT object privilege or, for trusted users only, the SELECT ANY
TABLE system privilege.

d. Restrict the CREATE ANY JOB, BECOME USER, EXP_FULL_DATABASE,
and IMP_FULL_DATABASE privileges. Also restrict grants of the
CREATE DIRECTORY and CREATE ANY DIRECTORY privileges.

These are powerful security-related privileges. Only grant these privileges to
users who need them.

e. Restrict the BECOME USER privilege to users of Oracle Data Pump, and
the DBMS_WORKLOAD_CAPTURE and DBMS_WORKLOAD_REPLAY
packages.

The BECOME USER privilege is used only for the following subsystems:

Appendix A
Guidelines for Securing User Accounts and Privileges

A-4

• Oracle Data Pump Import utilities impdp and imp, to assume the identity of
another user to perform operations that cannot be directly performed by a
third party (for example, loading objects such as object privilege grants). In
an Oracle Database Vault environment, Database Vault provides several
levels of required authorization that affect grants of BECOME USER. See
Oracle Database Vault Administrator’s Guide.

• DBMS_WORKLOAD_CAPTURE and DBMS_WORKLOAD_REPLAY PL/SQL packages,
as a required privilege to be granted to users who must use these
packages.

If you use the AUTHID CURRENT_USER clause when invoking one of these
subsystems (for example, in static references in PL/SQL code), then ensure
that the CURRENT_USER is granted the BECOME USER privilege, either by a direct
grant or through a role.

f. Restrict library-related privileges to trusted users only.

The CREATE LIBRARY, CREATE ANY LIBRARY, ALTER ANY LIBRARY, and EXECUTE
ANY LIBRARY privileges, and grants of EXECUTE ON library_name convey a
great deal of power to users. If you plan to create PL/SQL interfaces to
libraries, only grant the EXECUTE privilege to the PL/SQL interface. Do not grant
EXECUTE on the underlying library. You must have the EXECUTE privilege on a
library to create the PL/SQL interface to it. However, users have this privilege
implicitly on libraries that they create in their own schemas. Explicit grants of
EXECUTE ON library_name are rarely required. Only make an explicit grant of
these privileges to trusted users, and never to the PUBLIC role.

g. Restrict synonym-related privileges to trusted users only.

The CREATE PUBLIC SYNONYM and DROP PUBLIC SYNONYM system privileges
convey a great deal of power to these users. Do not grant these privileges to
users, unless they are trusted.

h. Do not allow non-administrative users access to objects owned by the
SYS schema.

Do not allow users to alter table rows or schema objects in the SYS schema,
because doing so can compromise data integrity. Limit the use of statements
such as DROP TABLE, TRUNCATE TABLE, DELETE, INSERT, or similar object-
modification statements on SYS objects only to highly privileged administrative
users.

The SYS schema owns the data dictionary. You can protect the data dictionary
by setting the O7_DICTIONARY_ACCESSIBILITY parameter to FALSE. See
Guidelines for Securing Data for more information.

i. Only grant the EXECUTE privilege on the DBMS_RANDOM PL/SQL
package to trusted users.

The EXECUTE privilege on the DBMS_RANDOM package could permit users who
normally should have only minimal access to execute the functions associated
with this package.

j. Restrict permissions on run-time facilities.

Many Oracle Database products use run-time facilities, such as Oracle Java
Virtual Machine (OJVM). Do not assign all permissions to a database run-time
facility. Instead, grant specific permissions to the explicit document the root file
paths for facilities that might run files and packages outside the database.

Appendix A
Guidelines for Securing User Accounts and Privileges

A-5

Here is an example of a vulnerable run-time call, which individual files are
specified:

call dbms_java.grant_permission('wsmith',
'SYS:java.io.FilePermission','<<ALL FILES>>','read');

Here is an example of a better (more secure) run-time call, which specifies a
directory path instead:

call dbms_java.grant_permission('wsmith',
'SYS:java.io.FilePermission','<<actual directory path>>','read');

4. Revoke access to the following:

• The SYS.USER_HISTORY$ table from all users except SYS and DBA accounts

• The RESOURCE role from typical application accounts

• The CONNECT role from typical application accounts

• The DBA role from users who do not need this role

5. Grant privileges only to roles.

Granting privileges to roles and not individual users makes the management and
tracking of privileges much easier.

6. Limit the proxy account (for proxy authorization) privileges to CREATE
SESSION only.

7. Use secure application roles to protect roles that are enabled by application
code.

Secure application roles allow you to define a set of conditions, within a PL/SQL
package, that determine whether or not a user can log on to an application. Users
do not need to use a password with secure application roles.

Another approach to protecting roles from being enabled or disabled in an
application is the use of role passwords. This approach prevents a user from
directly accessing the database in SQL (rather than the application) to enable the
privileges associated with the role. However, Oracle recommends that you use
secure application roles instead, to avoid having to manage another set of
passwords.

8. Create privilege captures to find excessively granted privileges. See Oracle
Database Vault Administrator’s Guide for more information.

9. Monitor the granting of the following privileges only to users and roles who
need these privileges.

By default, Oracle Database audits the following privileges:

• ALTER SYSTEM

• AUDIT SYSTEM

• CREATE EXTERNAL JOB

Oracle recommends that you also audit the following privileges:

• ALL PRIVILEGES (which includes privileges such as BECOME USER, CREATE
LIBRARY, and CREATE PROCEDURE)

• DBMS_BACKUP_RESTORE package

• EXECUTE to DBMS_SYS_SQL

Appendix A
Guidelines for Securing User Accounts and Privileges

A-6

• SELECT ANY TABLE

• SELECT on PERFSTAT.STATS$SQLTEXT

• SELECT on PERFSTAT.STATS$SQL_SUMMARY

• SELECT on SYS.SOURCE$

• Privileges that have the WITH ADMIN clause

• Privileges that have the WITH GRANT clause

• Privileges that have the CREATE keyword

10. Use the following data dictionary views to find information about user
access to the database.

• DBA_*

• DBA_ROLES

• DBA_SYS_PRIVS

• DBA_ROLE_PRIVS

• DBA_TAB_PRIVS

• DBA_AUDIT_TRAIL (if standard auditing is enabled)

• DBA_FGA_AUDIT_TRAIL (if fine-grained auditing is enabled)

Guidelines for Securing Roles
Oracle provides guidelines for role management.

1. Grant a role to users only if they need all privileges of the role.

Roles (groups of privileges) are useful for quickly and easily granting permissions
to users. Although you can use Oracle-defined roles, you have more control and
continuity if you create your own roles containing only the privileges pertaining to
your requirements. Oracle may change or remove the privileges in an Oracle
Database-defined role, as it has with the CONNECT role, which now has only the
CREATE SESSION privilege. Formerly, this role had eight other privileges.

Ensure that the roles you define contain only the privileges that reflect job
responsibility. If your application users do not need all the privileges encompassed
by an existing role, then apply a different set of roles that supply just the correct
privileges. Alternatively, create and assign a more restricted role.

For example, it is imperative to strictly limit the privileges of user SCOTT, because
this is a well known account that may be vulnerable to intruders. Because the
CREATE DBLINK privilege allows access from one database to another, drop its
privilege for SCOTT. Then, drop the entire role for the user, because privileges
acquired by means of a role cannot be dropped individually. Re-create your own
role with only the privileges needed, and grant that new role to that user. Similarly,
for better security, drop the CREATE DBLINK privilege from all users who do not
require it.

2. Do not grant user roles to application developers.

Roles are not meant to be used by application developers, because the privileges
to access schema objects within stored programmatic constructs need to be
granted directly. Remember that roles are not enabled within stored procedures

Appendix A
Guidelines for Securing Roles

A-7

except for invoker's right procedures. See How Roles Work in PL/SQL Blocks for
information about this topic.

3. Create and assign roles specific to each Oracle Database installation.

This principle enables the organization to retain detailed control of its roles and
privileges. This also avoids the necessity to adjust if Oracle Database changes or
removes Oracle Database-defined roles, as it has with CONNECT, which now has
only the CREATE SESSION privilege. Formerly, it also had eight other privileges.

4. For enterprise users, create global roles.

Global roles are managed by an enterprise directory service, such as Oracle
Internet Directory. See the following sections for more information about global
roles:

• Global User Authentication and Authorization

• Authorizing a Global Role by an Enterprise Directory Service

• Oracle Database Enterprise User Security Administrator's Guide

Guidelines for Securing Passwords
Oracle provides guidelines for securing passwords.

When you create a user account, Oracle Database assigns a default password policy
for that user. The password policy defines rules for how the password should be
created, such as a minimum number of characters, when it expires, and so on. You
can strengthen passwords by using password policies. See also Configuring Password
Protection for additional ways to protect passwords.

Follow these guidelines to further strengthen passwords:

1. Choose passwords carefully.

Minimum Requirements for Passwords describes the minimum requirements for
passwords. Follow these additional guidelines when you create or change
passwords:

• Make the password between 12 and 30 characters and numbers.

• Have the password contain at least one digit, one upper-case character, and
one lower-case character.

• Use mixed case letters and special characters in the password. (See Ensuring
Against Password Security Threats by Using the 12C Password Version for
more information.)

• You can include multibyte characters in the password.

• Use the database character set for the password's characters, which can
include the underscore (_), dollar ($), and number sign (#) characters.

• You must enclose the following passwords in double-quotation marks:

– Passwords containing multibyte characters.

– Passwords starting with numbers or special characters and containing
alphabetical characters. For example:

"123abc"

"#abc"

Appendix A
Guidelines for Securing Passwords

A-8

"123dc$"

– Passwords containing any character other than alphabetical characters,
numbers, and special characters. For example:

"abc>"

"abc@",

" "

• You do not need to specify the following passwords in double-quotation marks.

– Passwords starting with an alphabet character (a–z, A–Z) and containing
numbers(0–9) or special characters ($, #, _). For example:

abc123

ab23a

ab$#_

– Passwords containing only numbers.

– Passwords containing only alphabetical characters.

• Do not include double-quotation marks within the password.

• Do not use an actual word for the entire password.

2. To create a longer, more complex password from a shorter, easier to
remember password, follow these techniques:

• Create passwords from the first letters of the words of an easy-to-remember
sentence. For example, "I usually work until 6:00 almost every day of the
week" can be Iuwu6aedotw.

• Combine two weaker passwords, such as welcome1 and binky into
WelBinkyCome1.

• Repeat a character at the beginning or end of the password.

• Add a string, another password, or part the same password to the beginning or
end of the password that you want to create. For example, ways that you can
modify the password fussy2all are as follows:

– fussy2all34hj2

– WelBinkyCome1fussy2all

– fusfussy2all

• Double some or all of the letters. For example, welcome13 can become
wwellCcooMmee13.

3. Ensure that the password is sufficiently complex.

Oracle Database provides a password complexity verification routine, the PL/SQL
script utlpwdmg.sql, that you can run to check whether or not passwords are
sufficiently complex. Ideally, edit the utlpwdmg.sql script to provide stronger
password protections. See also About Password Complexity Verification for a
sample routine that you can use to check passwords.

4. Associate a password complexity function with the user profile or the
default profile.

Appendix A
Guidelines for Securing Passwords

A-9

The PASSWORD_VERIFY_FUNCTION clause of the CREATE PROFILE and ALTER
PROFILE statements associates a password complexity function with a user profile
or the default profile. Password complexity functions ensure that users create
strong passwords using guidelines that are specific to your site. Having a
password complexity function also requires a user changing his or her own
password (without the ALTER USER system privilege) to provide both the old and
new passwords. You can create your own password complexity functions or use
the password complexity functions that Oracle Database provides.

See Managing the Complexity of Passwords for more information.

5. Change default user passwords.

Oracle Database installs with a set of predefined, default user accounts. Security
is most easily broken when a default database user account still has a default
password even after installation. This is particularly true for the user account
SCOTT, which is a well known account that may be vulnerable to intruders. In
Oracle Database, default accounts are installed locked with the passwords
expired, but if you have upgraded from a previous release, you may still have
accounts that use default passwords.

To find user accounts that have default passwords, query the
DBA_USERS_WITH_DEFPWD data dictionary view. See Finding User Accounts That
Have Default Passwords for more information.

6. Change default passwords of administrative users.

You can use the same or different passwords for the SYS, SYSTEM, SYSMAN, and
DBSNMP administrative accounts. Oracle recommends that you use different
passwords for each. In any Oracle environment (production or test), assign strong,
secure, and distinct passwords to these administrative accounts. If you use
Database Configuration Assistant to create a new database, then it requires you to
enter passwords for the SYS and SYSTEM accounts, disallowing the default
passwords CHANGE_ON_INSTALL and MANAGER.

Similarly, for production environments, do not use default passwords for
administrative accounts, including SYSMAN and DBSNMP.

7. Enforce password management.

Apply basic password management rules (such as password length, history,
complexity, and so forth) to all user passwords. Oracle Database has password
policies enabled for the default profile. Guideline 1 in this section lists these
password policies.

You can find information about user accounts by querying the DBA_USERS view.
The PASSWORD column of the DBA_USERS view indicates whether the password is
global, external, or null. The DBA_USERS view provides useful information such as
the user account status, whether the account is locked, and password versions.

Oracle also recommends, if possible, using Oracle strong authentication with
network authentication services (such as Kerberos), token cards, smart cards, or
X.509 certificates. These services provide strong authentication of users, and
provide protection against unauthorized access to Oracle Database.

8. Do not store user passwords in clear text in Oracle tables.

For better security, do not store passwords in clear text (that is, human readable)
in Oracle tables. You can correct this problem by using a secure external
password store to encrypt the table column that contains the password. See

Appendix A
Guidelines for Securing Passwords

A-10

Managing the Secure External Password Store for Password Credentials for
information.

When you create or modify a password for a user account, Oracle Database
automatically creates a cryptographic hash or digest of the password. If you query
the DBA_USERS view to find information about a user account, the data in the
PASSWORD column indicates if the user password is global, external, or null.

Guidelines for Securing Data
Oracle provides guidelines for securing data on your system.

1. Enable data dictionary protection.

Oracle recommends that you protect the data dictionary to prevent users that have
the ANY system privilege from using those privileges on the data dictionary.
Altering or manipulating the data in data dictionary tables can permanently and
detrimentally affect the operation of a database.

To enable data dictionary protection, set the following initialization parameter to
FALSE (which is the default) in the initsid.ora control file:

O7_DICTIONARY_ACCESSIBILITY = FALSE

You can set the O7_DICTIONARY_ACCESSIBILITY parameter in a server parameter
file. For more information about server parameter files, see Oracle Database Vault
Administrator’s Guide.

After you set O7_DICTIONARY_ACCESSIBILTY to FALSE, only users who have the
SELECT ANY DICTIONARY privilege and those authorized users making DBA-
privileged (for example CONNECT / AS SYSDBA) connections can use the ANY
system privilege on the data dictionary. If O7_DICTIONARY_ACCESSIBILITY
parameter is not set to FALSE, then any user with the DROP ANY TABLE (for
example) system privilege will be able to drop parts of the data dictionary.
However, if a user needs view access to the data dictionary, then you can grant
that user the SELECT ANY DICTIONARY system privilege.

Note:

• In a default installation, the O7_DICTIONARY_ACCESSIBILITY
parameter is set to FALSE. However, in Oracle8i, this parameter is set
to TRUE by default, and must be changed to FALSE to enable this
security feature.

• The SELECT ANY DICTIONARY privilege is not included in the GRANT
ALL PRIVILEGES statement, but you can grant it through a role.
Configuring Privilege and Role Authorization, describes roles in
detail.

2. Restrict operating system access.

Follow these guidelines:

• Limit the number of operating system users.

Appendix A
Guidelines for Securing Data

A-11

• Limit the privileges of the operating system accounts (administrative, root-
privileged, or database administrative) on the Oracle Database host computer
to the least privileges required for a user to perform necessary tasks.

• Restrict the ability to modify the default file and directory permissions for the
Oracle Database home (installation) directory or its contents. Even privileged
operating system users and the Oracle owner should not modify these
permissions, unless instructed otherwise by Oracle.

• Restrict symbolic links. Ensure that when you provide a path or file to the
database, neither the file nor any part of the path is modifiable by an untrusted
user. The file and all components of the path should be owned by the
database administrator or trusted account, such as root.

This recommendation applies to all types of log files, trace files, external
tables, BFILE data types, and so on.

3. Encrypt sensitive data and all backup media that contains database files.

According to common regulatory compliance requirements, you must encrypt
sensitive data such as credit card numbers and passwords. When you delete
sensitive data from the database, encrypted data does not linger in data blocks,
operating system files, or sectors on disk.

In most cases, you may want to use Transparent Data Encryption to encrypt your
sensitive data. See Oracle Database Advanced Security Guide for more
information. See also Security Problems That Encryption Does Not Solve for when
you should not encrypt data.

4. For Oracle Automatic Storage Management (Oracle ASM) environments on
Linux and UNIX systems, use Oracle ASM File Access Control to restrict
access to the Oracle ASM disk groups.

If you use different operating system users and groups for Oracle Database
installations, then you can configure Oracle ASM File Access Control to restrict the
access to files in Oracle ASM disk groups to only authorized users. For example, a
database administrator would only be able to access the data files for the
databases he or she manages. This administrator would not be able to see or
overwrite the data files belonging (or used by) other databases.

For more information about managing Oracle ASM File Access Control for disk
groups, see Oracle Automatic Storage Management Administrator's Guide. For
information about the various privileges required for multiple software owners, see
also Oracle Automatic Storage Management Administrator's Guide.

Guidelines for Securing the ORACLE_LOADER Access
Driver

Oracle provides guidelines to secure the ORACLE_LOADER access driver.

1. Create a separate operating system directory to store the access driver
preprocessors. You (or the operating system manager) may need to create
multiple directories if different Oracle Database users will run different
preprocessors. If you want to prevent one set of users from using one
preprocessor while allowing those users access to another preprocessor, then
place the preprocessors in separate directories. If all the users need equal access,
then you can place the preprocessors together in one directory. After you create

Appendix A
Guidelines for Securing the ORACLE_LOADER Access Driver

A-12

these operating system directories, in SQL*Plus, you can create a directory object
for each directory.

2. Grant the operating system user ORACLE the correct operating system
privileges to run the access driver preprocessor. In addition, protect the
preprocessor program from WRITE access by operating system users other than
the user responsible for managing the preprocessor program.

3. Grant the EXECUTE privilege to each user who will run the preprocessor
program in the directory object. Do not grant this user the WRITE privilege on the
directory object. Never grant users both the EXECUTE and WRITE privilege for
directory objects.

4. Grant the WRITE privilege sparingly to anyone who will manage directory
objects that contain preprocessors. This prevents database users from
accidentally or maliciously overwriting the preprocessor program.

5. Create a separate operating system directory and directory object for any
data files that are required for external tables. Ensure that these are separate
from the directory and directory object used by the access directory preprocessor.

Work with the operating system manager to ensure that only the appropriate
operating system users have access to this directory. Grant the ORACLE operating
system user READ access to any directory that has a directory object with READ
privileges granted to database users. Similarly, grant the ORACLE operating system
user WRITE access to any directory that has the WRITE privilege granted to
database users.

6. Create a separate operating system directory and directory object for any
files that the access driver generates. This includes log files, bad files, and
discarded files. You and the operating system manager must ensure that this
directory and directory object have the proper protections, similar to those
described in Guideline 5. The database user may need to access these files when
resolving problems in data files, so you and the operating system manager must
determine a way for this user to read those files.

7. Grant the CREATE ANY DIRECTORY and DROP ANY DIRECTORY privileges
sparingly. Users who have these privileges and users who have been granted the
DBA role have full access to all directory objects.

8. Consider auditing the DROP ANY DIRECTORY privilege. See Auditing System
Privileges for more information about auditing privileges.

9. Consider auditing the directory object. See Auditing Object Actions for more
information.

See Also:

Oracle Database Utilities for more information about the ORACLE_DATAPUMP
access driver

Appendix A
Guidelines for Securing the ORACLE_LOADER Access Driver

A-13

Guidelines for Securing a Database Installation and
Configuration

Oracle provides guidelines to secure the database installation and configuration.

Changes were made to the default configuration of Oracle Database to make it more
secure. The recommendations in this section augment the new, secure default
configuration.

1. Before you begin an Oracle Database installation on UNIX systems, ensure
that the umask value is 022 for the Oracle owner account.

See Oracle Database Administrator's Reference for Linux and UNIX-Based
Operating Systems for more information about managing Oracle Database on
Linux and UNIX systems.

2. Install only what is required.

Options and Products: The Oracle Database CD pack contains products and
options in addition to the database. Install additional products and options only as
necessary. Use the Custom Installation feature to avoid installing unnecessary
products, or perform a typical installation, and then deinstall options and products
that are not required. There is no need to maintain additional products and options
if they are not being used. They can always be properly installed, as required.

Sample Schemas: Oracle Database provides sample schemas to provide a
common platform for examples. If your database will be used in a production
environment, then do not install the sample schema. If you have installed the
sample schema on a test database, then before going to production, remove or
relock the sample schema accounts. See Oracle Database Sample Schemas for
more information about the sample schemas.

3. During installation, when you are prompted for a password, create a secure
password.

Follow Guidelines 1, 5, and 6 in Guidelines for Securing Passwords.

4. Immediately after installation, lock and expire default user accounts.

See Guideline 1 in Guidelines for Securing User Accounts and Privileges.

Guidelines for Securing the Network
Security for network communications is improved by using client, listener, and network
guidelines to ensure thorough protection.

• Client Connection Security
Authenticating clients stringently, configuring encryption for the connection, and
using strong authentication strengthens client connections.

• Network Connection Security
Protecting the network and its traffic from inappropriate access or modification is
the essence of network security.

• Secure Sockets Layer Connection Security
Oracle provides guidelines for securing Secure Sockets Layer (SSL).

Appendix A
Guidelines for Securing a Database Installation and Configuration

A-14

Client Connection Security
Authenticating clients stringently, configuring encryption for the connection, and using
strong authentication strengthens client connections.

Because authenticating client computers is problematic, typically, user authentication
is performed instead. This approach avoids client system issues that include falsified
IP addresses, hacked operating systems or applications, and falsified or stolen client
system identities.

Nevertheless, the following guidelines improve the security of client connections:

1. Enforce access controls effectively and authenticate clients stringently.

By default, Oracle allows operating system-authenticated logins only over secure
connections, which precludes using Oracle Net and a shared server configuration.
This default restriction prevents a user over a network connection.

Setting the initialization parameter REMOTE_OS_AUTHENT to TRUE forces the
database to accept the client operating system user name received over an
unsecure connection and use it for account access. Because clients, such as PCs,
are not trusted to perform operating system authentication properly, it is poor
security practice to use this feature.

The default setting, REMOTE_OS_AUTHENT = FALSE, creates a more secure
configuration that enforces proper, server-based authentication of clients
connecting to an Oracle database. Be aware that the REMOTE_OS_AUTHENT was
deprecated in Oracle Database Release 11g (11.1) and is retained only for
backward compatibility.

You should not alter the default setting of the REMOTE_OS_AUTHENT initialization
parameter, which is FALSE.

Setting this parameter to FALSE does not mean that users cannot connect
remotely. It means that the database will not trust that the client has already
authenticated, and will therefore apply its standard authentication processes.

Be aware that the REMOTE_OS_AUTHENT parameter was deprecated in Oracle
Database 11g Release 1 (11.1), and is retained only for backward compatibility.

2. Configure the connection to use encryption.

Oracle native network encryption makes eavesdropping difficult.

3. Set up strong authentication.

See Configuring Kerberos Authentication , for more information about using
Kerberos and public key infrastructure (PKI).

4. In an Oracle Data Guard environment, set the ADG_ACCOUNT_INFO_TRACKING
initialization parameter.

The ADG_ACCOUNT_INFO_TRACKING parameter controls login attempts on Oracle
Active Data Guard standby databases. It provides more security against login
attacks across an Oracle Database production environment and all Active Data
Guard standby databases. Use one of the following settings:

• LOCAL (default) enforces the existing behavior, which maintains a local copy of
user account information in the standby database’s in-memory view. This
setting only tracks login failures locally on a per-database basis. It denies the
login when the maximum of failed logins is reached.

Appendix A
Guidelines for Securing the Network

A-15

• GLOBAL increases the security of logins by maintaining a single global copy of
user account information across all Data Guard primary and standby
databases. Login failures across all databases in the Data Guard environment
count toward the maximum count. When this count is reached, then logins
anywhere are denied access.

To learn more about the ADG_ACCOUNT_INFO_TRACKING parameter, see Oracle
Database Reference

Network Connection Security
Protecting the network and its traffic from inappropriate access or modification is the
essence of network security.

You should consider all paths the data travels, and assess the threats on each path
and node. Then, take steps to lessen or eliminate those threats and the consequences
of a security breach. In addition, monitor and audit to detect either increased threat
levels or penetration attempts.

To manage network connections, you can use Oracle Net Manager. For more
information about Net Manager, see Oracle Database Net Services Administrator's
Guide.

The following practices improve network security:

1. Use Secure Sockets Layer (SSL) when administering the listener.

See Secure Sockets Layer Connection Security for more information.

2. Prevent online administration by requiring the administrator to have the
write privilege on the listener password and on the listener.ora file on the
server.

a. Add or alter this line in the listener.ora file:

ADMIN_RESTRICTIONS_LISTENER=ON

b. Use RELOAD to reload the configuration.

c. Use SSL when administering the listener by making the TCPS protocol the
first entry in the address list, as follows:

LISTENER=
 (DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=
 (PROTOCOL=tcps)
 (HOST = sales.us.example.com)
 (PORT = 8281)))

To administer the listener remotely, you define the listener in the
listener.ora file on the client computer. For example, to access listener
USER281 remotely, use the following configuration:

user281 =
 (DESCRIPTION =
 (ADDRESS =
 (PROTOCOL = tcps)
 (HOST = sales.us.example.com)
 (PORT = 8281))
)
)

Appendix A
Guidelines for Securing the Network

A-16

For more information about the parameters in listener.ora, see Oracle Database
Net Services Reference.

3. Do not set the listener password.

Ensure that the password has not been set in the listener.ora file. The local
operating system authentication will secure the listener administration. The remote
listener administration is disabled when the password has not been set. This
prevents brute force attacks of the listener password.

The listener password has been deprecated in this release. It will not be supported
in the next release of Oracle Database.

4. When a host computer has multiple IP addresses associated with multiple
network interface controller (NIC) cards, configure the listener to the specific
IP address.

This allows the listener to listen on all the IP addresses. You can restrict the
listener to listen on a specific IP address. Oracle recommends that you specify the
specific IP addresses on these types of computers, rather than allowing the
listener to listen on all IP addresses. Restricting the listener to specific IP
addresses helps to prevent an intruder from stealing a TCP end point from under
the listener process.

5. Restrict the privileges of the listener, so that it cannot read or write files in
the database or the Oracle server address space.

This restriction prevents external procedure agents spawned by the listener (or
procedures executed by an agent) from inheriting the ability to perform read or
write operations. The owner of this separate listener process should not be the
owner that installed Oracle Database or executes the Oracle Database instance
(such as ORACLE, the default owner).

For more information about configuring external procedures in the listener, see
Oracle Database Net Services Administrator's Guide.

6. Use encryption to secure the data in flight.

See Introduction to Strong Authentication, for more information about network data
encryption.

7. Use a firewall.

Appropriately placed and configured firewalls can prevent outside access to your
databases.

• Keep the database server behind a firewall. Oracle Database network
infrastructure, Oracle Net Services (formerly known as SQL*Net), provides
support for a variety of firewalls from various vendors. Supported proxy-
enabled firewalls include Gauntlet from Network Associates and Raptor from
Axent. Supported packet-filtering firewalls include PIX Firewall from Cisco, and
supported stateful inspection firewalls (more sophisticated packet-filtered
firewalls) include Firewall-1 from CheckPoint.

• Ensure that the firewall is placed outside the network to be protected.

• Configure the firewall to accept only those protocols, applications, or client/
server sources that you know are safe.

• Use a product such as Net8 and Oracle Connection Manager to manage
multiplex multiple client network sessions through a single network connection
to the database. It can filter on source, destination, and host name. This
product enables you to ensure that connections are accepted only from

Appendix A
Guidelines for Securing the Network

A-17

physically secure terminals or from application Web servers with known IP
addresses. (Filtering on IP address alone is not enough for authentication,
because it can be falsified.)

8. Prevent unauthorized administration of the Oracle listener.

For more information about the listener, see Oracle Database Net Services
Administrator's Guide.

9. Check network IP addresses.

Use the Oracle Net valid node checking security feature to allow or deny access to
Oracle server processes from network clients with specified IP addresses. To use
this feature, set the following sqlnet.ora configuration file parameters:

tcp.validnode_checking = YES

tcp.excluded_nodes = {list of IP addresses}

tcp.invited_nodes = {list of IP addresses}

The tcp.validnode_checking parameter enables the feature. The
tcp.excluded_nodes and tcp.invited_nodes parameters deny and enable
specific client IP addresses from making connections to the Oracle listener. This
helps to prevent potential Denial of Service attacks.

You can use Oracle Net Manager to configure these parameters. See Oracle
Database Net Services Administrator's Guide for more information.

10. Encrypt network traffic.

If possible, use Oracle native network data encryption to encrypt network traffic
among clients, databases, and application servers. For detailed information about
native network encryption, see Configuring Oracle Database Native Network
Encryption and Data Integrity.

11. Secure the host operating system (the system on which Oracle Database is
installed).

Secure the host operating system by disabling all unnecessary operating system
services. Both UNIX and Windows provide a variety of operating system services,
most of which are not necessary for typical deployments. These services include
FTP, TFTP, TELNET, and so forth. Be sure to close both the UDP and TCP ports
for each service that is being disabled. Disabling one type of port and not the other
does not make the operating system more secure.

12. Configure database link communication protocol.

To specify the protocols over which the database link communication takes place,
set the OUTBOUND_DBLINK_PROTOCOLS initialization parameter to one of the following
settings:

• ALL (default) enables all net protocols to be used for the database links.

• comma-separated_list_of_protocols can be set TPC, TCPS, or IPC. For
example, for a single protocol:

ALTER SYSTEM SET OUTBOUND_DBLINK_PROTOCOLS=TCPS;

For multiple protocols:

ALTER SYSTEM SET OUTBOUND_DBLINK_PROTOCOLS=TCP,TCPS,IPC;

• NONE disables any database link communication.

Appendix A
Guidelines for Securing the Network

A-18

13. If necessary, disable LDAP lookup for global database links.

Set the ALLOW_GLOBAL_DBLINKS initialization parameter to enable or disable LDAP
lookup for global database links. Settings are as follows:

• ON enables LDAP lookup for global database links.

• OFF (default) disables LDAP lookup for global database links.

Secure Sockets Layer Connection Security
Oracle provides guidelines for securing Secure Sockets Layer (SSL).

Secure Sockets Layer (SSL) is the Internet standard protocol for secure
communication, providing mechanisms for data integrity and data encryption. These
mechanisms can protect the messages sent and received by you or by applications
and servers, supporting secure authentication, authorization, and messaging through
certificates and, if necessary, encryption. Good security practices maximize protection
and minimize gaps or disclosures that threaten security.

1. Ensure that configuration files (for example, for clients and listeners) use the
correct port for SSL, which is the port configured upon installation.

You can run HTTPS on any port, but the standards specify port 443, where any
HTTPS-compliant browser looks by default. The port can also be specified in the
URL, for example:

https://secure.example.com:4445/

If a firewall is in use, then it too must use the same ports for secure (SSL)
communication.

2. Ensure that TCPS is specified as the PROTOCOL in the ADDRESS parameter
in the tnsnames.ora file (typically on the client or in the LDAP directory).

An identical specification must appear in the listener.ora file (typically in
the $ORACLE_HOME/network/admin directory).

3. Ensure that the SSL mode is consistent for both ends of every
communication. For example, the database (on one side) and the user or
application (on the other) must have the same SSL mode.

The mode can specify either client or server authentication (one-way), both client
and server authentication (two-way), or no authentication.

4. Ensure that the server supports the client cipher suites and the certificate
key algorithm in use.

5. Enable DN matching for both the server and client, to prevent the server
from falsifying its identity to the client during connections.

This setting ensures that the server identity is correct by matching its global
database name against the DN from the server certificate.

You can enable DN matching in the tnsnames.ora file. For example:

set:SSL_SERVER_CERT_DN="cn=finance,cn=OracleContext,c=us,o=example"

Otherwise, a client application would not check the server certificate, which could
allow the server to falsify its identity.

Appendix A
Guidelines for Securing the Network

A-19

6. Do not remove the encryption from your RSA private key inside your
server.key file, which requires that you enter your pass phrase to read and
parse this file.

Note:

A server without SSL does not require a pass phrase.

If you decide your server is secure enough, you could remove the encryption from
the RSA private key while preserving the original file. This enables system boot
scripts to start the database server, because no pass phrase is needed. Ideally,
restrict permissions to the root user only, and have the Web server start as root,
but then log on as another user. Otherwise, anyone who gets this key can
impersonate you on the Internet, or decrypt the data that was sent to the server.

See Also:

• Configuring Secure Sockets Layer Authentication, for general SSL
information, including configuration

• Oracle Database Net Services Reference for TCP-related
parameters in sqlnet.ora

Guideline for Securing External Procedures
The ENFORCE_CREDENTIAL environment variable controls how an extproc process
authenticates user credentials and callout functions.

You can specify this variable in the extproc.ora file. Before modifying this variable,
review your site's security requirements for the handling of external libraries. For
maximum security, set the ENFORCE_CREDENTIAL variable to TRUE. The default setting is
FALSE.

See Also:

Securing External Procedures

Guidelines for Auditing
Oracle provides guidelines for auditing.

• Manageability of Audited Information
Although auditing is relatively inexpensive, limit the number of audited events as
much as possible.

Appendix A
Guideline for Securing External Procedures

A-20

• Audits of Typical Database Activity
Oracle provides guidelines for when you must gather historical information about
particular database activities.

• Audits of Suspicious Database Activity
Oracle provides guidelines for when you audit to monitor suspicious database
activity.

• Recommended Audit Settings
Oracle provides predefined policies that contain recommended audit settings that
apply to most sites.

• Best Practices for Querying the UNIFIED_AUDIT_TRAIL Data Dictionary View
To get the best results from querying the UNIFIED_AUDIT_TRAIL data dictionary
view, you should follow these guidelines.

Manageability of Audited Information
Although auditing is relatively inexpensive, limit the number of audited events as much
as possible.

This minimizes the performance impact on the execution of audited statements and
the size of the audit trail, making it easier to analyze and understand.

Follow these guidelines when devising an auditing strategy:

1. Evaluate your reason for auditing.

After you have a clear understanding of the reasons for auditing, you can devise
an appropriate auditing strategy and avoid unnecessary auditing.

For example, suppose you are auditing to investigate suspicious database activity.
This information by itself is not specific enough. What types of suspicious
database activity do you suspect or have you noticed? A more focused auditing
strategy might be to audit unauthorized deletions from arbitrary tables in the
database. This purpose narrows the type of action being audited and the type of
object being affected by the suspicious activity.

2. Audit knowledgeably.

Audit the minimum number of statements, users, or objects required to get the
targeted information. This prevents unnecessary audit information from cluttering
the meaningful information and using valuable space in the SYSTEM tablespace.
Balance your need to gather sufficient security information with your ability to store
and process it.

For example, if you are auditing to gather information about database activity, then
determine exactly what types of activities you want to track, audit only the activities
of interest, and audit only for the amount of time necessary to gather the
information that you want. As another example, do not audit objects if you are only
interested in logical I/O information for each session.

3. Before you implement an auditing strategy, consult your legal department.

You should have the legal department of your organization review your audit
strategy. Because your auditing will monitor other users in your organization, you
must ensure that you are correctly following the compliance and corporate policy
of your site.

Appendix A
Guidelines for Auditing

A-21

Audits of Typical Database Activity
Oracle provides guidelines for when you must gather historical information about
particular database activities.

1. Audit only pertinent actions.

At a minimum, audit user access, the use of system privileges, and changes to the
database schema structure. To avoid cluttering meaningful information with
useless audit records and reduce the amount of audit trail administration, only
audit the targeted database activities. Remember also that auditing too much can
affect database performance.

For example, auditing changes to all tables in a database produces far too many
audit trail records and can slow down database performance. However, auditing
changes to critical tables, such as salaries in a Human Resources table, is useful.

You can audit specific actions by using fine-grained auditing, which is described in
Auditing Specific Activities with Fine-Grained Auditing.

2. Archive audit records and purge the audit trail.

After you collect the required information, archive the audit records of interest and
then purge the audit trail of this information. See the following sections:

• Archiving the Audit Trail

• Purging Audit Trail Records

3. Remember your company's privacy considerations.

Privacy regulations often lead to additional business privacy policies. Most privacy
laws require businesses to monitor access to personally identifiable information
(PII), and monitoring is implemented by auditing. A business-level privacy policy
should address all relevant aspects of data access and user accountability,
including technical, legal, and company policy concerns.

4. Check the Oracle Database log files for additional audit information

The log files generated by Oracle Database contain useful information that you
can use when auditing a database. For example, an Oracle database creates an
alert file to record STARTUP and SHUTDOWN operations, and structural changes such
as adding data files to the database.

For example, if you want to audit committed or rolled back transactions, you can
use the redo log files.

Audits of Suspicious Database Activity
Oracle provides guidelines for when you audit to monitor suspicious database activity.

1. First audit generally, and then specifically.

When you start to audit for suspicious database activity, often not much
information is available to target specific users or schema objects. Therefore, audit
generally first, that is, by using the unified audit policies. Configuring Audit Policies
explains how you can audit SQL statements, schema objects, privileges, and so
on.

After you have recorded and analyzed the preliminary audit information, alter your
audit policies to audit specific actions and privileges. You can add conditions to

Appendix A
Guidelines for Auditing

A-22

your policies to exclude unnecessary audit records. You an also use the EXCEPT
clause in the AUDIT POLICY statement to exclude specific users who do not need
to be audited. See Auditing Activities with Unified Audit Policies and the AUDIT
Statement for more information about unified audit policies.

You can use fine-grained auditing, which is described in Auditing Specific Activities
with Fine-Grained Auditing, to audit specific actions.

Continue this process until you have gathered enough evidence to draw
conclusions about the origin of the suspicious database activity.

2. Audit common suspicious activities.

Common suspicious activities are as follows:

• Users who access the database during unusual hours

• Multiple failed user login attempts

• Login attempts by non-existent users

In addition, be aware that sensitive data, such as credit card numbers, can appear
in the audit trail columns, such as SQL text when used in the SQL query. You
should also monitor users who share accounts or multiple users who are logging in
from the same IP address. You can query the UNIFIED_AUDIT_TRAIL data
dictionary view to find this kind of activity. For a very granular approach, create
fine-grained audit policies.

Recommended Audit Settings
Oracle provides predefined policies that contain recommended audit settings that
apply to most sites.

For example:

• ORA_SECURECONFIG audits the same default audit settings from Oracle Database
Release 11g. It tracks the use of a number of privileges such as ALTER ANY TABLE,
GRANT ANY PRIVILEGE, and CREATE USER. The actions that it tracks include ALTER
USER, CREATE ROLE, LOGON, and other commonly performed activities. This policy is
enabled by default only when the database is created in Oracle Database Release
12c.

• ORA_DATABASE_PARAMETER audits commonly used Oracle Database parameter
settings: ALTER DATABASE, ALTER SYSTEM, and CREATE SPFILE. By default, this
policy is not enabled.

• ORA_ACCOUNT_MGMT audits the commonly used user account and privilege settings:
CREATE USER, ALTER USER, DROP USER, CREATE ROLE, DROP ROLE,ALTER ROLE, SET
ROLE, GRANT, and REVOKE. By default, this policy is not enabled.

See Also:

Auditing Activities with the Predefined Unified Audit Policies for detailed
information about these and other predefined audit policies

Appendix A
Guidelines for Auditing

A-23

Best Practices for Querying the UNIFIED_AUDIT_TRAIL Data
Dictionary View

To get the best results from querying the UNIFIED_AUDIT_TRAIL data dictionary view,
you should follow these guidelines.

1. Ensure the statistics of unified audit internal table are up to date.
Execute the DBMS_STATS.GATHER_TABLE_STATS procedure on the AUD$UNIFIED
table in the AUDSYS schema to ensure that the unified audit table statistics are
updated before you query the UNIFIED_AUDIT_TRAIL data dictionary view.

2. Load the unified audit records that were written to operating system
spillover files.
You can do this either explicitly or by configuring an Oracle Scheduler job, using
the DBMS_AUDIT_MGMT.LOAD_UNIFIED_AUDIT_FILES procedure.

3. When the number of records in the unified audit trail reaches a significantly
large number (for example, a million), then initiate the proper archiving and
purging mechanisms.
Archiving and purging the unified audit trial reduces the amount of data that
otherwise could grow and cause read performance problems. Oracle recommends
that you configure standard purging policies. The purging policies that you create
will depend on the rate of audit records that are generated on your system.
Frequent purges are required for high audit record generation rates.

4. Move the unified audit trail to a custom tablespace.
Using a custom tablespace enables you to better manage audit data and reduces
the impact on other objects in the SYSAUX tablespace. By default, the unified audit
trail records are written to the SYSAUX tablespace. To use a different tablespace,
execute the DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_LOCATION procedure.

5. When you query the UNIFIED_AUDIT_TRAIL data dictionary view, include
the EVENT_TIMESTAMP_UTC column in a WHERE clause.
The EVENT_TIMESTAMP_UTC column records the timestamp of audited events in the
UTC timezone. Including this column in the query helps to achieve the partition
pruning, and thus improves read performance of the UNIFIED_AUDIT_TRAIL view.

Related Topics

• Moving Operating System Audit Records into the Unified Audit Trail
Audit records that have been written to the spillover audit files can be moved to the
unified audit trail database table.

• Archiving the Audit Trail
You can archive the traditional operating system, unified database, and traditional
database audit trails.

• Purging Audit Trail Records
The DBMS_AUDIT_MGMT PL/SQL package can schedule automatic purge jobs,
manually purge audit records, and perform other audit trail operations.

Addressing the CONNECT Role Change
The CONNECT role, introduced with Oracle Database version 7, added new and robust
support for database roles.

Appendix A
Addressing the CONNECT Role Change

A-24

• Why Was the CONNECT Role Changed?
The CONNECT role is used in sample code, applications, documentation, and
technical papers.

• How the CONNNECT Role Change Affects Applications
The CONNECT role changes can be seen in database upgrades, account
provisioning, and installation of applications using new databases.

• How the CONNECT Role Change Affects Users
The change to the CONNECT role affects general users, application developers, and
client/server applications differently.

• Approaches to Addressing the CONNECT Role Change
Oracle recommends three approaches to address the impact of the CONNECT role
change.

Why Was the CONNECT Role Changed?
The CONNECT role is used in sample code, applications, documentation, and technical
papers.

In Oracle Database 10g Release 2 (10.2), the CONNECT role was changed. If you are
upgrading from a release earlier than Oracle Database 10.2 to the current release,
then you should be aware of how the CONNECT role has changed in the most recent
release.

The CONNECT role was originally established a special set of privileges. These
privileges were as follows: ALTER SESSION, CREATE CLUSTER, CREATE DATABASE LINK,
CREATE SEQUENCE, CREATE SESSION, CREATE SYNONYM, CREATE TABLE, CREATE VIEW.

Beginning in Oracle Database 10g Release 2, the CONNECT role has only the CREATE
SESSION privilege, all other privileges are removed. Starting with Oracle Database 12c
Release 1, the CONNECT role had the CREATE SESSION and SET CONTAINER privileges.

Although the CONNECT role was frequently used to provision new accounts in Oracle
Database, connecting to the database does not require all those privileges. Making
this change enables you to enforce good security practices more easily.

Each user should have only the privileges needed to perform his or her tasks, an idea
called the principle of least privilege. Least privilege mitigates risk by limiting
privileges, so that it remains easy to do what is needed while concurrently reducing the
ability to do inappropriate things, either inadvertently or maliciously.

How the CONNNECT Role Change Affects Applications
The CONNECT role changes can be seen in database upgrades, account provisioning,
and installation of applications using new databases.

• How the CONNECT Role Change Affects Database Upgrades
You should be aware of how the CONNECT role affects database upgrades.

• How the CONNECT Role Change Affects Account Provisioning
You should be aware of how the CONNECT role affects accounts provisioning.

• How the CONNECT Role Change Affects Applications Using New Databases
You should be aware of how the CONNECT role affects applications that use new
databases.

Appendix A
Addressing the CONNECT Role Change

A-25

How the CONNECT Role Change Affects Database Upgrades
You should be aware of how the CONNECT role affects database upgrades.

Upgrading your existing Oracle database to Oracle Database 10g Release 2 (10.2)
automatically changes the CONNECT role to have only the CREATE SESSION privilege.

Most applications are not affected because the applications objects already exist: no
new tables, views, sequences, synonyms, clusters, or database links need to be
created.

Applications that create tables, views, sequences, synonyms, clusters, or database
links, or that use the ALTER SESSION command dynamically, may fail due to insufficient
privileges.

How the CONNECT Role Change Affects Account Provisioning
You should be aware of how the CONNECT role affects accounts provisioning.

If your application or DBA grants the CONNECT role as part of the account provisioning
process, then only CREATE SESSION privileges are included. Any additional privileges
must be granted either directly or through another role.

This issue can be addressed by creating a new customized database role.

See Also:

Approaches to Addressing the CONNECT Role Change

How the CONNECT Role Change Affects Applications Using New Databases
You should be aware of how the CONNECT role affects applications that use new
databases.

New databases created using the Oracle Database 10g Release 2 (10.2) Utility
(DBCA), or using database creation templates generated from DBCA, define the
CONNECT role with only the CREATE SESSION privilege.

Installing an application to use a new database may fail if the database schema used
for the application is granted privileges solely through the CONNECT role.

How the CONNECT Role Change Affects Users
The change to the CONNECT role affects general users, application developers, and
client/server applications differently.

• How the CONNECT Role Change Affects General Users
You should be aware of how the CONNECT role affects general users.

• How the CONNECT Role Change Affects Application Developers
You should be aware of how the CONNECT role affects application developers.

Appendix A
Addressing the CONNECT Role Change

A-26

• How the CONNECT Role Change Affects Client Server Applications
You should be aware of how the CONNECT role affects client server applications.

How the CONNECT Role Change Affects General Users
You should be aware of how the CONNECT role affects general users.

The new CONNECT role supplies only the CREATE SESSION privilege. Users who connect
to the database to use an application are not affected, because the CONNECT role still
has the CREATE SESSION privilege.

However, appropriate privileges will not be present for a certain set of users if they are
provisioned solely with the CONNECT role. These are users who create tables, views,
sequences, synonyms, clusters, or database links, or use the ALTER SESSION
command. The privileges they need are no longer provided with the CONNECT role. To
authorize the additional privileges needed, the database administrator must create and
apply additional roles for the appropriate privileges, or grant them directly to the users
who need them.

Note that the ALTER SESSION privilege is required for setting events. Few database
users should require the ALTER SESSION privilege.

The ALTER SESSION privilege is not required for other alter session commands.

How the CONNECT Role Change Affects Application Developers
You should be aware of how the CONNECT role affects application developers.

Application developers provisioned solely with the CONNECT role do not have
appropriate privileges to create tables, views, sequences, synonyms, clusters, or
database links, nor to use the ALTER SESSION statement.

You must either create and apply additional roles for the appropriate privileges, or
grant them directly to the application developers who need them.

How the CONNECT Role Change Affects Client Server Applications
You should be aware of how the CONNECT role affects client server applications.

Most client/server applications that use dedicated user accounts will not be affected by
this change.

However, applications that create private synonyms or temporary tables using
dynamic SQL in the user schema during account provisioning or run-time operations
will be affected. They will require additional roles or grants to acquire the system
privileges appropriate to their activities.

Approaches to Addressing the CONNECT Role Change
Oracle recommends three approaches to address the impact of the CONNECT role
change.

• Creating a New Database Role
The privileges removed from the CONNECT role can be managed by creating a new
database role.

Appendix A
Addressing the CONNECT Role Change

A-27

• Restoring the CONNECT Privilege
The rstrconn.sql script restores the CONNECT privileges.

• Data Dictionary View to Show CONNECT Grantees
The DBA_CONNECT_ROLE_GRANTEES data dictionary view enables administrators who
continue using the old CONNECT role to see which users have that role.

• Least Privilege Analysis Studies
Oracle partners and application providers should conduct a least privilege analysis
so that they can deliver more secure products to their Oracle customers.

Creating a New Database Role
The privileges removed from the CONNECT role can be managed by creating a new
database role.

1. Connect to the upgraded Oracle database and create a new database role.

The following example uses a role called my_app_developer.

CREATE ROLE my_app_developer;
GRANT CREATE TABLE, CREATE VIEW, CREATE SEQUENCE, CREATE SYNONYM, CREATE
CLUSTER, CREATE DATABASE LINK, ALTER SESSION TO my_app_developer;

2. Determine which users or database roles have the CONNECT role, and grant the
new role to these users or roles.

SELECT USER$.NAME, ADMIN_OPTION, DEFAULT_ROLE
 FROM USER$, SYSAUTH$, DBA_ROLE_PRIVS
 WHERE PRIVILEGE# =
 (SELECT USER# FROM USER$ WHERE NAME = 'CONNECT')
 AND USER$.USER# = GRANTEE#
 AND GRANTEE = USER$.NAME
 AND GRANTED_ROLE = 'CONNECT';

NAME ADMIN_OPTI DEF
------------------------------ ---------- ---
R1 YES YES
R2 NO YES

GRANT my_app_developer TO R1 WITH ADMIN OPTION;
GRANT my_app_developer TO R2;

3. Determine the privileges that users require by creating a privilege analysis policy.

The information that you gather can then be analyzed and used to create
additional database roles with finer granularity. Privileges that are not used can
then be revoked for specific users.

For example:

BEGIN
 DBMS_PRIVILEGE_CAPTURE.CREATE_CAPTURE(
 name => 'my_app_dev_role_pol',
 description => 'Captures my_app_developer role use',
 type => DBMS_PRIVILEGE_CAPTURE.G_ROLE,
 roles => role_name_list('my_app_developer');
END;
/
EXEC DBMS_PRIVILEGE_CAPTURE.ENABLE_CAPTURE ('my_app_dev_role_pol');

Appendix A
Addressing the CONNECT Role Change

A-28

4. After a period of time, disable the privilege analysis policy and then generate a
report.

EXEC DBMS_PRIVILEGE_CAPTURE.DISABLE_CAPTURE ('my_app_dev_role_pol');

EXEC DBMS_PRIVILEGE_CAPTURE.GENERATE_RESULT ('my_app_dev_role_pol');

5. After you generate the report, query the privilege analysis data dictionary views.

For example:

SELECT USERNAME, SYS_PRIV, OBJECT_OWNER, OBJECT_NAME FROM DBA_USED_PRIVS;

Related Topics

• Performing Privilege Analysis to Find Privilege Use
Privilege analysis dynamically analyzes the privileges and roles that users use and
do not use.

Restoring the CONNECT Privilege
The rstrconn.sql script restores the CONNECT privileges.

After a database upgrade or new database creation, you can use this script to grant
the privileges that were removed from the CONNECT role in Oracle Database 10g
release 2 (10.2). If you use this approach, then you should revoke privileges that are
not used from users who do not need them.

To restore the CONNECT privilege:

1. Run the rstrconn.sql script, which is in the $ORACLE_HOME/rdbms/admin directory.

@$ORACLE_HOME/rdbm_admin/rstrconn.sql

2. Monitor the privileges that are used.

For example:

CREATE AUDIT POLICY connect_priv_pol
 PRIVILEGES AUDIT CREATE TABLE, CREATE SEQUENCE, CREATE SYNONYM, CREATE
DATABASE LINK, CREATE CLUSTER, CREATE VIEW, ALTER SESSION;

AUDIT POLICY connect_priv_pol BY psmith;

3. Periodically, monitor database privilege usage.

For example:

SELECT USERID, NAME FROM AUD$, SYSTEM_PRIVILEGE_MAP WHERE - PRIV$USED =
PRIVILEGE;

USERID NAME
------------------------------ ----------------
ACME CREATE TABLE
ACME CREATE SEQUENCE
ACME CREATE TABLE
ACME ALTER SESSION
APPS CREATE TABLE
APPS CREATE TABLE
APPS CREATE TABLE
APPS CREATE TABLE
8 rows selected.

Appendix A
Addressing the CONNECT Role Change

A-29

Data Dictionary View to Show CONNECT Grantees
The DBA_CONNECT_ROLE_GRANTEES data dictionary view enables administrators who
continue using the old CONNECT role to see which users have that role.

Table A-1 shows the columns in the DBA_CONNECT_ROLE_GRANTEES view.

Table A-1 Columns and Contents for DBA_CONNECT_ROLE_GRANTEES

Column Datatype NULL Description

GRANTEE VARCHAR2(12
8)

NULL User granted the CONNECT role

PATH_OF_CONNEC
T_ROLE_GRANT

VARCHAR2(40
00

NULL Role (or nested roles) by which the user
is granted CONNECT

ADMIN_OPT VARCHAR2(3) NULL YES if user has the ADMIN option on
CONNECT; otherwise, NO

Least Privilege Analysis Studies
Oracle partners and application providers should conduct a least privilege analysis so
that they can deliver more secure products to their Oracle customers.

The principle of least privilege mitigates risk by limiting privileges to the minimum set
required to perform a given function.

For each class of users that the analysis shows need the same set of privileges,
create a role with only those privileges. Remove all other privileges from those users,
and assign that role to those users. As needs change, you can grant additional
privileges, either directly or through these new roles, or create new roles to meet new
needs. This approach helps to ensure that inappropriate privileges have been limited,
thereby reducing the risk of inadvertent or malicious harm.

You can create privilege analysis policies that show the use of privileges by database
users. The policies capture this information and make it available in data dictionary
views. Based on these reports, you can determine who should have access to your
data.

Related Topics

• Performing Privilege Analysis to Find Privilege Use
Privilege analysis dynamically analyzes the privileges and roles that users use and
do not use.

Appendix A
Addressing the CONNECT Role Change

A-30

B
Data Encryption and Integrity Parameters

The sqlnet.ora file has data encryption and integrity parameters.

• About Using sqlnet.ora for Data Encryption and Integrity
You can use the default parameter settings as a guideline for configuring data
encryption and integrity.

• Sample sqlnet.ora File
The sample sqlnet.ora configuration file is based on a set of clients with similar
characteristics and a set of servers with similar characteristics.

• Data Encryption and Integrity Parameters
Oracle provides data and integrity parameters that you can set in the sqlnet.ora
file.

About Using sqlnet.ora for Data Encryption and Integrity
You can use the default parameter settings as a guideline for configuring data
encryption and integrity.

This sqlnet.ora file is generated when you perform the network configuration
described in Configuring Oracle Database Native Network Encryption and Data
Integrity and Configuring Secure Sockets Layer Authentication. Also provided are
encryption and data integrity parameters.

Sample sqlnet.ora File
The sample sqlnet.ora configuration file is based on a set of clients with similar
characteristics and a set of servers with similar characteristics.

The file includes examples of Oracle Database encryption and data integrity
parameters.

By default, the sqlnet.ora file is located in the ORACLE_HOME/network/admin directory
or in the location set by the TNS_ADMIN environment variable. Ensure that you have
properly set the TNS_ADMIN variable to point to the correct sqlnet.ora file. See
SQL*Plus User's Guide and Reference for more information and examples of setting
the TNS_ADMIN variable.

Trace File Setup

#Trace file setup
trace_level_server=16
trace_level_client=16
trace_directory_server=/orant/network/trace
trace_directory_client=/orant/network/trace
trace_file_client=cli
trace_file_server=srv
trace_unique_client=true

B-1

Oracle Database Native Network Encryption

sqlnet.encryption_server=accepted
sqlnet.encryption_client=requested
sqlnet.encryption_types_server=(RC4_40)
sqlnet.encryption_types_client=(RC4_40)

Oracle Database Network Data Integrity

#ASO Checksum
sqlnet.crypto_checksum_server=requested
sqlnet.crypto_checksum_client=requested
sqlnet.crypto_checksum_types_server = (SHA256)
sqlnet.crypto_checksum_types_client = (SHA256)

Secure Sockets Layer

#SSL
WALLET_LOCATION = (SOURCE=
 (METHOD = FILE)
 (METHOD_DATA =
 DIRECTORY=/wallet)

SSL_CIPHER_SUITES=(SSL_DH_anon_WITH_RC4_128_MD5)
SSL_VERSION= 3
SSL_CLIENT_AUTHENTICATION=FALSE

Common

#Common
automatic_ipc = off
sqlnet.authentication_services = (beq)
names.directory_path = (TNSNAMES)

Kerberos

#Kerberos
sqlnet.authentication_services = (beq, kerberos5)
sqlnet.authentication_kerberos5_service = oracle
sqlnet.kerberos5_conf= /krb5/krb.conf
sqlnet.kerberos5_keytab= /krb5/v5srvtab
sqlnet.kerberos5_realms= /krb5/krb.realm
sqlnet.kerberos5_cc_name = /krb5/krb5.cc
sqlnet.kerberos5_clockskew=900
sqlnet.kerberos5_conf_mit=false

RADIUS

#Radius
sqlnet.authentication_services = (beq, RADIUS)
sqlnet.radius_authentication_timeout = (10)
sqlnet.radius_authentication_retries = (2)
sqlnet.radius_authentication_port = (1645)
sqlnet.radius_send_accounting = OFF
sqlnet.radius_secret = /orant/network/admin/radius.key
sqlnet.radius_authentication = radius.us.example.com
sqlnet.radius_challenge_response = OFF
sqlnet.radius_challenge_keyword = challenge
sqlnet.radius_challenge_interface =
oracle/net/radius/DefaultRadiusInterface
sqlnet.radius_classpath = /jre1.1/

Appendix B
Sample sqlnet.ora File

B-2

Data Encryption and Integrity Parameters
Oracle provides data and integrity parameters that you can set in the sqlnet.ora file.

• About the Data Encryption and Integrity Parameters
The data encryption and integrity parameters control the type of encryption
algorithm you are using.

• SQLNET.ENCRYPTION_SERVER
The SQLNET.ENCRYPTION_SERVER parameter specifies the encryption behavior
when a client or a server acting as a client connects to this server.

• SQLNET.ENCRYPTION_CLIENT
The SQLNET.ENCRYPTION_CLIENT parameter specifies the encryption behavior
when this client or server acting as a client connects to a server.

• SQLNET.CRYPTO_CHECKSUM_SERVER
The SQLNET.CRYPTO_CHECKSUM_SERVER parameter specifies the data integrity
behavior when a client or another server acting as a client connects to this server.

• SQLNET.CRYPTO_CHECKSUM_CLIENT
The SQLNET.CRYPTO_CHECKSUM_CLIENT parameter specifies the desired data
integrity behavior when this client or server acting as a client connects to a server.

• SQLNET.ENCRYPTION_TYPES_SERVER
The SQLNET.ENCRYPTION_TYPES_SERVER parameter specifies encryption algorithms
this server uses in the order of the intended use.

• SQLNET.ENCRYPTION_TYPES_CLIENT
The SQLNET.ENCRYPTION_TYPES_CLIENT parameter specifies encryption algorithms
this client or the server acting as a client uses.

• SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER
The SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER parameter specifies data integrity
algorithms that this server or client to another server uses, in order of intended
use.

• SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT
The SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT parameter specifies a list of data
integrity algorithms that this client or server acting as a client uses.

About the Data Encryption and Integrity Parameters
The data encryption and integrity parameters control the type of encryption algorithm
you are using.

If you do not specify any values for Server Encryption, Client Encryption, Server
Checksum, or Client Checksum, the corresponding configuration parameters do not
appear in the sqlnet.ora file. However, the defaults are ACCEPTED.

For both data encryption and integrity algorithms, the server selects the first algorithm
listed in its sqlnet.ora file that matches an algorithm listed in the client sqlnet.ora
file, or in the client installed list if the client lists no algorithms in its sqlnet.ora file. If
there are no entries in the server sqlnet.ora file, the server sequentially searches its
installed list to match an item on the client side—either in the client sqlnet.ora file or
in the client installed list. If no match can be made and one side of the connection

Appendix B
Data Encryption and Integrity Parameters

B-3

REQUIRED the algorithm type (data encryption or integrity), then the connection fails.
Otherwise, the connection succeeds with the algorithm type inactive.

Data encryption and integrity algorithms are selected independently of each other.
Encryption can be activated without integrity, and integrity can be activated without
encryption, as shown by Table B-1:

Table B-1 Algorithm Type Selection

Encryption Selected? Integrity Selected?

Yes No

Yes Yes

No Yes

No No

Related Topics

• Configuring Oracle Database Native Network Encryption and Data Integrity
You can configure native Oracle Net Services data encryption and data integrity
for both servers and clients.

• About Activating Encryption and Integrity
In any network connection, both the client and server can support multiple
encryption algorithms and integrity algorithms.

SQLNET.ENCRYPTION_SERVER
The SQLNET.ENCRYPTION_SERVER parameter specifies the encryption behavior when a
client or a server acting as a client connects to this server.

The behavior of the server partially depends on the SQLNET.ENCRYPTION_CLIENT
setting at the other end of the connection.

Table B-2 describes the SQLNET.ENCRYPTION_SERVER parameter attributes.

Table B-2 SQLNET.ENCRYPTION_SERVER Parameter Attributes

Attribute Description

Syntax SQLNET.ENCRYPTION_SERVER = valid_value

Valid Values ACCEPTED, REJECTED, REQUESTED, REQUIRED

Default Setting ACCEPTED

See Also:

Oracle Database Net Services Reference for more information about the
SQLNET.ENCRYPTION_SERVER parameter

Appendix B
Data Encryption and Integrity Parameters

B-4

SQLNET.ENCRYPTION_CLIENT
The SQLNET.ENCRYPTION_CLIENT parameter specifies the encryption behavior when
this client or server acting as a client connects to a server.

The behavior of the client partially depends on the value set for
SQLNET.ENCRYPTION_SERVER at the other end of the connection.

Table B-3 describes the SQLNET.ENCRYPTION_CLIENT parameter attributes.

Table B-3 SQLNET.ENCRYPTION_CLIENT Parameter Attributes

Attribute Description

Syntax SQLNET.ENCRYPTION_CLIENT = valid_value

Valid Values ACCEPTED, REJECTED, REQUESTED, REQUIRED

Default Setting ACCEPTED

See Also:

Oracle Database Net Services Reference for more information about the
SQLNET.ENCRYPTION_CLIENT parameter

SQLNET.CRYPTO_CHECKSUM_SERVER
The SQLNET.CRYPTO_CHECKSUM_SERVER parameter specifies the data integrity behavior
when a client or another server acting as a client connects to this server.

The behavior partially depends on the SQLNET.CRYPTO_CHECKSUM_CLIENT setting at the
other end of the connection.

Table B-4 describes the SQLNET.CRYPTO_CHECKSUM_SERVER parameter attributes.

Table B-4 SQLNET.CRYPTO_CHECKSUM_SERVER Parameter Attributes

Attribute Description

Syntax SQLNET.CRYPTO_CHECKSUM_SERVER = valid_value

Valid Values ACCEPTED, REJECTED, REQUESTED, REQUIRED

Default Setting ACCEPTED

See Also:

Oracle Database Net Services Reference for more information about the
SQLNET.CRYPTO_CHECKSUM_SERVER parameter

Appendix B
Data Encryption and Integrity Parameters

B-5

SQLNET.CRYPTO_CHECKSUM_CLIENT
The SQLNET.CRYPTO_CHECKSUM_CLIENT parameter specifies the desired data integrity
behavior when this client or server acting as a client connects to a server.

The behavior partially depends on the SQLNET.CRYPTO_CHECKSUM_SERVER setting at the
other end of the connection.

Table B-5 describes the SQLNET.CRYPTO_CHECKSUM_CLIENT parameter attributes.

Table B-5 SQLNET.CRYPTO_CHECKSUM_CLIENT Parameter Attributes

Attribute Description

Syntax SQLNET.CRYPTO_CHECKSUM_CLIENT = valid_value

Valid Values ACCEPTED, REJECTED, REQUESTED, REQUIRED

Default Setting ACCEPTED

SQLNET.ENCRYPTION_TYPES_SERVER
The SQLNET.ENCRYPTION_TYPES_SERVER parameter specifies encryption algorithms this
server uses in the order of the intended use.

This list is used to negotiate a mutually acceptable algorithm with the client end of the
connection. Each algorithm is checked against the list of available client algorithm
types until a match is found. If an algorithm that is not installed is specified on this
side, the connection terminates with the error message ORA-12650: No common
encryption or data integrity algorithm.

Table B-6 describes the SQLNET.ENCRYPTION_TYPES_SERVER parameter attributes.

Table B-6 SQLNET.ENCRYPTION_TYPES_SERVER Parameter Attributes

Attribute Description

Syntax SQLNET.ENCRYPTION_TYPES_SERVER =
(valid_encryption_algorithm
[,valid_encryption_algorithm])

Valid Values • AES256: AES (256-bit key size)
• AES192: AES (192-bit key size)
• AES128: AES (128-bit key size)

Default Setting If no algorithms are defined in the local sqlnet.ora file, then all
installed algorithms are used in a negotiation in the preceding
sequence.

Usage Notes You can specify multiple encryption algorithms. It can be either a
single value or a list of algorithm names. For example, either of
the following encryption parameters is acceptable:

SQLNET.ENCRYPTION_TYPES_SERVER=(AES256)

SQLNET.ENCRYPTION_TYPES_SERVER=(AES256,AES192,AES1
28)

Appendix B
Data Encryption and Integrity Parameters

B-6

See Also:

Oracle Database Net Services Reference for more information about the
SQLNET.ENCRYPTION_TYPES_SERVER parameter

SQLNET.ENCRYPTION_TYPES_CLIENT
The SQLNET.ENCRYPTION_TYPES_CLIENT parameter specifies encryption algorithms this
client or the server acting as a client uses.

This list is used to negotiate a mutually acceptable algorithm with the other end of the
connection. If an algorithm that is not installed is specified on this side, the connection
terminates with the ORA-12650: No common encryption or data integrity
algorithm error message.

Table B-7 describes the SQLNET.ENCRYPTION_TYPES_CLIENT parameter attributes.

Table B-7 SQLNET.ENCRYPTION_TYPES_CLIENT Parameter Attributes

Attribute Description

Syntax SQLNET.ENCRYPTION_TYPES_CLIENT =
(valid_encryption_algorithm
[,valid_encryption_algorithm])

Valid Values • AES256: AES (256-bit key size).
• AES192: AES (192-bit key size).
• AES128: AES (128-bit key size).

Default Setting If no algorithms are defined in the local sqlnet.ora file, all
installed algorithms are used in a negotiation.

Usage Notes You can specify multiple encryption algorithms by separating
each one with a comma. For example:

SQLNET.ENCRYPTION_TYPES_CLIENT=(AES256,AES192,AES1
28)

See Also:

Oracle Database Net Services Reference for more information about the
SQLNET.ENCRYPTION_TYPES_CLIENT parameter

SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER
The SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER parameter specifies data integrity
algorithms that this server or client to another server uses, in order of intended use.

This list is used to negotiate a mutually acceptable algorithm with the other end of the
connection. Each algorithm is checked against the list of available client algorithm
types until a match is found. If an algorithm is specified that is not installed on this

Appendix B
Data Encryption and Integrity Parameters

B-7

side, the connection terminates with the ORA-12650: No common encryption or data
integrity algorithm error error message.

Table B-8 describes the SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER parameter
attributes.

Table B-8 SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER Parameter
Attributes

Attribute Description

Syntax SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER =
(valid_crypto_checksum_algorithm
[,valid_crypto_checksum_algorithm])

Valid Values • SHA512: SHA-2, produces a 512-bit hash.
• SHA384: SHA-2, produces a 384-bit hash.
• SHA256: SHA-2, produces a 256-bit hash. This is the default

value.
• SHA1: Secure Hash Algorithm
• MD5: Message Digest 5

Default Setting If no algorithms are defined in the local sqlnet.ora file, all
installed algorithms are used in a negotiation starting with
SHA256.

See Also:

Oracle Database Net Services Reference for more information about the
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER parameter

SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT
The SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT parameter specifies a list of data
integrity algorithms that this client or server acting as a client uses.

This list is used to negotiate a mutually acceptable algorithm with the other end of the
connection. If an algorithm that is not installed on this side is specified, the connection
terminates with the ORA-12650: No common encryption or data integrity
algorithm error error message.

Table B-9 describes the SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT parameter
attributes.

Table B-9 SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT Parameter
Attributes

Attribute Description

Syntax SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT =
(valid_crypto_checksum_algorithm
[,valid_crypto_checksum_algorithm])

Appendix B
Data Encryption and Integrity Parameters

B-8

Table B-9 (Cont.) SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT Parameter
Attributes

Attribute Description

Valid Values • SHA512: SHA-2, produces a 512-bit hash.
• SHA384: SHA-2, produces a 384-bit hash.
• SHA256: SHA-2, produces a 256-bit hash. This is the default

value.
• SHA1: Secure Hash Algorithm
• MD5: Message Digest 5

Default Setting If no algorithms are defined in the local sqlnet.ora file, all
installed algorithms are used in a negotiation starting with
SHA256.

See Also:

Oracle Database Net Services Reference for more information about the
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT parameter

Appendix B
Data Encryption and Integrity Parameters

B-9

C
Kerberos, SSL, and RADIUS
Authentication Parameters

The sqlnet.ora and the database initialization files provide Kerberos, RADIUS, or
SSL authentication parameters.

• Parameters for Clients and Servers Using Kerberos Authentication
Oracle Database provides client and server parameters for using Kerberos
authentication.

• Parameters for Clients and Servers Using Secure Sockets Layer
Oracle provides parameters to control Secure Sockets Layer authentication.

• Parameters for Clients and Servers Using RADIUS Authentication
Oracle provides parameters for RADIUS authentication.

Parameters for Clients and Servers Using Kerberos
Authentication

Oracle Database provides client and server parameters for using Kerberos
authentication.

Table C-1 lists parameters to insert into the configuration files for clients and servers
using Kerberos.

Table C-1 Kerberos Authentication Parameters

File Name Configuration Parameters

sqlnet.ora SQLNET.AUTHENTICATION_SERVICES=(KERBEROS5)
SQLNET.AUTHENTICATION_KERBEROS5_SERVICE=oracle
SQLNET.KERBEROS5_CC_NAME=/usr/tmp/DCE-CC
SQLNET.KERBEROS5_CLOCKSKEW=1200 SQLNET.KERBEROS5_CONF=/
krb5/krb.conf SQLNET.KERBEROS5_CONF_MIT=(FALSE)
SQLNET.KERBEROS5_REALMS=/krb5/krb.realms
SQLNET.KERBEROS5_KEYTAB=/krb5/
v5srvtabSQLNET.FALLBACK_AUTHENTICATION=FALSE

initialization
parameter file

OS_AUTHENT_PREFIX=""

Parameters for Clients and Servers Using Secure Sockets
Layer

Oracle provides parameters to control Secure Sockets Layer authentication.

C-1

• Ways to Configure a Parameter for Secure Sockets Layer
There are two ways to configure a parameter for Secure Sockets Layer (SSL).

• Secure Sockets Layer Authentication Parameters for Clients and Servers
Oracle provides both static and dynamic Secure Sockets Layer (SSL)
authentication parameters.

• Cipher Suite Parameters for Secure Sockets Layer
You can configure cipher suite parameters for Secure Sockets Layer (SSL).

• Supported Secure Sockets Layer Cipher Suites
Oracle Database supports a large number of cipher suites for Secure Sockets
Layer (SSL).

• Secure Sockets Layer Version Parameters
You can set a range of Secure Sockets Layer (SSL) parameters to configure the
version of SSL to use.

• Secure Sockets Layer Client Authentication Parameters
You can configure static and dynamic parameters for Secure Sockes Layer (SSL)
on the client.

• Secure Sockets Layer X.509 Server Match Parameters
The SSL_SERVER_DN_MATCH and SSL_SERVER_CERT_DN parameters validate the
identity of the server to which a client connects.

• Oracle Wallet Location
You must specify wallet location parameters for applications that must access an
Oracle wallet for loading the security credentials into the process space.

Ways to Configure a Parameter for Secure Sockets Layer
There are two ways to configure a parameter for Secure Sockets Layer (SSL).

• Static: The name of the parameter that exists in the sqlnet.ora file. Parameters
like SSL_CIPHER_SUITES and SSL_VERSION can also be configured using the
listener.ora file.

• Dynamic: The name of the parameter used in the security subsection of the
Oracle Net address.

Secure Sockets Layer Authentication Parameters for Clients and
Servers

Oracle provides both static and dynamic Secure Sockets Layer (SSL) authentication
parameters.

Table C-2 describes the static and dynamic parameters for configuring SSL on the
server.

Table C-2 SSL Authentication Parameters for Clients and Servers

Attribute Description

Parameter Name (static) SQLNET.AUTHENTICATION_SERVICES

Parameter Name (dynamic) AUTHENTICATION

Parameter Type String LIST

Appendix C
Parameters for Clients and Servers Using Secure Sockets Layer

C-2

Table C-2 (Cont.) SSL Authentication Parameters for Clients and Servers

Attribute Description

Parameter Class Static

Permitted Values Add TCPS to the list of available authentication services.

Default Value No default value.

Description To control which authentication services a user wants to
use.

Note: The dynamic version supports only the setting of one
type.

Existing/New Parameter Existing

Syntax (static) SQLNET.AUTHENTICATION_SERVICES = (TCPS,
selected_method_1, selected_method_2)

Example (static) SQLNET.AUTHENTICATION_SERVICES = (TCPS, radius)

Syntax (dynamic) AUTHENTICATION = string

Example (dynamic) AUTHENTICATION = (TCPS)

Cipher Suite Parameters for Secure Sockets Layer
You can configure cipher suite parameters for Secure Sockets Layer (SSL).

Table C-3 describes the static and dynamic parameters for configuring cipher suites.

Table C-3 Cipher Suite Parameters for Secure Sockets Layer

Attribute Description

Parameter Name (static) SSL_CIPHER_SUITES

Parameter Name (dynamic) SSL_CIPHER_SUITES

Parameter Type String LIST

Parameter Class Static

Permitted Values Any known SSL cipher suite

Default Value No default

Description Controls the combination of encryption and data integrity used
by SSL.

Existing/New Parameter Existing

Syntax (static) SSL_CIPHER_SUITES=(SSL_cipher_suite1[,
SSL_cipher_suite2, ... SSL_cipher_suiteN])

Example (static) SSL_CIPHER_SUITES=(SSL_DH_DSS_WITH_DES_CBC_SHA)

Syntax (dynamic) SSL_CIPHER_SUITES=(SSL_cipher_suite1

[, SSL_cipher_suite2, ...SSL_cipher_suiteN])

Example (dynamic) SSL_CIPHER_SUITES=(SSL_DH_DSS_WITH_DES_CBC_SHA)

Appendix C
Parameters for Clients and Servers Using Secure Sockets Layer

C-3

Supported Secure Sockets Layer Cipher Suites
Oracle Database supports a large number of cipher suites for Secure Sockets Layer
(SSL).

The cipher suites are as follows:

• SSL_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256

• SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA

• SSL_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256

• SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA

• SSL_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384

• SSL_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384

• SSL_RSA_WITH_AES_128_CBC_SHA256

• SSL_RSA_WITH_AES_128_GCM_SHA256

• SSL_RSA_WITH_AES_128_CBC_SHA

• SSL_RSA_WITH_AES_256_CBC_SHA

• SSL_RSA_WITH_AES_256_CBC_SHA256

Related Topics

• SSL Cipher Suite Authentication, Encryption, Integrity, and TLS Versions
Oracle Database supports a set of cipher suites that are set by default when you
install Oracle Database.

Secure Sockets Layer Version Parameters
You can set a range of Secure Sockets Layer (SSL) parameters to configure the
version of SSL to use.

Table C-4 describes the SSL_VERSION static and dynamic parameters for configuring
the version of SSL to be used.

Table C-4 Secure Sockets Layer Version Parameters

Attribute Description

Parameter Name (static) SSL_VERSION

Parameter Name (dynamic) SSL_VERSION

Parameter Type string

Parameter Class Static

Appendix C
Parameters for Clients and Servers Using Secure Sockets Layer

C-4

Table C-4 (Cont.) Secure Sockets Layer Version Parameters

Attribute Description

Permitted Values Any version which is valid to SSL. Values are as follows:

undetermined | 1.0 | 1.1 | 1.2 | 3.0

If you want to specify one version or another version, then
use "or". The following values are permitted:

1.0 or 3.0 | 1.2 or 3.0 | 1.1 or 1.0 | 1.2 or 1.0
| 1.2 or 1.1 | 1.1 or 1.0 or 3.0 |
1.2 or 1.0 or 3.0 | 1.2 or 1.1 or 1.0 | 1.2 or 1.1
or 3.0 |1.2 or 1.1 or 1.0 or 3

Default Value undetermined

If you set SSL_VERSION to undetermined, then by default
it uses 3.0.

Description To force the version of the SSL connection.

Existing/New Parameter New

Syntax (static) SSL_VERSION=version

Example (static) SSL_VERSION=1.1

Syntax (dynamic) SSL_VERSION=version

Example (dynamic) SSL_VERSION=1.1 or 1.2

Note:

The ADD_SSLv3_IMPLICITLY initialization parameter has no effect on the
SSL_VERSION parameter.

Secure Sockets Layer Client Authentication Parameters
You can configure static and dynamic parameters for Secure Sockes Layer (SSL) on
the client.

Table C-5 describes the SSL_CLIENT_AUTHENTICATION parameters.

Table C-5 Secure Sockets Layer Client Authentication Parameters

Attribute Description

Parameter Name (static) SSL_CLIENT_AUTHENTICATION

Parameter Name (dynamic) SSL_CLIENT_AUTHENTICATION

Parameter Type Boolean

Parameter Class Static

Permitted Values TRUE or FALSE

Default Value TRUE

Appendix C
Parameters for Clients and Servers Using Secure Sockets Layer

C-5

Table C-5 (Cont.) Secure Sockets Layer Client Authentication Parameters

Attribute Description

Description To control whether a client, in addition to the server, is
authenticated using SSL.

Existing/New Parameter New

Syntax (static) SSL_CLIENT_AUTHENTICATION={TRUE | FALSE}

Example (static) SSL_CLIENT_AUTHENTICATION=FALSE

Syntax (dynamic) SSL_CLIENT_AUTHENTICATION={TRUE | FALSE}

Example (dynamic) SSL_CLIENT_AUTHENTICATION=FALSE

Secure Sockets Layer X.509 Server Match Parameters
The SSL_SERVER_DN_MATCH and SSL_SERVER_CERT_DN parameters validate the identity
of the server to which a client connects.

• SSL_SERVER_DN_MATCH
The SSL_SERVER_DN_MATCH parameter forces the server’s distinguished name (DN)
to match the name of the servivce.

• SSL_SERVER_CERT_DN
The SSL_SERVER_CERT_DN specifies the distinguished name (DN) of a server.

SSL_SERVER_DN_MATCH
The SSL_SERVER_DN_MATCH parameter forces the server’s distinguished name (DN) to
match the name of the servivce.

Table C-6 describes the SSL_SERVER_DN_MATCH parameter.

Table C-6 SSL_SERVER_DN_MATCH Parameter

Attribute Description

Parameter Name SSL_SERVER_DN_MATCH

Where stored sqlnet.ora

Purpose Use this parameter to force the server's distinguished name
(DN) to match its service name. If you force the match
verifications, SSL ensures that the certificate is from the
server. If you choose not to enforce the match verification,
SSL performs the check but permits the connection,
regardless of whether there is a match. Not forcing the match
lets the server potentially fake its identity.

Values yes|on|true. Specify to enforce a match. If the DN matches
the service name, the connection succeeds; otherwise, the
connection fails.

no|off|false. Specify to not enforce a match. If the DN
does not match the service name, the connection is
successful, but an error is logged to the sqlnet.log file.

Appendix C
Parameters for Clients and Servers Using Secure Sockets Layer

C-6

Table C-6 (Cont.) SSL_SERVER_DN_MATCH Parameter

Attribute Description

Default Oracle8i, or later:.FALSE. SSL client (always) checks server
DN. If it does not match the service name, the connection
succeeds but an error is logged to sqlnet.log file.

Usage Notes Additionally configure the tnsnames.ora parameter
SSL_SERVER_CERT_DN to enable server DN matching.

SSL_SERVER_CERT_DN
The SSL_SERVER_CERT_DN specifies the distinguished name (DN) of a server.

Table C-7 describes the SSL_SERVER_CERT_DN parameter.

Table C-7 SSL_SERVER_CERT_DN Parameter

Attribute Description

Parameter Name SSL_SERVER_CERT_DN

Where stored tnsnames.ora. It can be stored on the client, for every server it
connects to, or it can be stored in the LDAP directory, for every
server it connects to, updated centrally.

Purpose This parameter specifies the distinguished name (DN) of the
server. The client uses this information to obtain the list of DNs it
expects for each of the servers to force the server's DN to match
its service name.

Values Set equal to distinguished name (DN) of the server.

Default N/A

Usage Notes Additionally configure the sqlnet.ora parameter
SSL_SERVER_DN_MATCH to enable server DN matching.

Example dbalias=(description=address_list=(address=(protoc
ol=tcps)(host=hostname)(port=portnum)))
(connect_data=(sid=Finance))
(security=(SSL_SERVER_CERT_DN="CN=Finance,CN=Oracl
eContext,C=US,O=Acme"))

Oracle Wallet Location
You must specify wallet location parameters for applications that must access an
Oracle wallet for loading the security credentials into the process space.

Table C-8 lists the configuration files in which you must specify the wallet locations.

• sqlnet.ora

• listener.ora

Appendix C
Parameters for Clients and Servers Using Secure Sockets Layer

C-7

Table C-8 Wallet Location Parameters

Static Configuration Dynamic Configuration

WALLET_LOCATION =
(SOURCE=
 (METHOD=File)
 (METHOD_DATA=
 (DIRECTORY=your_wallet_dir)
)

)

MY_WALLET_DIRECTORY
= your_wallet_dir

The default wallet location is the ORACLE_HOME directory.

Parameters for Clients and Servers Using RADIUS
Authentication

Oracle provides parameters for RADIUS authentication.

• sqlnet.ora File Parameters
You can include RADIUS-specific parameters in the sqlnet.ora file.

• Minimum RADIUS Parameters
At minimum, you should use the SQLNET.AUTHENTICATION_SERVICES and
SQLNET.RADIUS.AUTHENTICATION parameters.

• Initialization File Parameter for RADIUS
For RADIUS, you should set the OS_AUTHENT_PREFIX initialization parameter.

sqlnet.ora File Parameters
You can include RADIUS-specific parameters in the sqlnet.ora file.

• SQLNET.AUTHENTICATION_SERVICES
The SQLNET.AUTHENTICATION_SERVICES parameter configures the client or the
server to use the RADIUS adapter.

• SQLNET.RADIUS_ALTERNATE
The SQLNET.RADIUS_ALTERNATE parameter sets the location of an alternate
RADIUS server to be used if the primary server is unavailable for fault tolerance.

• SQLNET.RADIUS_ALTERNATE_PORT
The SQLNET.RADIUS_ALTERNATE_PORT parameter sets the listening port for the
alternate RADIUS server.

• SQLNET.RADIUS_ALTERNATE_TIMEOUT
The SQLNET.RADIUS_ALTERNATE_TIMEOUT parameter sets the time for an alternate
RADIUS server to wait for a response.

• SQLNET.RADIUS_ALTERNATE_RETRIES
The SQLNET.RADIUS_ALTERNATE_RETRIES parameter sets the number of times that
the alternate RADIUS server resends messages.

Appendix C
Parameters for Clients and Servers Using RADIUS Authentication

C-8

• SQLNET.RADIUS_AUTHENTICATION
The SQLNET.RADIUS_AUTHENTICATION parameter sets the location of the primary
RADIUS server, either host name or dotted decimal format.

• SQLNET.RADIUS_AUTHENTICATION_INTERFACE
The SQLNET.RADIUS_AUTHENTICATION_INTERFACE parameter sets the name of the
Java class that contains the GUI when RADIUS is in challenge-response
(asynchronous) mode.

• SQLNET.RADIUS_AUTHENTICATION_PORT
The SQLNET.RADIUS_AUTHENTICATION_PORT parameter sets the listening port of the
primary RADIUS server.

• SQLNET.RADIUS_AUTHENTICATION_TIMEOUT
The SQLNET.RADIUS_AUTHENTICATION_TIMEOUT parameter sets the time to wait for
response.

• SQLNET.RADIUS_AUTHENTICATION_RETRIES
The SQLNET.RADIUS_AUTHENTICATION_RETRIES parameter sets the number of
times to resend authentication information.

• SQLNET.RADIUS_CHALLENGE_RESPONSE
The SQLNET.RADIUS_CHALLENGE_RESPONSE parameter turns on or turns off the
challenge-response or asynchronous mode support.

• SQLNET.RADIUS_CHALLENGE_KEYWORD
The SQLNET.RADIUS_CHALLENGE_KEYWORD parameter sets the keyword to request a
challenge from the RADIUS server.

• SQLNET.RADIUS_CLASSPATH
The SQLNET.RADIUS_CLASSPATH parameter sets the path for Java classes and the
JDK Java libraries.

• SQLNET.RADIUS_SECRET
The SQLNET.RADIUS_SECRET parameter specifies the file name and location of the
RADIUS secret key.

• SQLNET.RADIUS_SEND_ACCOUNTING
The SQLNET.RADIUS_SEND_ACCOUNTING parameter turns accounting on or off.

SQLNET.AUTHENTICATION_SERVICES
The SQLNET.AUTHENTICATION_SERVICES parameter configures the client or the server
to use the RADIUS adapter.

Table C-9 describes the SQLNET.AUTHENTICATION_SERVICES parameter attributes.

Table C-9 SQLNET.AUTHENTICATION_SERVICES Parameter Attributes

Attribute Description

Syntax SQLNET.AUTHENTICATION_SERVICES=(radius)

Default setting None

Appendix C
Parameters for Clients and Servers Using RADIUS Authentication

C-9

SQLNET.RADIUS_ALTERNATE
The SQLNET.RADIUS_ALTERNATE parameter sets the location of an alternate RADIUS
server to be used if the primary server is unavailable for fault tolerance.

Table C-10 describes the SQLNET.RADIUS_ALTERNATE parameter attributes.

Table C-10 SQLNET.RADIUS_ALTERNATE Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_ALTERNATE=alternate_RADIUS_server_hostnam
e_or_IP_address

Default setting off

SQLNET.RADIUS_ALTERNATE_PORT
The SQLNET.RADIUS_ALTERNATE_PORT parameter sets the listening port for the alternate
RADIUS server.

Table C-11 describes the SQLNET.RADIUS_ALTERNATE_PORT parameter attributes.

Table C-11 SQLNET.RADIUS_ALTERNATE_PORT Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_ALTERNATE_PORT=alternate_RADIUS_server_l
istening_port_number

Default setting 1645

SQLNET.RADIUS_ALTERNATE_TIMEOUT
The SQLNET.RADIUS_ALTERNATE_TIMEOUT parameter sets the time for an alternate
RADIUS server to wait for a response.

Table C-12 describes the SQLNET.RADIUS_ALTERNATE_TIMEOUT parameter attributes.

Table C-12 SQLNET.RADIUS_ALTERNATE_TIMEOUT Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_ALTERNATE_TIMEOUT=time_in_seconds

Default setting 5

SQLNET.RADIUS_ALTERNATE_RETRIES
The SQLNET.RADIUS_ALTERNATE_RETRIES parameter sets the number of times that the
alternate RADIUS server resends messages.

Table C-13 describes the SQLNET.RADIUS_ALTERNATE_RETRIES parameter attributes.

Appendix C
Parameters for Clients and Servers Using RADIUS Authentication

C-10

Table C-13 SQLNET.RADIUS_ALTERNATE_RETRIES Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_ALTERNATE_RETRIES=n_times_to_resend

Default setting 3

SQLNET.RADIUS_AUTHENTICATION
The SQLNET.RADIUS_AUTHENTICATION parameter sets the location of the primary
RADIUS server, either host name or dotted decimal format.

If the RADIUS server is on a different computer from the Oracle server, you must
specify either the host name or the IP address of that computer.

Table C-14 describes the SQLNET.RADIUS_AUTHENTICATION parameter attributes.

Table C-14 SQLNET.RADIUS_AUTHENTICATION Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_AUTHENTICATION=RADIUS_server_IP_address

Default setting localhost

SQLNET.RADIUS_AUTHENTICATION_INTERFACE
The SQLNET.RADIUS_AUTHENTICATION_INTERFACE parameter sets the name of the Java
class that contains the GUI when RADIUS is in challenge-response (asynchronous)
mode.

Table C-15 describes the SQLNET.RADIUS_AUTHENTICATION_INTERFACE parameter
attributes.

Table C-15 SQLNET.RADIUS_AUTHENTICATION_INTERFACE Parameter
Attributes

Attribute Description

Syntax SQLNET.RADIUS_AUTHENTICATION_INTERFACE=Java_class_name

Default setting DefaultRadiusInterface (oracle/net/radius/
DefaultRadiusInterface)

SQLNET.RADIUS_AUTHENTICATION_PORT
The SQLNET.RADIUS_AUTHENTICATION_PORT parameter sets the listening port of the
primary RADIUS server.

Table C-16 describes the SQLNET.RADIUS_AUTHENTICATION_PORT parameter attributes.

Appendix C
Parameters for Clients and Servers Using RADIUS Authentication

C-11

Table C-16 SQLNET.RADIUS_AUTHENTICATION_PORT Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_AUTHENTICATION_PORT=port_number

Default setting 1645

SQLNET.RADIUS_AUTHENTICATION_TIMEOUT
The SQLNET.RADIUS_AUTHENTICATION_TIMEOUT parameter sets the time to wait for
response.

Table C-17 describes the SQLNET.RADIUS_AUTHENTICATION_TIMEOUT parameter
attributes.

Table C-17 SQLNET.RADIUS_AUTHENTICATION_TIMEOUT Parameter
Attributes

Attribute Description

Syntax SQLNET.RADIUS_AUTHENTICATION_TIMEOUT=time_in_seconds

Default setting 5

SQLNET.RADIUS_AUTHENTICATION_RETRIES
The SQLNET.RADIUS_AUTHENTICATION_RETRIES parameter sets the number of times to
resend authentication information.

Table C-18 describes the SQLNET.RADIUS_AUTHENTICATION_RETRIES parameter
attributes.

Table C-18 SQLNET.RADIUS_AUTHENTICATION_RETRIES Parameter
Attributes

Attribute Description

Syntax SQLNET.RADIUS_AUTHENTICATION_RETRIES=n_times_to_resend

Default setting 3

SQLNET.RADIUS_CHALLENGE_RESPONSE
The SQLNET.RADIUS_CHALLENGE_RESPONSE parameter turns on or turns off the
challenge-response or asynchronous mode support.

Table C-19 describes the SQLNET.RADIUS_CHALLENGE_RESPONSE parameter attributes.

Table C-19 SQLNET.RADIUS_CHALLENGE_RESPONSE Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_CHALLENGE_RESPONSE=on

Appendix C
Parameters for Clients and Servers Using RADIUS Authentication

C-12

Table C-19 (Cont.) SQLNET.RADIUS_CHALLENGE_RESPONSE Parameter
Attributes

Attribute Description

Default setting off

SQLNET.RADIUS_CHALLENGE_KEYWORD
The SQLNET.RADIUS_CHALLENGE_KEYWORD parameter sets the keyword to request a
challenge from the RADIUS server.

The user types no password on the client.

Table C-20 describes the SQLNET.RADIUS_CHALLENGE_KEYWORD parameter attributes.

Table C-20 SQLNET.RADIUS_CHALLENGE_KEYWORD Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_CHALLENGE_KEYWORD=keyword

Default setting challenge

SQLNET.RADIUS_CLASSPATH
The SQLNET.RADIUS_CLASSPATH parameter sets the path for Java classes and the JDK
Java libraries.

If you decide to use the challenge-response authentication mode, then RADIUS
presents the user with a Java-based graphical interface requesting first a password,
then additional information, for example, a dynamic password that the user obtains
from a token card.

Add the SQLNET.RADIUS_CLASSPATH parameter in the sqlnet.ora file to set the path for
the Java classes for that graphical interface, and to set the path to the JDK Java
libraries.

Table C-21 describes the SQLNET.RADIUS_CLASSPATH parameter attributes.

Table C-21 SQLNET.RADIUS_CLASSPATH Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_CLASSPATH=path_to_GUI_Java_classes

Default setting $ORACLE_HOME/jlib/netradius.jar:$ORACLE_HOME/JRE/lib/
sparc/native_threads

SQLNET.RADIUS_SECRET
The SQLNET.RADIUS_SECRET parameter specifies the file name and location of the
RADIUS secret key.

Table C-22 describes the SQLNET.RADIUS_SECRET parameter attributes.

Appendix C
Parameters for Clients and Servers Using RADIUS Authentication

C-13

Table C-22 SQLNET.RADIUS_SECRET Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_SECRET=path_to_RADIUS_secret_key

Default setting $ORACLE_HOME/network/security/radius.key

SQLNET.RADIUS_SEND_ACCOUNTING
The SQLNET.RADIUS_SEND_ACCOUNTING parameter turns accounting on or off.

If you enable accounting, packets will be sent to the active RADIUS server at the
listening port plus one. By default, packets are sent to port 1646. You need to turn this
feature on only when your RADIUS server supports accounting and you want to keep
track of the number of times the user is logging on to the system.

Table C-23 describes the SQLNET.RADIUS_SEND_ACCOUNTING parameter attributes.

Table C-23 SQLNET.RADIUS_SEND_ACCOUNTING Parameter Attributes

Attribute Description

Syntax SQLNET.RADIUS_SEND_ACCOUNTING=on

Default setting off

Minimum RADIUS Parameters
At minimum, you should use the SQLNET.AUTHENTICATION_SERVICES and
SQLNET.RADIUS.AUTHENTICATION parameters.

Use the following settings:

sqlnet.authentication_services = (radius)
sqlnet.radius.authentication = IP-address-of-RADIUS-server

Initialization File Parameter for RADIUS
For RADIUS, you should set the OS_AUTHENT_PREFIX initialization parameter.

For example:

OS_AUTHENT_PREFIX=""

Appendix C
Parameters for Clients and Servers Using RADIUS Authentication

C-14

D
Integrating Authentication Devices
Using RADIUS

The RADIUS challenge-response user interface further enhances authentication in a
RADIUS configuration.

• About the RADIUS Challenge-Response User Interface
You can use third-party authentication vendors to customize the RADIUS
challenge-response user interface to fit a particular device.

• Customizing the RADIUS Challenge-Response User Interface
You can customize OracleRadiusInterface interface by creating your own class.

• Example: Using the OracleRadiusInterface Interface
You can use the OracleRadiusInterface interface to retrieve a user name
and password.

About the RADIUS Challenge-Response User Interface
You can use third-party authentication vendors to customize the RADIUS challenge-
response user interface to fit a particular device.

You can set up any authentication device that supports the RADIUS standard to
authenticate Oracle users. When your authentication device uses the challenge-
response mode, a graphical interface prompts the end user first for a password and
then for additional information (for example, a dynamic password that the user obtains
from a token card). This interface is Java-based to provide optimal platform
independence.

Third-party vendors of authentication devices must customize this graphical user
interface to fit their particular device. For example, a smart card vendor customizes the
Oracle client to issue the challenge to the smart card reader. Then, when the smart
card receives a challenge, it responds by prompting the user for more information,
such as a PIN.

Related Topics

• Configuring RADIUS Authentication
RADIUS is a client/server security protocol widely used to enable remote
authentication and access.

Customizing the RADIUS Challenge-Response User
Interface

You can customize OracleRadiusInterface interface by creating your own class.

1. Open the sqlnet.ora file.

D-1

By default, the sqlnet.ora file is located in the ORACLE_HOME/network/admin
directory or in the location set by the TNS_ADMIN environment variable. Ensure that
you have properly set the TNS_ADMIN variable to point to the correct sqlnet.ora
file.

2. Locate the SQLNET.RADIUS_AUTHENTICATION_INTERFACE parameter, and replace
the name of the class listed there (DefaultRadiusInterface), with the name of the
new class that you have created.

When you make this change in the sqlnet.ora file, the class is loaded on the
Oracle client in order to handle the authentication process.

3. Save and exit the sqlnet.ora file

The third party must implement the OracleRadiusInterface interface, which is located
in the ORACLE.NET.RADIUS package.

See Also:

SQL*Plus User's Guide and Reference for more information and examples of
setting the TNS_ADMIN variable

Example: Using the OracleRadiusInterface Interface
You can use the OracleRadiusInterface interface to retrieve a user name and
password.

Example D-1 shows how to use the OracleRadiusInterface interface.

Example D-1 Using the OracleRadiusInterface Interface

public interface OracleRadiusInterface {
 public void radiusRequest();
 public void radiusChallenge(String challenge);
 public String getUserName();
 public String getPassword();
}

In this specification:

• radiusRequest prompts the end user for a user name and password, which will
later be retrieved through getUserName and getPassword.

• getUserName extracts the user name the user enters. If this method returns an
empty string, it is assumed that the user wants to cancel the operation. The user
then receives a message indicating that the authentication attempt failed.

• getPassword extracts the password the user enters. If getUserName returns a valid
string, but getPassword returns an empty string, the challenge keyword is replaced
as the password by the database. If the user enters a valid password, a challenge
may or may not be returned by the RADIUS server.

• radiusChallenge presents a request sent from the RADIUS server for the user to
respond to the server's challenge.

• getResponse extracts the response the user enters. If this method returns a valid
response, then that information populates the User-Password attribute in the new

Appendix D
Example: Using the OracleRadiusInterface Interface

D-2

Access-Request packet. If an empty string is returned, the operation is aborted
from both sides by returning the corresponding value.

Appendix D
Example: Using the OracleRadiusInterface Interface

D-3

E
Oracle Database FIPS 140-2 Settings

Oracle supports the Federal Information Processing Standard (FIPS) standard for
140-2.

• About the Oracle Database FIPS 140-2 Settings
The Federal Information Processing Standard (FIPS) standard, 140-2, is a U.S.
government standard that defines cryptographic module security requirements.

• Configuring FIPS 140-2 for Transparent Data Encryption and DBMS_CRYPTO
The DBFIPS_140 initialization parameter configures FIPS mode.

• Configuration of FIPS 140-2 for Secure Sockets Layer
The SSLFIPS_140 parameter configures Secure Sockets Layer (SSL).

• Postinstallation Checks for FIPS 140-2
After you configure the FIPS 140-2 settings, you must verify permissions in the
operating system.

• Verifying FIPS 140-2 Connections
To check if FIPS mode is enabled for SSL, you can enable tracing in the
sqlnet.ora file.

About the Oracle Database FIPS 140-2 Settings
The Federal Information Processing Standard (FIPS) standard, 140-2, is a U.S.
government standard that defines cryptographic module security requirements.

The FIPS 140-2 cryptographic libraries are designed to protect data at rest and in
transit over the network.

Oracle Database uses these cryptographic libraries for Secure Sockets Layer (SSL),
Transparent Data Encryption (TDE), and DBMS_CRYPTO PL/SQL package.

To verify the current status of the certification, you can find information at the
Computer Security Resource Center (CSRC) Web site address from the National
Institute of Standards and Technology:

http://csrc.nist.gov/groups/STM/cmvp/validation.html

You can find information specific to FIPS by searching for Validated FIPS 140
Cryptographic Modules. The security policy, which is available on this site upon
successful certification, includes requirements for secure configuration of the host
operating system.

Configuring FIPS 140-2 for Transparent Data Encryption
and DBMS_CRYPTO

The DBFIPS_140 initialization parameter configures FIPS mode.

E-1

http://csrc.nist.gov/groups/STM/cmvp/validation.html
http://csrc.nist.gov/groups/STM/cmvp/validation.html

1. To configure Transparent Data Encryption and the DBMS_CRYPTO PL/SQL package
program units to run in FIPS mode, set the DBFIPS_140 initialization parameter to
TRUE.

The effect of this parameter depends on the platform.

2. Restart the database.

Table E-1 describes how the DBFIPS_140 parameter affects various platforms.

Table E-1 How the DBFIPS_140 Initialization Parameter Affects Platforms

Platform Effect of Setting DBFIPS_140 to TRUE or FALSE

Linux or Windows on Intel x86_64 • TRUE: TDE and DBMS_CRYPTO program units use
Micro Edition Suite (MES) 4.0.5.1 FIPS mode

• FALSE: TDE and DBMS_CRYPTO program units use
Intel Performance Primitives (IPP)

Solaris 11.1+ on either SPARC T-
series or Intel x86_64

• TRUE: TDE and DBMS_CRYPTO program units use
MES 4.1.2 FIPS mode

• FALSE: TDE and DBMS_CRYPTO program units use
Solaris Cryptographic Framework (SCF)/UCrypto
(separately validated for FIPS 140)

Other operating systems or
hardware

• TRUE: TDE and DBMS_CRYPTO program units use
MES 4.1.2 FIPS mode

• FALSE: TDE and DBMS_CRYPTO program units use
MES 4.1.2 non-FIPS mode

Be aware that setting DBFIPS_140 to TRUE and thus using the underlying library in FIPS
mode incurs a certain amount of overhead when the library is first loaded. This is due
to the verification of the signature and the execution of the self tests on the library.
Once the library is loaded, then there is no other impact on performance.

See Also:

Oracle Database Reference for more information about the DBFIPS_140
initialization parameter

Configuration of FIPS 140-2 for Secure Sockets Layer
The SSLFIPS_140 parameter configures Secure Sockets Layer (SSL).

• Configuring the SSLFIPS_140 Parameter for Secure Sockets Layer
Setting the SSLFIPS_140 parameter to TRUE in the fips.ora file configures the
Secure Sockets Layer (SSL) adapter to run in FIPS mode.

• Approved SSL Cipher Suites for FIPS 140-2
A cipher suite is a set of authentication, encryption, and data integrity algorithms
that exchange messages between network nodes.

Appendix E
Configuration of FIPS 140-2 for Secure Sockets Layer

E-2

Configuring the SSLFIPS_140 Parameter for Secure Sockets Layer
Setting the SSLFIPS_140 parameter to TRUE in the fips.ora file configures the Secure
Sockets Layer (SSL) adapter to run in FIPS mode.

1. Ensure that the fips.ora file is either located in the $ORACLE_HOME/ldap/admin
directory, or is in a location pointed to by the FIPS_HOME environment variable.

2. In the fips.ora file, set SSLFIPS_140.

For example, to set SSLFIPS_140 to TRUE:

SSLFIPS_140=TRUE

This parameter is set to FALSE by default. You must set it to TRUE on both the client
and the server for FIPS mode operation.

3. Repeat this procedure in any Oracle Database home for any database server or
client.

When you set SSLFIPS_140 to TRUE, Secure Sockets Layer cryptographic operations
take place in the embedded RSA/Micro Edition Suite (MES) library in FIPS mode.
These cryptographic operations are accelerated by the CPU when hardware
acceleration is available and properly configured in the host hardware and software.

If you set SSLFIPS_140 to FALSE, then Secure Sockets Layer cryptographic operations
take place in the embedded RSA/Micro Edition Suite (MES) library in non-FIPS mode,
and as with the TRUE setting, the operations are accelerated if possible.

For native encryption, this behavior of cryptographic operations landing in RSA/Micro
Edition Suite (MES) and being accelerated is similar to the above, except that it is
determined by the FIPS_140 setting in sqlnet.ora (instead of the SSL_FIPS140 setting
in fips.ora).

Note:

The SSLFIPS_140 parameter replaces the SQLNET.SSLFIPS_140 parameter
used in Oracle Database 10g release 2 (10.2). You must set the parameter
in the fips.ora file, and not the sqlnet.ora file.

Approved SSL Cipher Suites for FIPS 140-2
A cipher suite is a set of authentication, encryption, and data integrity algorithms that
exchange messages between network nodes.

During an SSL handshake, for example, the two nodes negotiate to see as to which
cipher suite they will use when transmitting messages back and forth.

Only the following cipher suites are approved for FIPS validation:

• SSL_DH_anon_WITH_3DES_EDE_CBC_SHA

• SSL_RSA_WITH_AES_256_CBC_SHA

• SSL_RSA_WITH_AES_128_CBC_SHA

Appendix E
Configuration of FIPS 140-2 for Secure Sockets Layer

E-3

• SSL_RSA_WITH_AES_256_GCM_SHA384

• SSL_RSA_WITH_3DES_EDE_CBC_SHA

Oracle Database SSL cipher suites are automatically set to FIPS approved cipher
suites. If you wish to configure specific cipher suites, you can do so by editing the
SSL_CIPHER_SUITES parameter in the sqlnet.ora or the listener.ora file.

SSL_CIPHER_SUITES=(SSL_cipher_suite1[,SSL_cipher_suite2[,..]])

You can also use Oracle Net Manager to set this parameter on the server and the
client.

Related Topics

• Step 1C: Set the Secure Sockets Layer Cipher Suites on the Server (Optional)
Optionally, you can set the Secure Sockets Layer cipher suites.

• Step 2D: Set the Client Secure Sockets Layer Cipher Suites (Optional)
Optionally, you can set the SSL cipher suites. Oracle Database provides default
cipher suite settings.

Postinstallation Checks for FIPS 140-2
After you configure the FIPS 140-2 settings, you must verify permissions in the
operating system.

The permissions are as follows:

• Set execute permissions on all Oracle executable files to prevent the execution of
Oracle Cryptographic Libraries by users who are unauthorized to do so, in
accordance with the system security policy.

• Set read and write permissions on all Oracle executable files to prevent accidental
or deliberate reading or modification of Oracle Cryptographic Libraries by any
user.

To comply with FIPS 140-2 Level 2 requirements, in the security policy, include
procedures to prevent unauthorized users from reading, modifying or executing Oracle
Cryptographic Libraries processes and the memory they are using in the operating
system.

Verifying FIPS 140-2 Connections
To check if FIPS mode is enabled for SSL, you can enable tracing in the sqlnet.ora
file.

You can find FIPS self-test messages in the trace file.

1. Add the following lines to sqlnet.ora to enable tracing:

trace_directory_server=trace_directory
trace_file_server=trace_file
trace_level_server=trace_level

For example:

trace_directory=/private/oracle/owm
trace_file_server=fips_trace.trc
trace_level_server=6

Appendix E
Postinstallation Checks for FIPS 140-2

E-4

2. To check if FIPS mode is enabled for TDE and DBMS_CRYPTO, log into SQL*Plus
and run the following command:

SHOW PARAMETER DBFIPS_140

Trace level 6 is the minimum trace level required to check the results of the FIPS self-
tests.

Appendix E
Verifying FIPS 140-2 Connections

E-5

F
Managing Public Key Infrastructure
(PKI) Elements

You can use the orapki command line utility and sqlnet.ora parameters to manage
public key infrastructure (PKI) elements.

• Uses of the orapki Utility
The orapki utility manages public key infrastructure (PKI) elements, such as
wallets and certificate revocation lists, from the command line.

• orapki Utility Syntax
The orapki utility syntax specifies an Oracle wallet, a certificate revocation list, or
a PKI digital certificate.

• Creating Signed Certificates for Testing Purposes
The orapki utility provides a convenient, lightweight way to create signed
certificates for testing purposes.

• Viewing a Certificate
After you create a certificate, you can use the orapki utility to view it.

• Controlling MD5 and SHA-1 Certificate Use
You can use the sqlnet.ora file to control whether MD5 and SHA-1 signed
certificates are accepted.

• Managing Oracle Wallets with orapki Utility
The orapki utility can create, view, modify wallets; it can add and export
certificates and certificate requests.

• Management of Certificate Revocation Lists (CRLs) with orapki Utility
You must manage certificate revocation lists (CRLs) with the orapki utility.

• orapki Usage
Examples of orapki commands include creating wallets, user certificates, and
wallets with self-signed certificates, and exporting certificates.

• orapki Utility Commands Summary
The orapki commands perform a variety of wallet, certificate revocation lists
(CRL), and certificate management tasks.

Uses of the orapki Utility
The orapki utility manages public key infrastructure (PKI) elements, such as wallets
and certificate revocation lists, from the command line.

This way, you can automate these tasks by using scripts. Providing a way to
incorporate the management of PKI elements into scripts makes it possible to
automate many of the routine tasks of maintaining a PKI.

You can use the orapki command-line utility to perform the following tasks:

• Creating and viewing signed certificates for testing purposes

F-1

• Manage Oracle wallets (except for Transparent Data Encryption keystores):

– Create and display Oracle wallets

– Add and remove certificate requests

– Add and remove certificates

– Add and remove trusted certificates

• Manage certificate revocation lists (CRLs):

– Renaming CRLs with a hash value for certificate validation

– Uploading, listing, viewing, and deleting CRLs in Oracle Internet Directory

Note:

The use of PKI encryption with Transparent Data Encryption is deprecated.
To configure Transparent Data Encryption, use the ADMINISTER KEY
MANAGEMENT SQL statement. See Oracle Database Advanced Security Guide
for more information.

orapki Utility Syntax
The orapki utility syntax specifies an Oracle wallet, a certificate revocation list, or a
PKI digital certificate.

The syntax of the orapki command-line utility is as follows:

orapki module command -parameter value

In this specification, module can be wallet (Oracle wallet), crl (certificate revocation
list), or cert (PKI digital certificate). The available commands depend on the module
you are using.

For example, if you are working with a wallet, then you can add a certificate or a key
to the wallet with the add command. The following example adds the user certificate
located at /private/lhale/cert.txt to the wallet located at $ORACLE_HOME/wallet/
ewallet.p12:

orapki wallet add -wallet $ORACLE_HOME/wallet/ewallet.p12 -user_cert -cert /private/
lhale/cert.txt

Creating Signed Certificates for Testing Purposes
The orapki utility provides a convenient, lightweight way to create signed certificates
for testing purposes.

• To create a signed certificate for testing purposes, use the following command:

orapki cert create [-wallet wallet_location] -request
certificate_request_location -cert certificate_location -validity number_of_days
[-summary]

This command creates a signed certificate from the certificate request. The -wallet
parameter specifies the wallet containing the user certificate and private key that will

Appendix F
orapki Utility Syntax

F-2

be used to sign the certificate request. The -validity parameter specifies the number
of days, starting from the current date, that this certificate will be valid. Specifying a
certificate and certificate request is mandatory for this command.

Viewing a Certificate
After you create a certificate, you can use the orapki utility to view it.

• To view a certificate, use the following command:

orapki cert display -cert certificate_location [-summary | -complete]

This command enables you to view a test certificate that you have created with
orapki. You can choose either -summary or -complete, which determines how much
detail the command will display. If you choose -summary, the command will display the
certificate and its expiration date. If you choose -complete, it will display additional
certificate information, including the serial number and public key.

Controlling MD5 and SHA-1 Certificate Use
You can use the sqlnet.ora file to control whether MD5 and SHA-1 signed certificates
are accepted.

To control whether the MD5 and SHA-1 signed certificates are accepted, you can edit
the sqlnet.ora file to enable or disable their use.

1. Log in to the server where the Oracle database resides.

2. Edit the sqlnet.ora file.

By default, the sqlnet.ora file is located in the $ORACLE_HOME/dbs directory or in
the location set by the TNS_ADMIN environment variable.

3. Set the following parameters:

• ACCEPT_MD5_CERTS controls the use of MD5 certificates. The default is FALSE.
This parameter replaces the ORACLE_SSL_ALLOW_MD5_CERT_SIGNATURES
environment variable.

• ACCEPT_SHA1_CERTS controls the use of SHA-1 certificates. The default is
TRUE. .

Managing Oracle Wallets with orapki Utility
The orapki utility can create, view, modify wallets; it can add and export certificates
and certificate requests.

• About Managing Wallets with orapki
You should understand the orapki command-line utility syntax used to create and
manage Oracle wallets.

• Creating, Viewing, and Modifying Wallets with orapki
You can use orapki to perform a range of management activities with Oracle
wallets.

• Adding Certificates and Certificate Requests to Oracle Wallets with orapki
You can use the orapki utiltiy to perform a range of certificate-related tasks.

Appendix F
Viewing a Certificate

F-3

• Exporting Certificates and Certificate Requests from Oracle Wallets with orapki
You can use the orapki utility to export certificates and certificate requests from
Oracle wallets.

About Managing Wallets with orapki
You should understand the orapki command-line utility syntax used to create and
manage Oracle wallets.

You can use the orapki utility wallet module commands in scripts to automate the
wallet creation process. For example, you can create PKCS#12 wallets and auto-login
wallets. You can create auto-login wallets that are associated with PKCS#12 wallets or
auto-login wallets that are local to the computer on which they were created and the
user who created them. You can view wallets, modify wallet passwords, and convert
wallets to use the AES256 algorithm.

Note:

The -wallet parameter is mandatory for all wallet module commands.

Creating, Viewing, and Modifying Wallets with orapki
You can use orapki to perform a range of management activities with Oracle wallets.

• Creating a PKCS#12 Wallet
You can use the orapki utility to create a PKCS#12 Oracle wallet.

• Creating an Auto-Login Wallet
You can use the orapki utility to create an auto-login wallet.

• Creating an Auto-Login Wallet That Is Associated with a PKCS#12 Wallet
You can create an auto-login wallet that is associated with a PKCS#12 wallet.

• Creating an Auto-Login Wallet That Is Local to the Computer and User Who
Created It
The orapki utility can create an auto-login wallet that is local to the computer of
the user who created it.

• Viewing a Wallet
You can use the orapki utility to view a wallet.

• Modifying the Password for a Wallet
You can use the orapki utility to modify the password of a wallet.

• Converting an Oracle Wallet to Use the AES256 Algorithm
By default , an Oracle wallet with the ADMINISTER KEY MANAGEMENT or ALTER
SYSTEM statement is encrypted with 3DES.

Creating a PKCS#12 Wallet
You can use the orapki utility to create a PKCS#12 Oracle wallet.

• To create an Oracle PKCS#12 wallet (ewallet.p12), use the orapki wallet
create command.

Appendix F
Managing Oracle Wallets with orapki Utility

F-4

orapki wallet create -wallet wallet_location [-pwd password]

This command prompts you to enter and reenter a wallet password, if no password
has been specified on the command line. It creates a wallet in the location specified for
-wallet.

Note:

For security reasons, Oracle recommends that you do not specify the
password at the command line. You should supply the password only when
prompted to do so.

Creating an Auto-Login Wallet
You can use the orapki utility to create an auto-login wallet.

• To create an auto-login wallet (cwallet.sso), which does not need a password to
open the wallet, use the orapki wallet create command:

orapki wallet create -wallet wallet_location -auto_login_only

You can modify or delete the wallet without using a password. File system permissions
provide the necessary security for such auto-login wallets.

You cannot move local auto-login wallets to another computer. They must be used on
the host on which they are created.

Even though a local auto-login wallet does not need a password to open, you must
supply the password for the associated PKCS#12 wallet in order to modify or delete
the wallet. Any update to the PKCS#12 wallet also updates the associated auto-login
wallet.

Creating an Auto-Login Wallet That Is Associated with a PKCS#12 Wallet
You can create an auto-login wallet that is associated with a PKCS#12 wallet.

The auto-login wallet does not need a password to open.

However, you must supply the password for the associated PKCS#12 wallet in order
to modify or delete the wallet. Any update to the PKCS#12 wallet also updates the
associated auto-login wallet.

• To create an auto-login wallet (cwallet.sso) that is associated with a PKCS#12
wallet (ewallet.p12), use the following command:

orapki wallet create -wallet wallet_location -auto_login [-pwd password]

This command creates a wallet with auto-login enabled (cwallet.sso) and associates
it with a PKCS#12 wallet (ewallet.p12). The command prompts you to enter the
password for the PKCS#12 wallet, if no password has been specified at the command
line.

If the wallet_location already contains a PKCS#12 wallet, then auto-login is enabled
for it. You must supply the password for the existing PKCS#12 wallet in order to
enable auto-login for it.

Appendix F
Managing Oracle Wallets with orapki Utility

F-5

If the wallet_location does not contain a PKCS#12 wallet, then a new PKCS#12
wallet is created. You must specify a password for the new PKCS#12 wallet.

If you want to turn the auto-login feature off for a PKCS#12 wallet, then use Oracle
Wallet Manager.

See Also:

Oracle Database Enterprise User Security Administrator's Guide for more
information

Creating an Auto-Login Wallet That Is Local to the Computer and User Who
Created It

The orapki utility can create an auto-login wallet that is local to the computer of the
user who created it.

• To create a local auto-login wallet that is local to both the computer on which it is
created and the user who created it, use the following command:

orapki wallet create -wallet wallet_location -auto_login_local [-pwd password]

This command creates an auto-login wallet (cwallet.sso). It associates it with a
PKCS#12 wallet (ewallet.p12). The command prompts you to enter the password for
the PKCS#12 wallet, if no password has been specified at the command line.

Viewing a Wallet
You can use the orapki utility to view a wallet.

• To view an Oracle wallet, use the orapki wallet display command.

orapki wallet display -wallet wallet_location

This command displays the certificate requests, user certificates, and trusted
certificates contained in the wallet, which must be a binary PKCS12 file, with
extension .p12. Other files will fail.

Modifying the Password for a Wallet
You can use the orapki utility to modify the password of a wallet.

• To change the wallet password, use the following command:

orapki wallet change_pwd -wallet wallet_location [-oldpwd password] [-newpwd
password]

This command changes the current wallet password to the new password. The
command prompts you for the old and new passwords if no password is supplied at
the command line.

Appendix F
Managing Oracle Wallets with orapki Utility

F-6

Note:

For security reasons, Oracle recommends that you do not specify the
password options at the command line. You should supply the password
when prompted to do so.

Converting an Oracle Wallet to Use the AES256 Algorithm
By default , an Oracle wallet with the ADMINISTER KEY MANAGEMENT or ALTER SYSTEM
statement is encrypted with 3DES.

You can use the orapki convert command to convert the wallet to use the AES256
algorithm, which is stronger than the 3DES algorithm. Note that if you had created the
wallet using orapki and not the ADMINISTER KEY MANAGEMENT or ALTER SYSTEM
statement, then by default it uses the AES256 algorithm.

• To change the wallet algorithm from 3DES to AES256:

orapki wallet convert -wallet wallet_location [-pwd password] [-compat_v12]

The compat_v12 setting performs the conversion from 3DES to AES256.

Adding Certificates and Certificate Requests to Oracle Wallets with
orapki

You can use the orapki utiltiy to perform a range of certificate-related tasks.

• Adding a Certificate Request to an Oracle Wallet
You can use the orapki utility to add certificates and certificate requests to Oracle
wallets.

• Adding a Trusted Certificate to an Oracle Wallet
You can use the orapki utility to add trusted certificates to an Oracle wallet.

• Adding a Root Certificate to an Oracle Wallet
You can use the orapki utility to add a root certificate to an Oracle wallet.

• Adding a User Certificate to an Oracle Wallet
You can use the orapki utility to add a user certificate to an Oracle wallet.

• Verifying Credentials on the Hardware Device That Uses a PKCS#11 Wallet
You can verify credentials on the hardware device using the PKCS#11 wallet.

• Adding PKCS#11 Information to an Oracle Wallet
A wallet that contains PKCS#11 information can be used like any Oracle wallet.

Adding a Certificate Request to an Oracle Wallet
You can use the orapki utility to add certificates and certificate requests to Oracle
wallets.

• To add a certificate request to an Oracle wallet, use the orapki wallet add
command.

orapki wallet add -wallet wallet_location -dn user_dn -keySize 512|1024|2048

Appendix F
Managing Oracle Wallets with orapki Utility

F-7

This command adds a certificate request to a wallet for the user with the specified
distinguished name (user_dn). The request also specifies the requested certificate's
key size (512, 1024, or 2048 bits). To sign the request, export it with the export option.

Related Topics

• Exporting Certificates and Certificate Requests from Oracle Wallets with orapki
You can use the orapki utility to export certificates and certificate requests from
Oracle wallets.

Adding a Trusted Certificate to an Oracle Wallet
You can use the orapki utility to add trusted certificates to an Oracle wallet.

• To add a trusted certificate to an Oracle wallet, use the following command:

orapki wallet add -wallet wallet_location -trusted_cert -cert
certificate_location

This command adds a trusted certificate, at the specified location (-cert
certificate_location), to a wallet. You must add all trusted certificates in the
certificate chain of a user certificate before adding a user certificate, or the command
to add the user certificate will fail.

Adding a Root Certificate to an Oracle Wallet
You can use the orapki utility to add a root certificate to an Oracle wallet.

• To add a root certificate to an Oracle wallet, use the following command:

orapki wallet add -wallet wallet_location -dn certificate_dn -keySize 512|1024|
2048 -self_signed -validity number_of_days

This command creates a new self-signed (root) certificate and adds it to the wallet.
The -validity parameter (mandatory) specifies the number of days, starting from the
current date, that this certificate will be valid. You can specify a key size for this root
certificate (-keySize) of 512, 1024, or 2048 bits.

Adding a User Certificate to an Oracle Wallet
You can use the orapki utility to add a user certificate to an Oracle wallet.

• To add a user certificate to an Oracle wallet, use the following command:

orapki wallet add -wallet wallet_location -user_cert -cert certificate_location

This command adds the user certificate at the location specified with the -cert
parameter to the Oracle wallet at the wallet_location. Before you add a user
certificate to a wallet, you must add all the trusted certificates that make up the
certificate chain. If all trusted certificates are not installed in the wallet before you add
the user certificate, then adding the user certificate will fail.

Appendix F
Managing Oracle Wallets with orapki Utility

F-8

Note:

For security reasons, Oracle recommends that you do not specify the
password at the command line. You should supply the password when
prompted to do so.

Verifying Credentials on the Hardware Device That Uses a PKCS#11 Wallet
You can verify credentials on the hardware device using the PKCS#11 wallet.

• Use the following command to verify the credential details:

orapki wallet p11_verify -wallet wallet_location [-pwd password]

Adding PKCS#11 Information to an Oracle Wallet
A wallet that contains PKCS#11 information can be used like any Oracle wallet.

The private keys are stored on a hardware device. The cryptographic operations are
also performed on the device.

• Use the following command to add PKCS#11 information to a wallet:

orapki wallet p11_add -wallet wallet_location -p11_lib pkcs11Lib
[-p11_tokenlabel tokenLabel] [-p11_tokenpw tokenPassphrase]
[-p11_certlabel certLabel] [-pwd password]

In this specification:

• wallet specifies the wallet location.

• p11_lib specifies the path to the PKCS#11 library. This includes the library
filename.

• p11_tokenlabel specifies the token or smart card used on the device. Use this
when there are multiple tokens on the device. Token labels are set using vendor
tools.

• p11_tokenpw specifies the password that is used to access the token. Token
passwords are set using vendor tools.

• p11_certlabel is used to specify a certificate label on the token. Use this when a
token contains multiple certificates. Certificate labels are set using vendor tools.

• pwd is used to specify the wallet password.

Exporting Certificates and Certificate Requests from Oracle Wallets
with orapki

You can use the orapki utility to export certificates and certificate requests from
Oracle wallets.

• To export a certificate from an Oracle wallet, use the following command:

orapki wallet export -wallet wallet_location -dn certificate_dn -cert
certificate_filename

Appendix F
Managing Oracle Wallets with orapki Utility

F-9

This command exports a certificate with the subject's distinguished name (-dn) from a
wallet to a file that is specified by -cert.

To export a certificate request from an Oracle wallet, use the following command:

orapki wallet export -wallet wallet_location -dn certificate_request_dn -request
certificate_request_filename

This command exports a certificate request with the subject's distinguished name (-dn)
from a wallet to a file that is specified by -request.

Management of Certificate Revocation Lists (CRLs) with
orapki Utility

You must manage certificate revocation lists (CRLs) with the orapki utility.

This utility creates a hashed value of the CRL issuer's name to identify the CRLs
location in your system. If you do not use orapki, your Oracle server cannot locate
CRLs to validate PKI digital certificates.

Related Topics

• Certificate Revocation List Management
Certificate revocation list management entails ensuring that the CRLs are the
correct format before you enable certificate revocation checking.

orapki Usage
Examples of orapki commands include creating wallets, user certificates, and wallets
with self-signed certificates, and exporting certificates.

• Example: Wallet with a Self-Signed Certificate and Export of the Certificate
The orapki wallet add command can create a wallet with a self-signed
certificate; the orapki wallet export can export the certificate.

• Example: Creating a Wallet and a User Certificate
The orapki utility can create wallets and user certificates.

Example: Wallet with a Self-Signed Certificate and Export of the
Certificate

The orapki wallet add command can create a wallet with a self-signed certificate;
the orapki wallet export can export the certificate.

Example F-1 illustrates the steps to create a wallet with a self-signed certificate, view
the wallet, and then export the certificate to a file.

Example F-1 Creating a Wallet with a Self-Signed Certificate and Exporting the
Certificate

1. Create a wallet.

For example:

c -wallet /private/user/orapki_use/root

Appendix F
Management of Certificate Revocation Lists (CRLs) with orapki Utility

F-10

The wallet is created at the location, /private/user/orapki_use/root.

2. Add a self-signed certificate to the wallet.

orapki wallet add -wallet /private/user/orapki_use/root -dn
'CN=root_test,C=US' -keysize 2048 -self_signed -validity 3650

This creates a self-signed certificate with a validity of 3650 days. The distinguished
name of the subject is CN=root_test,C=US. The key size for the certificate is 2048
bits.

3. View the wallet.

orapki wallet display -wallet /private/user/orapki_use/root

This is used to view the certificate contained in the wallet.

4. Export the certificate.

orapki wallet export -wallet /private/user/orapki_use/root -dn
'CN=root_test,C=US' -cert /private/user/orapki_use/root/b64certificate.txt

This exports the self-signed certificate to the file, b64certificate.txt. Note that
the distinguished name used is the same as in step 2.

Example: Creating a Wallet and a User Certificate
The orapki utility can create wallets and user certificates.

Example F-2 illustrates miscellaneous tasks related to creating user certificates.

The following steps illustrate creating a wallet, creating a certificate request, exporting
the certificate request, creating a signed certificate from the request for testing,
viewing the certificate, adding a trusted certificate to the wallet and adding a user
certificate to the wallet.

Example F-2 Creating a Wallet and a User Certificate

1. Create a wallet with auto-login enabled.

For exmaple:

orapki wallet create -wallet /private/user/orapki_use/server -auto_login

This creates a wallet at /private/user/orapki_use/server with auto-login
enabled.

2. Add a certificate request to the wallet.

orapki wallet add -wallet /private/user/orapki_use/server/ewallet.p12 -dn
'CN=server_test,C=US' -keysize 2048

This adds a certificate request to the wallet that was created (ewallet.p12). The
distinguished name of the subject is CN=server_test,C=US. The key size specified
is 2048 bits.

3. Export the certificate request to a file.

orapki wallet export -wallet /private/user/orapki_use/server -dn
'CN=server_test,C=US' -request /private/user/orapki_use/server/creq.txt

This exports the certificate request to the specified file, which is creq.txt in this
case.

Appendix F
orapki Usage

F-11

4. Create a signed certificate from the request for test purposes.

orapki cert create -wallet /private/user/orapki_use/root -request /private/user/
orapki_use/server/creq.txt -cert /private/user/orapki_use/server/cert.txt -
validity 3650

This creates a certificate, cert.txt with a validity of 3650 days. The certificate is
created from the certificate request generated in the preceding step.

5. View the certificate.

orapki cert display -cert /private/user/orapki_use/server/cert.txt -complete

This displays the certificate generated in the preceding step. The -complete option
enables you to display additional certificate information, including the serial
number and public key.

6. Add a trusted certificate to the wallet.

orapki wallet add -wallet /private/user/orapki_use/server/ewallet.p12 -
trusted_cert -cert /private/user/orapki_use/root/b64certificate.txt

This adds a trusted certificate, b64certificate.txt to the ewallet.p12 wallet.
You must add all trusted certificates in the certificate chain of a user certificate
before adding a user certificate.

7. Add a user certificate to the wallet.

orapki wallet add -wallet /private/user/orapki_use/server/ewallet.p12 -user_cert
-cert /private/user/orapki_use/server/cert.txt

This command adds the user certificate, cert.txt to the ewallet.p12 wallet.

orapki Utility Commands Summary
The orapki commands perform a variety of wallet, certificate revocation lists (CRL),
and certificate management tasks.

• orapki cert create
The orapki cert create command creates a signed certificate for testing
purposes.

• orapki cert display
The orapki cert display command displays details of a specific certificate.

• orapki crl delete Command
The orapki crl delete command deletes a certificate revocation list (CRL) from
Oracle Internet Directory.

• orapki crl display
The orapki crl display command displays a specified certificate revocation list
(CRL) that is stored in Oracle Internet Directory.

• orapki crl hash
The orapki crl hash command generates a hash value of the certificate
revocation list (CRL) issuer to identify the CRL file system location for certificate
validation.

• orapki crl list
The orapki crl list command displays a list of certificate revocation lists
(CRLs) stored in Oracle Internet Directory.

Appendix F
orapki Utility Commands Summary

F-12

• orapki crl upload
The orapki crl upload command uploads a certificate revocation list (CRL) to
the CRL subtree in Oracle Internet Directory.

• orapki wallet add
The orapki wallet add command adds certificate requests and certificates to an
Oracle wallet.

• orapki wallet convert
The orapki wallet convert command converts the 3DES algorithm in an Oracle
wallet to use the AES256 algorithm.

• orapki wallet create
The orapki wallet create command creates an Oracle wallet or enables auto-
login for an Oracle wallet.

• orapki wallet display
The orapki wallet display command displays the certificate requests, user
certificates, and trusted certificates in an Oracle wallet.

• orapki wallet export
The orapki wallet export command exports certificate requests and certificates
from an Oracle wallet.

orapki cert create
The orapki cert create command creates a signed certificate for testing purposes.

Syntax

orapki cert create [-wallet wallet_location] -request certificate_request_location -
cert certificate_location -validity number_of_days [-summary]

• wallet specifies the wallet containing the user certificate and private key that will
be used to sign the certificate request.

• request (mandatory) specifies the location of the certificate request for the
certificate you are creating.

• cert (mandatory) specifies the directory location where the tool places the new
signed certificate.

• validity (mandatory) specifies the number of days, starting from the current date,
that this certificate will be valid.

orapki cert display
The orapki cert display command displays details of a specific certificate.

Syntax

orapki cert display -cert certificate_location [-summary|-complete]

• cert specifies the location of the certificate you want to display.

• You can use either the -summary or the -complete parameter to display the
following information:

– summary displays the certificate and its expiration date

Appendix F
orapki Utility Commands Summary

F-13

– complete displays additional certificate information, including the serial
number and public key

orapki crl delete Command
The orapki crl delete command deletes a certificate revocation list (CRL) from
Oracle Internet Directory.

The user who deletes the CRLs from the directory by using orapki must be a member
of the CRLAdmins (cn=CRLAdmins,cn=groups,%s_OracleContextDN%) directory group.

Prerequisites

None

Syntax

orapki crl delete -issuer issuer_name -ldap hostname:ssl_port -user username [-
wallet wallet_location] [-summary]

• issuer specifies the name of the certificate authority (CA) who issued the CRL.

• ldap specifies the host name and SSL port for the directory where the CRLs are to
be deleted. Note that this must be a directory SSL port with no authentication.

See also Uploading CRLs to Oracle Internet Directory for more information about
this port.

• user specifies the user name of the directory user who has permission to delete
CRLs from the CRL subtree in the directory.

• wallet (optional) specifies the location of the wallet that contains the certificate of
the certificate authority (CA) who issued the CRL. Using it causes the tool to verify
the validity of the CRL against the CA's certificate prior to deleting it from the
directory.

• summary is optional. It displays the CRL LDAP entry that was deleted.

orapki crl display
The orapki crl display command displays a specified certificate revocation list
(CRL) that is stored in Oracle Internet Directory.

Syntax

orapki crl display -crl crl_location [-wallet wallet_location] [-summary|-complete]

• crl parameter specifies the location of the CRL in the directory. It is convenient to
paste the CRL location from the list that displays when you use the orapki crl
list command. See orapki crl list.

• wallet (optional) specifies the location of the wallet that contains the certificate of
the certificate authority (CA) who issued the CRL. Using it causes the tool to verify
the validity of the CRL against the CA's certificate prior to displaying it.

• summary and complete display the following information:

– summary provides a listing that contains the CRL issuer's name and the CRL's
validity period

Appendix F
orapki Utility Commands Summary

F-14

– complete provides a list of all revoked certificates that the CRL contains. Note
that this option may take a long time to display, depending on the size of the
CRL.

orapki crl hash
The orapki crl hash command generates a hash value of the certificate revocation
list (CRL) issuer to identify the CRL file system location for certificate validation.

Syntax

orapki crl hash -crl crl_filename|URL [-wallet wallet_location] [-symlink|-copy]
crl_directory [-summary]

• crl specifies the filename that contains the CRL or the URL where it can be found.

• wallet (optional) specifies the location of the wallet that contains the certificate of
the certificate authority (CA) who issued the CRL. Using it causes the tool to verify
the validity of the CRL against the CA's certificate prior to uploading it to the
directory.

• Depending on the operating system, use either the -symlink or the -copy
parameter:

– (UNIX) symlink creates a symbolic link to the CRL at the crl_directory
location

– (Windows) copy creates a copy of the CRL at the crl_directory location

• summary (optional) displays the CRL issuer's name.

orapki crl list
The orapki crl list command displays a list of certificate revocation lists (CRLs)
stored in Oracle Internet Directory.

Syntax

This is useful for browsing to locate a particular CRL to view or download to your local
file system.

orapki crl list -ldap hostname:ssl_port

ldap specifies the host name and SSL port for the directory server from where you
want to list CRLs. Note that this must be a directory SSL port with no authentication.

See Also:

Uploading CRLs to Oracle Internet Directory for more information about this
port

Appendix F
orapki Utility Commands Summary

F-15

orapki crl upload
The orapki crl upload command uploads a certificate revocation list (CRL) to the
CRL subtree in Oracle Internet Directory.

Note that you must be a member of the directory administrative group CRLAdmins
(cn=CRLAdmins,cn=groups,%s_OracleContextDN%) to upload CRLs to the directory.

Syntax

orapki crl upload -crl crl_location -ldap hostname:ssl_port -user username [-wallet
wallet_location] [-summary]

• crl specifies the directory location or the URL where the CRL is located that you
are uploading to the directory.

• ldap specifies the host name and SSL port for the directory where you are
uploading the CRLs. Note that this must be a directory SSL port with no
authentication.

See also Uploading CRLs to Oracle Internet Directory for more information about
this port.

• user specifies the user name of the directory user who has permission to add
CRLs to the CRL subtree in the directory.

• wallet specifies the location of the wallet that contains the certificate of the
certificate authority (CA) who issued the CRL. This is an optional parameter. Using
it causes the tool to verify the validity of the CRL against the CA's certificate prior
to uploading it to the directory.

• summary is optional. It displays the CRL issuer's name and the LDAP entry where
the CRL is stored in the directory.

orapki wallet add
The orapki wallet add command adds certificate requests and certificates to an
Oracle wallet.

Syntax

To add certificate requests:

orapki wallet add -wallet wallet_location -dn user_dn -keySize 512|1024|2048

• wallet specifies the location of the wallet to which you want to add a certificate
request.

• dn specifies the distinguished name of the certificate owner.

• keySize specifies the key size for the certificate.

• To sign the request, export it with the export option. Refer to orapki wallet export

To add trusted certificates:

orapki wallet add -wallet wallet_location -trusted_cert -cert certificate_location

• trusted_cert adds the trusted certificate, at the location specified with -cert, to
the wallet.

Appendix F
orapki Utility Commands Summary

F-16

To add root certificates:

orapki wallet add -wallet wallet_location -dn certificate_dn -keySize 512|1024|2048 -
self_signed -validity number_of_days

• self_signed creates a root certificate.

• validity is mandatory. Use it to specify the number of days, starting from the
current date, that this root certificate will be valid.

To add user certificates:

orapki wallet add -wallet wallet_location -user_cert -cert certificate_location

• user_cert adds the user certificate at the location specified with the -cert
parameter to the wallet. Before you add a user certificate to a wallet, you must add
all the trusted certificates that make up the certificate chain. If all trusted
certificates are not installed in the wallet before you add the user certificate, then
adding the user certificate will fail.

orapki wallet convert
The orapki wallet convert command converts the 3DES algorithm in an Oracle
wallet to use the AES256 algorithm.

Syntax

orapki wallet convert -wallet wallet_location [-pwd password] [-compat_v12]

• wallet specifies a location for the new wallet or the location of the wallet for which
you want to turn on auto-login.

• pwd is the wallet password.

• compat_v12 performs the conversion from 3DES to AES256.

orapki wallet create
The orapki wallet create command creates an Oracle wallet or enables auto-login
for an Oracle wallet.

Syntax

orapki wallet create -wallet wallet_location [-auto_login|-auto_login_local]

• wallet specifies a location for the new wallet or the location of the wallet for which
you want to turn on auto-login.

• auto_login creates an auto-login wallet, or it turns on automatic login for the
wallet specified with the -wallet option.

See also Oracle Database Enterprise User Security Administrator's Guide for
details about auto-login wallet.

• auto_login_local creates a local auto-login wallet, or it turns on local automatic
login for the wallet specified with the -wallet option.

Appendix F
orapki Utility Commands Summary

F-17

orapki wallet display
The orapki wallet display command displays the certificate requests, user
certificates, and trusted certificates in an Oracle wallet.

Syntax

orapki wallet display -wallet wallet_location

• wallet specifies a location for the wallet you want to open if it is not located in the
current working directory.

orapki wallet export
The orapki wallet export command exports certificate requests and certificates
from an Oracle wallet.

Syntax

To export a certificate from an Oracle wallet:

orapki wallet export -wallet wallet_location -dn certificate_dn -cert
certificate_filename

• wallet specifies the location of the wallet from which you want to export the
certificate.

• dn specifies the distinguished name of the certificate.

• cert specifies the name of the file that contains the exported certificate.

To export a certificate request from an Oracle wallet:

orapki wallet export -wallet wallet_location -dn certificate_request_dn -request
certificate_request_filename

• request specifies the name of the file that contains the exported certificate
request.

Appendix F
orapki Utility Commands Summary

F-18

G
How the Unified Auditing Migration Affects
Individual Audit Features

Most of the pre-Oracle Database 12c release 1 (12.1) auditing features can be used
before a unified auditing migration.

Table G-1 describes how the pre-Oracle Database 12c audit features change in the
migration.

Table G-1 Availability of Unified Auditing Features Before and After Migration

Feature Availability in Pre-Migrated
Environment

Availability in Post-Migrated
Environment

General Auditing Features - -

Operating system audit trail Yes No

XML file audit trail Yes No

Network auditing Yes No

The ability of users to audit and to
removing auditing from their own
schema objects

Yes No

Mandatory auditing of audit
administrative actions

No Yes

Auditing Roles - -

AUDIT_ADMIN Yes, but not needed for users who
want to audit their own objects, nor for
users who already have the ALTER
SYSTEM privilege and want to change
the auditing initialization parameters

Yes

AUDIT_VIEWER Yes Yes

System Tables - -

SYS.AUD$ Yes Yes, but will only have pre-unified
audit records

SYS.FGA_LOG$ Yes Yes, but will only have pre-unified
audit records

Initialization Parameters - -

AUDIT_TRAIL Yes Yes, but will not have any effect

AUDIT_FILE_DEST Yes Yes, but will not have any effect

AUDIT_SYS_OPERATIONS Yes Yes, but will not have any effect

AUDIT_SYSLOG_LEVEL Yes Yes, but will not have any effect

UNIFIED_AUDIT_SGA_QUEUE_SIZE Yes, but note that this parameter has
been deprecated, but is currently
retained for backward compatibility.

Yes, but note that this parameter
has been deprecated, but is
currently retained for backward
compatibility.

G-1

Table G-1 (Cont.) Availability of Unified Auditing Features Before and After Migration

Feature Availability in Pre-Migrated
Environment

Availability in Post-Migrated
Environment

Data Dictionary Views 1 - -

ALL_AUDIT_POLICIES Yes Yes, but only if fine-grained audit
policies are created using the
DBMS_FGA PL/SQL package

DBA_AUDIT_POLICIES Yes Yes, but only if fine-grained audit
policies are created using the
DBMS_FGA PL/SQL package

DBA_AUDIT_POLICY_COLUMNS Yes Yes, but only if fine-grained audit
policies are created using the
DBMS_FGA PL/SQL package

DBA_COMMON_AUDIT_TRAIL Yes Yes, but will only have pre-unified
audit records

DBA_AUDIT_EXISTS Yes Yes

DBA_AUDIT_OBJECT Yes Yes

DBA_AUDIT_POLICIES Yes Yes, but only if fine-grained audit
policies are created using the
DBMS_FGA PL/SQL package

DBA_AUDIT_POLICY_COLUMNS Yes Yes, but only if fine-grained audit
policies are created using the
DBMS_FGA PL/SQL package

DBA_AUDIT_SESSION Yes Yes, but will only have pre-unified
audit records

DBA_AUDIT_STATEMENT Yes Yes, but will only have pre-unified
audit records

DBA_AUDIT_TRAIL Yes Yes, but will only have pre-unified
audit records. The RLS_INFO
column captures audited Oracle
VPD predicates.

DBA_FGA_AUDIT_TRAIL Yes Yes, but will only have pre-unified
audit records. The RLS_INFO
column captures audited Oracle
VPD predicates.

DBA_OBJ_AUDIT_OPTS Yes Yes

DBA_PRIV_AUDIT_OPTS Yes Yes

DBA_STMT_AUDIT_OPTS Yes Yes

UNIFIED_AUDIT_TRAIL Yes, but does not collect any audit
records

Yes, and collects audit records

USER_AUDIT_OBJECT Yes Yes

USER_AUDIT_POLICY_COLUMN Yes Yes, but only if fine-grained audit
policies are created using the
DBMS_FGA PL/SQL package

USER_AUDIT_POLICIES Yes Yes, but only if fine-grained audit
policies are created using the
DBMS_FGA PL/SQL package

Appendix G

G-2

Table G-1 (Cont.) Availability of Unified Auditing Features Before and After Migration

Feature Availability in Pre-Migrated
Environment

Availability in Post-Migrated
Environment

USER_AUDIT_SESSION Yes Yes

USER_AUDIT_STATEMENT Yes Yes

USER_AUDIT_TRAIL Yes Yes, but will only have pre-unified
audit records

USER_OBJ_AUDIT_OPTS Yes Yes

V$XML_AUDIT_TRAIL Yes Yes, but will only have pre-unified
audit records. The RLS_INFO
column captures audited Oracle
VPD predicates.

CREATE AUDIT POLICY, ALTER
AUDIT POLICY, and DROP AUDIT
POLICY Statements

The statements are available, but the
audit policies will not write to the old
audit trails. When a policy is enabled,
its audit records are written to the
unified audit trail.

Yes, but writes the audit record to
the unified audit trail only

AUDIT and NOAUDIT Statements - -

AUDIT Yes, and can be used in a multitenant
environment

Yes, but enhanced to enable audit
policies; create application context
audit settings; create audit records
on success, failure, or both; and
use in a multitenant environment

NOAUDIT Yes, and can be used in a multitenant
environment

Yes, but changed to disable audit
policies, disable application context
audit settings, and use in a
multitenant environment

DBMS_FGA.ADD_POLICY
Procedure Parameters

- -

audit_trail Yes, and is used as in previous
releases

Yes, but when unified auditing is
enabled, you can omit this
parameter because all records will
be written to the unified audit trail.

DBMS_AUDIT_MGMT Package
AUDIT_TRAIL_TYPE Property
Options

- -

DBMS_AUDIT_MGMT.AUDIT_TRAIL_A
UD_STD

Yes Yes, but only pre-unified audit
records

DBMS_AUDIT_MGMT.AUDIT_TRAIL_F
GA_STD

Yes Yes, but only pre-unified audit
records

DBMS_AUDIT_MGMT.AUDIT_TRAIL_D
B_STD

Yes Yes, but only pre-unified audit
records

DBMS_AUDIT_MGMT.AUDIT_TRAIL_O
S

Yes Yes, but only pre-unified audit
records

DBMS_AUDIT_MGMT.AUDIT_TRAIL_X
ML

Yes Yes, but only pre-unified audit
records

Appendix G

G-3

Table G-1 (Cont.) Availability of Unified Auditing Features Before and After Migration

Feature Availability in Pre-Migrated
Environment

Availability in Post-Migrated
Environment

DBMS_AUDIT_MGMT.AUDIT_TRAIL_F
ILES

Yes Yes, but only pre-unified audit
records

DBMS_AUDIT_MGMT.AUDIT_TRAIL_A
LL

Yes Yes, but only pre-unified audit
records

Oracle Database Vault Features - -

DVSYS.AUDIT_TRAIL$ system table Yes Is renamed to
DVSYS.OLD_AUDIT_TRAIL$ and
retains the old audit records. The
previous DVSYS.AUDIT_TRAIL$
table is made into a view named
DVSYS.AUDIT_TRAIL$. No new
audit records are added.

Oracle Label Security Features - -

SA_AUDIT_ADMIN PL/SQL package Yes No

1 These data dictionary views will continue to show audit data from audit records that are still in the SYS.AUD$ and
SYS.FGA_LOG$ system tables. Unified audit trail records are shown only in the unified audit trail-specific views. You must be
granted the AUDIT_ADMIN or AUDIT_VIEWER role to query any views that are not prefaced with USER_.

Appendix G

G-4

Glossary

access control
The ability of a system to grant or limit access to specific data for specific clients or
groups of clients.

Access Control Lists (ACLs)
The group of access directives that you define. The directives grant levels of access to
specific data for specific clients, or groups of clients, or both.

Advanced Encryption Standard
Advanced Encryption Standard (AES) is a new cryptographic algorithm that has been
approved by the National Institute of Standards and Technology as a replacement for
DES. The AES standard is available in Federal Information Processing Standards
Publication 197. The AES algorithm is a symmetric block cipher that can process data
blocks of 128 bits, using cipher keys with lengths of 128, 192, and 256 bits.

AES
See Advanced Encryption Standard

application context
A name-value pair that enables an application to access session information about a
user, such as the user ID or other user-specific information, and then securely pass
this data to the database.

See also global application context.

attribute
An item of information that describes some aspect of an entry in an LDAP directory.
An entry comprises a set of attributes, each of which belongs to an object class.
Moreover, each attribute has both a type, which describes the kind of information in
the attribute, and a value, which contains the actual data.

application role
A database role that is granted to application users and that is secured by embedding
passwords inside the application.

See also secure application role.

authentication
The process of verifying the identity of a user, device, or other entity in a computer
system, often as a prerequisite to granting access to resources in a system. A

Glossary-1

recipient of an authenticated message can be certain of the message's origin (its
sender). Authentication is presumed to preclude the possibility that another party has
impersonated the sender.

authentication method
A security method that verifies a user's, client's, or server's identity in distributed
environments. Network authentication methods can also provide the benefit of single
sign-on (SSO) for users. The following authentication methods are supported:

• Kerberos

• RADIUS

• Secure Sockets Layer (SSL)

• Windows native authentication

authorization
Permission given to a user, program, or process to access an object or set of objects.
In Oracle, authorization is done through the role mechanism. A single person or a
group of people can be granted a role or a group of roles. A role, in turn, can be
granted other roles. The set of privileges available to an authenticated entity.

auto-login wallet
Password-based access to services without providing credentials at the time of
access. This auto-login access stays in effect until the auto-login feature is disabled for
that wallet. File system permissions provide the necessary security for auto-login
wallet. When auto-login is enabled for a wallet, it is only available to the operating
system user who created that wallet. Sometimes these are called "SSO wallets"
because they provide single sign-on capability.

CDB
Multitenant container database. An Oracle Database installation that contains one root
zero or more pluggable databases (PDBs). Every Oracle database is either a CDB or
a non-CDB.

base
The root of a subtree search in an LDAP-compliant directory.

CA
See certificate authority

certificate
An ITU x.509 v3 standard data structure that securely binds an identify to a public key.

A certificate is created when an entity's public key is signed by a trusted identity, a
certificate authority. The certificate ensures that the entity's information is correct, and
that the public key belongs to that entity.

Glossary

Glossary-2

A certificate contains the entity's name, identifying information, and public key. It is
also likely to contain a serial number, expiration date, and information about the rights,
uses, and privileges associated with the certificate. Finally, it contains information
about the certificate authority that issued it.

certificate authority
A trusted third party that certifies that other entities—users, databases, administrators,
clients, servers—are who they say they are. When it certifies a user, the certificate
authority first seeks verification that the user is not on the certificate revocation list
(CRL), then verifies the user's identity and grants a certificate, signing it with the
certificate authority's private key. The certificate authority has its own certificate and
public key which it publishes. Servers and clients use these to verify signatures the
certificate authority has made. A certificate authority might be an external company
that offers certificate services, or an internal organization such as a corporate MIS
department.

certificate chain
An ordered list of certificates containing an end-user or subscriber certificate and its
certificate authority certificates.

certificate request
A certificate request, which consists of three parts: certification request information, a
signature algorithm identifier, and a digital signature on the certification request
information. The certification request information consists of the subject's distinguished
name, public key, and an optional set of attributes. The attributes may provide
additional information about the subject identity, such as postal address, or a
challenge password by which the subject entity may later request certificate
revocation. See PKCS #10.

certificate revocation list (CRL)
(CRLs) Signed data structures that contain a list of revoked certificate s. The
authenticity and integrity of the CRL is provided by a digital signature appended to it.
Usually, the CRL signer is the same entity that signed the issued certificate.

checksumming
A mechanism that computes a value for a message packet, based on the data it
contains, and passes it along with the data to authenticate that the data has not been
tampered with. The recipient of the data recomputes the cryptographic checksum and
compares it with the cryptographic checksum passed with the data; if they match, it is
"probabilistic" proof the data was not tampered with during transmission.

cleartext
Unencrypted plain text.

Cipher Block Chaining (CBC)
An encryption method that protects against block replay attacks by making the
encryption of a cipher block dependent on all blocks that precede it; it is designed to

Glossary

Glossary-3

make unauthorized decryption incrementally more difficult. Oracle Database employs
outer cipher block chaining because it is more secure than inner cipher block chaining,
with no material performance penalty.

CIDR
The standard notation used for IP addresses. In CIDR notation, an IPv6 subnet is
denoted by the subnet prefix and the size in bits of the prefix (in decimal), separated
by the slash (/) character. For example, fe80:0000:0217:f2ff::/64 denotes a subnet
with addresses fe80:0000:0217:f2ff:0000:0000:0000:0000 through
fe80:0000:0217:f2ff:ffff:ffff:ffff:ffff. The CIDR notation includes support for
IPv4 addresses. For example, 192.0.2.1/24 denotes the subnet with addresses
192.0.2.1 through 192.0.2.255.

cipher suite
A set of authentication, encryption, and data integrity algorithms used for exchanging
messages between network nodes. During an SSL handshake, for example, the two
nodes negotiate to see which cipher suite they will use when transmitting messages
back and forth.

cipher suite name
Cipher suites describe the kind of cryptographics protection that is used by
connections in a particular session.

ciphertext
Message text that has been encrypted.

Classless Inter-Domain Routing
See CIDR .

client
A client relies on a service. A client can sometimes be a user, sometimes a process
acting on behalf of the user during a database link (sometimes called a proxy).

common privilege grant
A privilege that a common user grants to another common user or to a common role.
Common privilege grants can be either system privileges or object privileges, and they
apply across all PDBs in a CDB.

See also local privilege grant.

common role
A role that exists in all containers in a CDB.

common user
In a CDB, a database user that exists with the same identity in every existing and
future PDB.

Glossary

Glossary-4

confidentiality
A function of cryptography. Confidentiality guarantees that only the intended
recipient(s) of a message can view the message (decrypt the ciphertext).

connect descriptor
A specially formatted description of the destination for a network connection. A
connect descriptor contains destination service and network route information. The
destination service is indicated by using its service name for Oracle9i or Oracle8i
databases or its Oracle system identifier (SID) for Oracle databases version 8.0. The
network route provides, at a minimum, the location of the listener through use of a
network address. See connect identifier

connect identifier
A name, net service name, or service name that resolves to a connect descriptor.
Users initiate a connect request by passing a user name and password along with a
connect identifier in a connect string for the service to which they want to connect.

For example:

CONNECT username@connect_identifier
Enter password: password

connect string
Information the user passes to a service to connect, such as user name, password
and net service name. For example:

CONNECT username@net_service_name
Enter password: password

container
In a CDB either, a root or a PDB.

container data object
In a CDB, a table or view containing data pertaining to multiple containers and possibly
the CDB as a whole, along with mechanisms to restrict data visible to specific common
users through such objects to one or more containers. Examples of container data
objects are Oracle-supplied views whose names begin with V$ and CDB_.

credentials
A user name, password, or certificate used to gain access to the database.

CRL
See certificate revocation list (CRL)

CRL Distribution Point
(CRL DP) An optional extension specified by the X.509 version 3 certificate standard,
which indicates the location of the Partitioned CRL where revocation information for a
certificate is stored. Typically, the value in this extension is in the form of a URL. CRL
DPs allow revocation information within a single certificate authority domain to be
posted in multiple CRLs. CRL DPs subdivide revocation information into more

Glossary

Glossary-5

manageable pieces to avoid proliferating voluminous CRLs, thereby providing
performance benefits. For example, a CRL DP is specified in the certificate and can
point to a file on a Web server from which that certificate's revocation information can
be downloaded.

CRL DP
See CRL Distribution Point

cryptography
The practice of encoding and decoding data, resulting in secure messages.

data dictionary
A set of read-only tables that provide information about a database.

Data Encryption Standard (DES)
An older Federal Information Processing Standards encryption algorithm superseded
by the Advanced Encryption Standard (AES).

database administrator
(1) A person responsible for operating and maintaining an Oracle Server or a database
application. (2) An Oracle user name that has been given DBA privileges and can
perform database administration functions. Usually the two meanings coincide. Many
sites have multiple DBAs.

database alias
See net service name

Database Installation Administrator
Also called a database creator. This administrator is in charge of creating new
databases. This includes registering each database in the directory using the
Database Configuration Assistant. This administrator has create and modify access to
database service objects and attributes. This administrator can also modify the Default
domain.

database link
A network object stored in the local database or in the network definition that identifies
a remote database, a communication path to that database, and optionally, a user
name and password. Once defined, the database link is used to access the remote
database.

A public or private database link from one database to another is created on the local
database by a DBA or user.

A global database link is created automatically from each database to every other
database in a network with Oracle Names. Global database links are stored in the
network definition.

Glossary

Glossary-6

database password version
An irreversible value that is derived from the user's database password. It is also
called a password verifier. This value is used during password authentication to the
database to prove the identity of the connecting user.

Database Security Administrator
The highest level administrator for database enterprise user security. This
administrator has permissions on all of the enterprise domains and is responsible for:

• Administering the Oracle DBSecurityAdmins and OracleDBCreators groups.

Creating new enterprise domains.

• Moving databases from one domain to another within the enterprise.

decryption
The process of converting the contents of an encrypted message (ciphertext) back into
its original readable format (plaintext).

definer's rights procedure
A procedure (or program unit) that executes with the privileges of its owner, not its
current user. Definer's rights subprograms are bound to the schema in which they are
located.

For example, assume that user blake and user scott each have a table called dept in
their respective user schemas. If user blake calls a definer's rights procedure, which is
owned by user scott, to update the dept table, then this procedure will update the
dept table in the scott schema. This is because the procedure executes with the
privileges of the user who owns (defined) the procedure (that is, scott).

See also invoker's rights procedure.

DES
See Data Encryption Standard (DES)

dictionary attack
A common attack on passwords. The attacker creates a list of many common
passwords and encrypts them. Then the attacker steals a file containing encrypted
passwords and compares it to his list of encrypted common passwords. If any of the
encrypted password values (called verifiers) match, then the attacker can steal the
corresponding password. Dictionary attacks can be avoided by using "salt" on the
password before encryption. See salt.

Diffie-Hellman key negotiation algorithm
This is a method that lets two parties communicating over an insecure channel to
agree upon a random number known only to them. Though the parties exchange
information over the insecure channel during execution of the Diffie-Hellman key
negotiation algorithm, it is computationally infeasible for an attacker to deduce the

Glossary

Glossary-7

random number they agree upon by analyzing their network communications. Oracle
Database uses the Diffie-Hellman key negotiation algorithm to generate session keys.

digital signature
A digital signature is created when a public key algorithm is used to sign the sender's
message with the sender's private key. The digital signature assures that the
document is authentic, has not been forged by another entity, has not been altered,
and cannot be repudiated by the sender.

directory information tree (DIT)
A hierarchical tree-like structure consisting of the DNs of the entries in an LDAP
directory. See distinguished name (DN)

directory naming
A naming method that resolves a database service, net service name, or net service
alias to a connect descriptor stored in a central directory server. A

directory naming context
A subtree which is of significance within a directory server. It is usually the top of some
organizational subtree. Some directories only permit one such context which is fixed;
others permit none to many to be configured by the directory administrator.

distinguished name (DN)
The unique name of a directory entry. It is comprised of all of the individual names of
the parent entries back to the root entry of the directory information tree. See directory
information tree (DIT)

domain
Any tree or subtree within the Domain Name System (DNS) namespace. Domain most
commonly refers to a group of computers whose host names share a common suffix,
the domain name.

Domain Name System (DNS)
A system for naming computers and network services that is organized into a
hierarchy of domains. DNS is used in TCP/IP networks to locate computers through
user-friendly names. DNS resolves a friendly name into an IP address, which is
understood by computers.

In Oracle Net Services, DNS translates the host name in a TCP/IP address into an IP
address.

denial-of-service (DoS) attack
An attack that renders a Web site inaccessible or unusable. The denial-of-service
attack can occur in many different ways but frequently includes attacks that cause the
site to crash, reject connections, or perform too slowly to be usable. DoS attacks come
in two forms:

• Basic denial-of-service attacks, which require only one or a few computers

Glossary

Glossary-8

• Distributed DoS attacks, which require many computers to execute

directly granted role
A role that has been granted directly to the user, as opposed to an indirectly granted
role.

encrypted text
Text that has been encrypted, using an encryption algorithm; the output stream of an
encryption process. On its face, it is not readable or decipherable, without first being
subject to decryption. Also called ciphertext. Encrypted text ultimately originates as
plaintext.

encryption
Disguising a message, rendering it unreadable to all but the intended recipient.

enterprise domain
A directory construct that consists of a group of databases and enterprise roles. A
database should only exist in one enterprise domain at any time. Enterprise domains
are different from Windows 2000 domains, which are collections of computers that
share a common directory database.

Enterprise Domain Administrator
User authorized to manage a specific enterprise domain, including the authority to add
new enterprise domain administrators.

enterprise role
Access privileges assigned to enterprise users. A set of Oracle role-based
authorizations across one or more databases in an enterprise domain. Enterprise roles
are stored in the directory and contain one or more global roles.

enterprise user
A user defined and managed in a directory. Each enterprise user has a unique identify
across an enterprise.

entry
The building block of a directory, it contains information about an object of interest to
directory users.

external authentication
Verification of a user identity by a third party authentication service, such as Kerberos
or RADIUS.

Federal Information Processing Standard (FIPS)
A U.S. government standard that defines security requirements for cryptographic
modules—employed within a security system protecting unclassified information within
computer and telecommunication systems. Published by the National Institute of
Standards and Technology (NIST).

Glossary

Glossary-9

FIPS
See Federal Information Processing Standard (FIPS).

forced cleanup
The ability to forcibly cleanup (that is, remove) all audit records from the database. To
accomplish this, you set the USE_LAST_ARCH_TIMESTAMP argument of the
DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL procedure to FALSE.

See also purge job.

forest
A group of one or more Active Directory trees that trust each other. All trees in a forest
share a common schema, configuration, and global catalog. When a forest contains
multiple trees, the trees do not form a contiguous namespace. All trees in a given
forest trust each other through transitive bidirectional trust relationships.

Forwardable Ticket Granting Ticket
A special Kerberos ticket that can be forwarded to proxies, permitting the proxy to
obtain additional Kerberos tickets on behalf of the client for proxy authentication.

See also Kerberos ticket.

global role
A role managed in a directory, but its privileges are contained within a single database.
A global role is created in a database by using the following syntax:

CREATE ROLE role_name IDENTIFIED GLOBALLY;

global application context
A name-value pair that enables application context values to be accessible across
database sessions.

See also application context.

grid computing
A computing architecture that coordinates large numbers of servers and storage to act
as a single large computer. Oracle Grid Computing creates a flexible, on-demand
computing resource for all enterprise computing needs. Applications running on the
Oracle Database grid computing infrastructure can take advantage of common
infrastructure services for failover, software provisioning, and management. Oracle
Grid Computing analyzes demand for resources and adjusts supply accordingly.

HTTP
Hypertext Transfer Protocol: The set of rules for exchanging files (text, graphic
images, sound, video, and other multimedia files) on the World Wide Web. Relative to
the TCP/IP suite of protocols (which are the basis for information exchange on the
Internet), HTTP is an application protocol.

Glossary

Glossary-10

HTTPS
The use of Secure Sockets Layer (SSL) as a sublayer under the regular HTTP
application layer.

indirectly granted role
A role granted to a user through another role that has already been granted to this
user. Then you grant the role2 and role3 roles to the role1 role. Roles role2 and
role3 are now under role1. This means psmith has been indirectly granted the roles
role2 and role3, in addition to the direct grant of role1. Enabling the direct role1 for
psmith enables the indirect roles role2 and role3 for this user as well.

identity
The combination of the public key and any other public information for an entity. The
public information may include user identification data such as, for example, an e-mail
address. A user certified as being the entity it claims to be.

identity management
The creation, management, and use of online, or digital, entities. Identity management
involves securely managing the full life cycle of a digital identity from creation
(provisioning of digital identities) to maintenance (enforcing organizational policies
regarding access to electronic resources), and, finally, to termination.

identity management realm
A subtree in Oracle Internet Directory, including not only an Oracle Context, but also
additional subtrees for users and groups, each of which are protected with access
control lists.

initial ticket
In Kerberos authentication, an initial ticket or ticket granting ticket (TGT) identifies the
user as having the right to ask for additional service tickets. No tickets can be obtained
without an initial ticket. An initial ticket is retrieved by running the okinit program and
providing a password.

instance
Every running Oracle database is associated with an Oracle instance. When a
database is started on a database server (regardless of the type of computer), Oracle
allocates a memory area called the System Global Area (SGA) and starts an Oracle
process. This combination of the SGA and an Oracle process is called an instance.
The memory and the process of an instance manage the associated database's data
efficiently and serve the one or more users of the database.

integrity
A guarantee that the contents of a message received were not altered from the
contents of the original message sent.

Glossary

Glossary-11

invoker's rights procedure
A procedure (or program unit) that executes with the privileges of the current user, that
is, the user who invokes the procedure. These procedures are not bound to a
particular schema. They can be run by a variety of users and allow multiple users to
manage their own data by using centralized application logic. Invoker's rights
procedures are created with the AUTHID clause in the declaration section of the
procedure code.

For example, assume that user blake and user scott each have a table called dept in
their respective user schemas. If user blake calls an invoker's rights procedure, which
is owned by user scott, to update the dept table, then this procedure will update the
dept table in the blake schema. This is because the procedure executes with the
privileges of the user who invoked the procedure (that is, blake.).

See also definer's rights procedure.

java code obfuscation
Java code obfuscation is used to protect Java programs from reverse engineering. A
special program (an obfuscator) is used to scramble Java symbols found in the code.
The process leaves the original program structure intact, letting the program run
correctly while changing the names of the classes, methods, and variables in order to
hide the intended behavior. Although it is possible to decompile and read non-
obfuscated Java code, the obfuscated Java code is sufficiently difficult to decompile to
satisfy U.S. government export controls.

Java Database Connectivity (JDBC)
An industry-standard Java interface for connecting to a relational database from a
Java program, defined by Sun Microsystems.

JDBC
See Java Database Connectivity (JDBC)

KDC
See Key Distribution Center (KDC).

Kerberos
A network authentication service developed under Massachusetts Institute of
Technology's Project Athena that strengthens security in distributed environments.
Kerberos is a trusted third-party authentication system that relies on shared secrets
and assumes that the third party is secure. It provides single sign-on capabilities and
database link authentication (MIT Kerberos only) for users, provides centralized
password storage, and enhances PC security.

Kerberos ticket
A temporary set of electronic credentials that verify the identity of a client for a
particular service. Also referred to as a service ticket.

Glossary

Glossary-12

Key Distribution Center (KDC)
In Kerberos authentication, the KDC maintains a list of user principals and is contacted
through the kinit (okinit is the Oracle version) program for the user's initial ticket.
Frequently, the KDC and the Ticket Granting Service are combined into the same
entity and are simply referred to as the KDC. The Ticket Granting Service maintains a
list of service principals and is contacted when a user wants to authenticate to a server
providing such a service. The KDC is a trusted third party that must run on a secure
host. It creates ticket-granting tickets and service tickets.

See also Kerberos ticket.

key pair
A public key and its associated private key. See public and private key pair.

keytab file
A Kerberos key table file containing one or more service keys. Hosts or services use
keytab files in the same way as users use their passwords.

kinstance
An instantiation or location of a Kerberos authenticated service. This is an arbitrary
string, but the host Computer name for a service is typically specified.

kservice
An arbitrary name of a Kerberos service object.

last archive timestamp
A timestamp that indicates the timestamp of the last archived audit record. For the
database audit trail, this timestamp indicates the last audit record archived. For
operating system audit files, it indicates the highest last modified timestamp property
of the audit file that was archived. To set this timestamp, you use the
DBMS_AUDIT_MGMT.SET_LAST_ARCHIVE_TIMESTAMP PL/SQL procedure.

See also purge job.

LDAP
See Lightweight Directory Access Protocol (LDAP)

ldap.ora file
A file created by Oracle Net Configuration Assistant that contains the following
directory server access information:

• Type of directory server

• Location of the directory server

• Default identity management realm or Oracle Context (including ports) that the
client or server will use

Glossary

Glossary-13

Lightweight Directory Access Protocol (LDAP)
A standard, extensible directory access protocol. It is a common language that LDAP
clients and servers use to communicate. The framework of design conventions
supporting industry-standard directory products, such as the Oracle Internet Directory.

listener
A process that resides on the server whose responsibility is to listen for incoming client
connection requests and manage the traffic to the server.

Every time a client requests a network session with a server, a listener receives the
actual request. If the client information matches the listener information, then the
listener grants a connection to the server.

listener.ora file
A configuration file for the listener that identifies the:

• Listener name

• Protocol addresses that it is accepting connection requests on

• Services it is listening for

The listener.ora file typically resides in $ORACLE_HOME/network/admin on UNIX
platforms and ORACLE_BASE\ORACLE_HOME\network\admin on Windows.

lightweight user session
A user session that contains only information pertinent to the application that the user
is logging onto. The lightweight user session does not hold its own database
resources, such as transactions and cursors; hence it is considered "lightweight."
Lightweight user sessions consume far less system resources than traditional
database session. Because lightweight user sessions consume much fewer server
resources, a lightweight user session can be dedicated to each end user and can
persist for as long as the application deems necessary.

local privilege grant
A privilege that applies only to the PDB in which it was granted.

See also common privilege grant.

local role
In a CDB, a role that exists only in a single PDB, just as a role in a non-CDB exists
only in the non-CDB. Unlike a common role, a local role may only contain roles and
privileges that apply within the container in which the role exists.

local user
In a CDB, any user that is not a common user.

man-in-the-middle
A security attack characterized by the third-party, surreptitious interception of a
message, wherein the third-party, the man-in-the-middle, decrypts the message, re-

Glossary

Glossary-14

encrypts it (with or without alteration of the original message), and re-transmits it to the
originally-intended recipient—all without the knowledge of the legitimate sender and
receiver. This type of security attack works only in the absence of authentication.

mandatory auditing
Activities that are audited by default. Examples are modifications to unified audit trail
policies (such as ALTER AUDIT POLICY statements) and top level statements by the
administrative users SYS, SYSDBA, SYSOPER, SYSASM, SYSBACKUP, SYSDG, and SYSKM, until
the database opens. See "Activities That Are Mandatorily Audited" for more
information.

MD5
Message Digest 5. An algorithm that assures data integrity by generating a 128-bit
cryptographic message digest value from given data. If as little as a single bit value in
the data is modified, the MD5 checksum for the data changes. Forgery of data in a
way that will cause MD5 to generate the same result as that for the original data is
considered computationally infeasible.

message authentication code
Also known as data authentication code (DAC). A checksumming with the addition of a
secret key. Only someone with the key can verify the cryptographic checksum.

message digest
See checksumming

CDB
See CDB.

namespace
In Oracle Database security, the name of an application context. You create this name
in a CREATE CONTEXT statement.

naming method
The resolution method used by a client application to resolve a connect identifier to a
connect descriptor when attempting to connect to a database service.

National Institute of Standards and Technology (NIST)
An agency within the U.S. Department of Commerce responsible for the development
of security standards related to the design, acquisition, and implementation of
cryptographic-based security systems within computer and telecommunication
systems, operated by a Federal agency or by a contractor of a Federal agency or
other organization that processes information on behalf of the Federal Government to
accomplish a Federal function.

net service alias
An alternative name for a directory naming object in a directory server. A directory
server stores net service aliases for any defined net service name or database service.

Glossary

Glossary-15

A net service alias entry does not have connect descriptor information. Instead, it only
references the location of the object for which it is an alias. When a client requests a
directory lookup of a net service alias, the directory determines that the entry is a net
service alias and completes the lookup as if it was actually the entry it is referencing.

net service name
A simple name for a service that resolves to a connect descriptor. Users initiate a
connect request by passing a user name and password along with a net service name
in a connect string for the service to which they want to connect:

CONNECT username@net_service_name
Enter password: password

Depending on your needs, net service names can be stored in a variety of places,
including:

• Local configuration file, tnsnames.ora, on each client

• Directory server

• External naming service, such as NIS

network authentication service
A means for authenticating clients to servers, servers to servers, and users to both
clients and servers in distributed environments. A network authentication service is a
repository for storing information about users and the services on different servers to
which they have access, as well as information about clients and servers on the
network. An authentication server can be a physically separate computer, or it can be
a facility co-located on another server within the system. To ensure availability, some
authentication services may be replicated to avoid a single point of failure.

network listener
A listener on a server that listens for connection requests for one or more databases
on one or more protocols. See listener.

NIST
See National Institute of Standards and Technology (NIST).

non-CDB
An Oracle database that is not a CDB.

non-repudiation
Incontestable proof of the origin, delivery, submission, or transmission of a message.

obfuscation
A process by which information is scrambled into a non-readable form, such that it is
extremely difficult to de-scramble if the algorithm used for scrambling is not known.

Glossary

Glossary-16

obfuscator
A special program used to obfuscate Java source code. See obfuscation.

object class
A named group of attributes. When you want to assign attributes to an entry, you do
so by assigning to that entry the object classes that hold those attributes. All objects
associated with the same object class share the same attributes.

Oracle Context
1. An entry in an LDAP-compliant internet directory called cn=OracleContext, under
which all Oracle software relevant information is kept, including entries for Oracle Net
Services directory naming and checksumming security.

There can be one or more Oracle Contexts in a directory. An Oracle Context is usually
located in an identity management realm.

Oracle Virtual Private Database
A set of features that enables you to create security policies to control database
access at the row and column level. Essentially, Oracle Virtual Private Database adds
a dynamic WHERE clause to a SQL statement that is issued against the table, view, or
synonym to which an Oracle Virtual Private Database security policy was applied.

Oracle Net Services
An Oracle product that enables two or more computers that run the Oracle server or
Oracle tools such as Designer/2000 to exchange data through a third-party network.
Oracle Net Services support distributed processing and distributed database
capability. Oracle Net Services is an open system because it is independent of the
communication protocol, and users can interface Oracle Net to many network
environments.

Oracle PKI certificate usages
Defines Oracle application types that a certificate supports.

Password-Accessible Domains List
A group of enterprise domains configured to accept connections from password-
authenticated users.

PCMCIA cards
Small credit card-sized computing devices that comply with the Personal Computer
Memory Card International Association (PCMCIA) standard. These devices, also
called PC cards, are used for adding memory, modems, or as hardware security
modules. PCMCIA cards that are used as hardware security modules securely store
the private key component of a public and private key pair and some also perform the
cryptographic operations as well.

PDB
An individual database that is part of a CDB.

Glossary

Glossary-17

See also root.

peer identity
SSL connect sessions are between a particular client and a particular server. The
identity of the peer may have been established as part of session setup. Peers are
identified by X.509 certificate chains.

PEM
The Internet Privacy-Enhanced Mail protocols standard, adopted by the Internet
Architecture Board to provide secure electronic mail over the Internet. The PEM
protocols provide for encryption, authentication, message integrity, and key
management. PEM is an inclusive standard, intended to be compatible with a wide
range of key-management approaches, including both symmetric and public-key
schemes to encrypt data-encrypting keys. The specifications for PEM come from four
Internet Engineering Task Force (IETF) documents: RFCs 1421, 1422, 1423, and
1424.

PKCS #10
An RSA Security, Inc., Public-Key Cryptography Standards (PKCS) specification that
describes a syntax for certification requests. A certification request consists of a
distinguished name, a public key, and optionally a set of attributes, collectively signed
by the entity requesting certification. Certification requests are referred to as certificate
requests in this manual. See certificate request

PKCS #11
An RSA Security, Inc., Public-Key Cryptography Standards (PKCS) specification that
defines an application programming interface (API), called Cryptoki, to devices which
hold cryptographic information and perform cryptographic operations. See PCMCIA
cards

PKCS #12
An RSA Security, Inc., Public-Key Cryptography Standards (PKCS) specification that
describes a transfer syntax for storing and transferring personal authentication
credentials—typically in a format called a wallet.

PKI
See public key infrastructure (PKI)

plaintext
Message text that has not been encrypted.

pluggable database
See PDB.

Glossary

Glossary-18

principal
A string that uniquely identifies a client or server to which a set of Kerberos credentials
is assigned. It generally has three parts: kservice/kinstance@REALM. In the case of a
user, kservice is the user name. See also kservice, kinstance, and realm

private key
In public-key cryptography, this key is the secret key. It is primarily used for decryption
but is also used for encryption with digital signatures. See public and private key pair.

proxy authentication
A process typically employed in an environment with a middle tier such as a firewall,
wherein the end user authenticates to the middle tier, which thence authenticates to
the directory on the user's behalf—as its proxy. The middle tier logs into the directory
as a proxy user. A proxy user can switch identities and, once logged into the directory,
switch to the end user's identity. It can perform operations on the end user's behalf,
using the authorization appropriate to that particular end user.

public key
In public-key cryptography, this key is made public to all. It is primarily used for
encryption but can be used for verifying signatures. See public and private key pair.

public and private key pair
A set of two numbers used for encryption and decryption, where one is called the
private key and the other is called the public key. Public keys are typically made widely
available, while private keys are held by their respective owners. Though
mathematically related, it is generally viewed as computationally infeasible to derive
the private key from the public key. Public and private keys are used only with
asymmetric encryption algorithms, also called public-key encryption algorithms, or
public-key cryptosystems. Data encrypted with either a public key or a private key from
a key pair can be decrypted with its associated key from the key-pair. However, data
encrypted with a public key cannot be decrypted with the same public key, and data
enwrapped with a private key cannot be decrypted with the same private key.

public key infrastructure (PKI)
Information security technology utilizing the principles of public key cryptography.
Public key cryptography involves encrypting and decrypting information using a shared
public and private key pair. Provides for secure, private communications within a
public network.

PUBLIC role
A special role that every database account automatically has. By default, it has no
privileges assigned to it, but it does have grants to many Java objects. You cannot
drop the PUBLIC role, and a manual grant or revoke of this role has no meaning,
because the user account will always assume this role. Because all database user
accounts assume the PUBLIC role, it does not appear in the DBA_ROLES and
SESSION_ROLES data dictionary views.

Glossary

Glossary-19

purge job
A database job created by the DBMS_AUDIT_MGMT.CREATE_PURGE_JOB procedure, which
manages the deletion of the audit trail. A database administrator schedules, enables,
and disables the purge job. When the purge job becomes active, it deletes audit
records from the database audit tables, or it deletes Oracle Database operating
system audit files.

See also forced cleanup, last archive timestamp.

RADIUS
Remote Authentication Dial-In User Service (RADIUS) is a client/server protocol and
software that enables remote access servers to communicate with a central server to
authenticate dial-in users and authorize their access to the requested system or
service.

realm
1. Short for identity management realm. 2. A Kerberos object. A set of clients and
servers operating under a single key distribution center/ticket-granting service (KDC/
TGS). Services (see kservice) in different realms that share the same name are
unique.

realm Oracle Context
An Oracle Context that is part of an identity management realm in Oracle Internet
Directory.

registry
A Windows repository that stores configuration information for a computer.

remote computer
A computer on a network other than the local computer.

role
A named group of related privileges that you grant as a group to users or other roles.

See also indirectly granted role.

root
In a multitenant environment, a collection of Oracle-supplied and user-created
schemas to which all PDBs belong. The container database has only one root. Each
PDB is considered to be a child of this root. Root has an entry in its data dictionary that
indicates the existence of each PDB.

See also container, CDB, PDB.

root key certificate
See trusted certificate

Glossary

Glossary-20

salt
In cryptography, a way to strengthen the security of encrypted data. Salt is a random
string that is added to the data before it is encrypted, making it more difficult for
attackers to steal the data by matching patterns of ciphertext to known ciphertext
samples. Salt is often also added to passwords, before the passwords are encrypted,
to avoid dictionary attacks, a method that unethical hackers (attackers) use to steal
passwords. The encrypted salted values make it difficult for attackers to match the
hash value of encrypted passwords (sometimes called verifiers) with their dictionary
lists of common password hash values.

schema
1. Database schema: A named collection of objects, such as tables, views, clusters,
procedures, packages, attributes, object classes, and their corresponding matching
rules, which are associated with a particular user. 2. LDAP directory schema: The
collection of attributes, object classes, and their corresponding matching rules.

schema mapping
See user-schema mapping

secure application role
A database role that is granted to application users, but secured by using an invoker's
right stored procedure to retrieve the role password from a database table. A secure
application role password is not embedded in the application.

See also application role.

Secure Hash Algorithm (SHA)
An algorithm that assures data integrity by generating a 160-bit cryptographic
message digest value from given data. If as little as a single bit in the data is modified,
the Secure Hash Algorithm checksum for the data changes. Forgery of a given data
set in a way that will cause the Secure Hash Algorithm to generate the same result as
that for the original data is considered computationally infeasible.

An algorithm that takes a message of less than 264 bits in length and produces a 160-
bit message digest. The algorithm is slightly slower than MD5, but the larger message
digest makes it more secure against brute-force collision and inversion attacks.

Secure Sockets Layer (SSL)
An industry standard protocol designed by Netscape Communications Corporation for
securing network connections. SSL provides authentication, encryption, and data
integrity using public key infrastructure (PKI).

The Transport Layer Security (TLS) protocol is the successor to the SSL protocol.

separation of duty
Restricting activities only to those users who must perform them. For example, you
should not grant the SYSDBA administrative privilege to any user. Only grant this
privilege to administrative users. Separation of duty is required by many compliance

Glossary

Glossary-21

policies. See "Guidelines for Securing User Accounts and Privileges" for guidelines on
granting privileges to the correct users.

server
A provider of a service.

service
1. A network resource used by clients; for example, an Oracle database server.

2. An executable process installed in the Windows registry and administered by
Windows. Once a service is created and started, it can run even when no user is
logged on to the computer.

service name
For Kerberos-based authentication, the kservice portion of a service principal.

service principal
See principal

service key table
In Kerberos authentication, a service key table is a list of service principals that exist
on a kinstance. This information must be extracted from Kerberos and copied to the
Oracle server computer before Kerberos can be used by Oracle.

service ticket
A service ticket is trusted information used to authenticate the client, to a specific
service or server, for a predetermined period of time. It is obtained from the KDC using
the initial ticket. See also Kerberos ticket.

session key
A key shared by at least two parties (usually a client and a server) that is used for data
encryption for the duration of a single communication session. Session keys are
typically used to encrypt network traffic; a client and a server can negotiate a session
key at the beginning of a session, and that key is used to encrypt all network traffic
between the parties for that session. If the client and server communicate again in a
new session, they negotiate a new session key.

session layer
A network layer that provides the services needed by the presentation layer entities
that enable them to organize and synchronize their dialogue and manage their data
exchange. This layer establishes, manages, and terminates network sessions between
the client and server. An example of a session layer is Network Session.

SHA
See Secure Hash Algorithm (SHA).

Glossary

Glossary-22

shared schema
A database or application schema that can be used by multiple enterprise users.
Oracle Database supports the mapping of multiple enterprise users to the same
shared schema on a database, which lets an administrator avoid creating an account
for each user in every database. Instead, the administrator can create a user in one
location, the enterprise directory, and map the user to a shared schema that other
enterprise users can also map to. Sometimes called user/schema separation.

single key-pair wallet
A PKCS #12-format wallet that contains a single user certificate and its associated
private key. The public key is imbedded in the certificate.

single password authentication
The ability of a user to authenticate with multiple databases by using a single
password. In the Oracle Database implementation, the password is stored in an
LDAP-compliant directory and protected with encryption and Access Control Lists.

single sign-on (SSO)
The ability of a user to authenticate once, combined with strong authentication
occurring transparently in subsequent connections to other databases or applications.
Single sign-on lets a user access multiple accounts and applications with a single
password, entered during a single connection. Single password, single authentication.
Oracle Database supports Kerberos and SSL-based single sign-on.

smart card
A plastic card (like a credit card) with an embedded integrated circuit for storing
information, including such information as user names and passwords, and also for
performing computations associated with authentication exchanges. A smart card is
read by a hardware device at any client or server.

A smartcard can generate random numbers which can be used as one-time use
passwords. In this case, smartcards are synchronized with a service on the server so
that the server expects the same password generated by the smart card.

sniffer
Device used to surreptitiously listen to or capture private data traffic from a network.

SSO
See single sign-on (SSO)

System Global Area (SGA)
A group of shared memory structures that contain data and control information for an
Oracle instance.

system identifier (SID)
A unique name for an Oracle instance. To switch between Oracle databases, users
must specify the desired SID. The SID is included in the CONNECT DATA parts of the

Glossary

Glossary-23

connect descriptor in a tnsnames.ora file, and in the definition of the network listener in
a listener.ora file.

ticket
A piece of information that helps identify who the owner is. See initial ticket and
service ticket.

tnsnames.ora
A file that contains connect descriptors; each connect descriptor is mapped to a net
service name. The file may be maintained centrally or locally, for use by all or
individual clients. This file typically resides in the following locations depending on your
platform:

• (UNIX) ORACLE_HOME/network/admin

• (Windows) ORACLE_BASE\ORACLE_HOME\network\admin

token card
A device for providing improved ease-of-use for users through several different
mechanisms. Some token cards offer one-time passwords that are synchronized with
an authentication service. The server can verify the password provided by the token
card at any given time by contacting the authentication service. Other token cards
operate on a challenge-response basis. In this case, the server offers a challenge (a
number) which the user types into the token card. The token card then provides
another number (cryptographically-derived from the challenge), which the user then
offers to the server.

transport layer
A networking layer that maintains end-to-end reliability through data flow control and
error recovery methods. Oracle Net Services uses Oracle protocol supports for the
transport layer.

Transport Layer Security (TLS)
An industry standard protocol for securing network connections. The TLS protocol is a
successor to the SSL protocol. It provides authentication, encryption, and data integrity
using public key infrastructure (PKI). The TLS protocol is developed by the Internet
Engineering Task Force (IETF).

trusted certificate
A trusted certificate, sometimes called a root key certificate, is a third party identity that
is qualified with a level of trust. The trusted certificate is used when an identity is being
validated as the entity it claims to be. Typically, the certificate authorities you trust are
called trusted certificates. If there are several levels of trusted certificates, a trusted
certificate at a lower level in the certificate chain does not need to have all its higher
level certificates reverified.

trusted certificate authority
See certificate authority.

Glossary

Glossary-24

trust point
See trusted certificate.

user name
A name that can connect to and access objects in a database.

user-schema mapping
An LDAP directory entry that contains a pair of values: the base in the directory at
which users exist, and the name of the database schema to which they are mapped.
The users referenced in the mapping are connected to the specified schema when
they connect to the database. User-schema mapping entries can apply only to one
database or they can apply to all databases in a domain. See shared schema.

user/schema separation
See shared schema.

user search base
The node in the LDAP directory under which the user resides.

views
Selective presentations of one or more tables (or other views), showing both their
structure and their data.

wallet
A data structure used to store and manage security credentials for an individual entity.

Windows native authentication
An authentication method that enables a client single login access to a Windows
server and a database running on that server.

X.509
An industry-standard specification for digital certificate s.

Glossary

Glossary-25

Index

Symbols
"all permissions", A-3

Numerics
12C password hash version

about, 3-29
12C password version

recommended by Oracle, 3-29

A
about, 6-2, 7-24
about connection, 6-6
ACCEPT_MD5_CERTS sqlnet.ora parameter,

F-3
ACCEPT_SHA1_CERTS sqlnet.ora parameter,

F-3
access configuration, DBCA, 6-18
access configuration, silent mode, 6-19
access configuration, system parameters, 6-17
access control

encryption, problems not solved by, 15-1
enforcing, A-15
object privileges, 4-58
password encryption, 3-3

access control list (ACL), 8-2, 8-4
examples

external network connection for email
alert, 25-103

external network connections, 8-13
wallet access, 8-13

external network services
about, 8-2
advantages, 8-2
affect of upgrade from earlier release,

8-3
email alert for audit violation tutorial,

25-103
finding information about, 8-22
network hosts, using wildcards to

specify, 8-17
ORA-06512 error, 8-21
ORA-24247 error, 8-21

access control list (ACL) (continued)
external network services (continued)
ORA-24247 errors, 8-3
order of precedence, hosts, 8-17
port ranges, 8-18
privilege assignments, about, 8-19
privilege assignments, database

administrators checking, 8-20
privilege assignments, users checking,

8-21
revoking privileges, 8-6

wallet access
about, 8-3
advantages, 8-3
client certificate credentials, using, 8-7
finding information about, 8-22
non-shared wallets, 8-7
password credentials, 8-7
password credentials, using, 8-7
revoking, 8-12
revoking access, 8-12
shared database session, 8-7
wallets with sensitive information, 8-7
wallets without sensitive information, 8-7

account locking
example, 3-10
explicit, 3-11
password management, 3-10
PASSWORD_LOCK_TIME profile

parameter, 3-10
accounting, RADIUS, 22-18
activating checksumming and encryption, 16-5
ad hoc tools

database access, security problems of, 4-48
adapters, 18-5
ADD_SSLV3_TO_DEFAULT sqlnet.ora

parameter, 21-19
ADG_ACCOUNT_INFO_TRACKING initialization

parameter
guideline for securing, A-15

ADM_PARALLEL_EXECUTE_TASK role
about, 4-32

ADMIN OPTION
about, 4-78
revoking privileges, 4-83

Index-1

ADMIN OPTION (continued)
revoking roles, 4-83
roles, 4-46
system privileges, 4-14

administrative accounts
about, 2-33
predefined, listed, 2-33

administrative privileges
about, 4-5
granting to users, 4-5
SYSBACKUP privilege, 4-6
SYSDBA privilege, 4-6
SYSDG privilege, 4-8
SYSKM privilege, 4-9
SYSOPER privilege, 4-6
SYSRAC privilege, 4-9

administrative user passwords
default, importance of changing, A-8

administrative users
auditing, 25-12
last successful login time, 3-43
locked or expired accounts, 3-43
mandatorily audited, 26-3
password complexity verification functions,

3-45
password files, managing, 3-44
password files, multitenant environment, 3-45
password management, 3-43
password profile limits, 3-43

administrator privileges
access, A-16
operating system authentication, 3-50
passwords, 3-50, A-8
SYSDBA and SYSOPER access, centrally

controlling, 3-47
write, on listener.ora file, A-16

Advanced Networking Option (ANO) (Oracle
native encryption), 16-12

AES256 algorithm
converting to in Oracle wallets, F-7

alerts, used in fine-grained audit policy, 25-103
ALTER ANY LIBRARY statement

security guidelines, A-3
ALTER DATABASE DICTIONARY DELETE

CREDENTIALS statement, 10-18
ALTER DATABASE DICTIONARY ENCRYPT

CREDENTIALS statement, 10-18
ALTER DATABASE DICTIONARY REKEY

CREDENTIALS statement, 10-18
ALTER PROCEDURE statement

used for compiling procedures, 4-69
ALTER PROFILE statement

password management, 3-6
ALTER RESOURCE COST statement, 2-29,

2-30

ALTER ROLE statement
changing authorization method, 4-42

ALTER SESSION statement
schema, setting current, 10-24

ALTER USER privilege, 2-19
ALTER USER statement

default roles, 4-92
explicit account unlocking, 3-11
profiles, changing, 3-13
REVOKE CONNECT THROUGH clause,

3-74
altering users, 2-19
ANO encryption

configuring with SSL authentication, 16-12
anonymous, 21-13
ANONYMOUS user account, 2-33
ANSI operations

Oracle Virtual Private Database affect on,
12-46

ANY system privilege
guidelines for security, A-11

application common users
about, 2-3

application containers
application contexts, 11-4
Transport Layer Security, 21-2
Virtual Private Database policies, 12-5

application contexts, 11-7, 11-30, 11-54
about, 11-2
application containers, 11-4
as secure data cache, 11-3
benefits of using, 11-3
bind variables, 12-4
components, 11-2
creating session based, 11-9
DBMS_SESSION.SET_CONTEXT

procedure, 11-14
driving context, 11-57
editions, affect on, 11-3
finding errors by checking trace files, 11-57
finding information about, 11-57
global application contexts

authenticating user for multiple
applications, 11-37

creating, 11-32
logon trigger, creating, 11-16
Oracle Virtual Private Database, used with,

12-4
performance, 12-37
policy groups, used in, 12-16
returning predicate, 12-4
session information, retrieving, 11-12
support for database links, 11-23
types, 11-5

Index

Index-2

application contexts (continued)
users, nondatabase connections, 11-30,

11-38
where values are stored, 11-2

See also client session-based application
contexts, database session-based application
contexts, global application contexts

application developers
CONNECT role change, A-27

application security
finding privilege use by users, 5-2
restricting wallet access to current

application, 8-7
revoking access control privileges from

Oracle wallets, 8-12
sharing wallet with other applications, 8-7
specifying attributes, 11-10

application users who are database users
Oracle Virtual Private Database, how it works

with, 12-51
applications

about security policies for, 10-2
database users, 10-2
enhancing security with, 4-27
object privileges, 10-25
object privileges permitting SQL statements,

10-26
One Big Application User authentication

security considerations, 10-3
security risks of, 10-2

Oracle Virtual Private Database, how it works
with, 12-47

password handling, guidelines, 10-5
password protection strategies, 10-4
privileges, managing, 10-19
roles

multiple, 4-29
privileges, associating with database

roles, 10-23
security, 4-47, 10-3
security considerations for use, 10-2
security limitations, 12-47
security policies, 12-17
validating with security policies, 12-18

architecture, 6-3
archiving

operating system audit files, 26-11
standard audit trail, 26-11
timestamping audit trail, 26-15

ARIA encryption algorithm, 16-2
ASMSNMP user account, 2-33
asynchronous authentication mode in RADIUS,

22-5
attacks

See security attacks

audit files
operating system audit trail

archiving, setting timestamp, 26-15
operating system file

archiving, 26-11
standard audit trail

archiving, setting timestamp, 26-15
records, archiving, 26-11

audit policies, 24-2
See also unified audit policies

audit policies, application contexts
about, 25-30
appearance in audit trail, 25-32
configuring, 25-31
disabling, 25-32
examples, 25-32

audit records
when written to OS files, 26-7

audit trail
archiving, 26-11
capturing syslog records, 26-6
capturing Windows Event Viewer records,

26-6
finding information about audit management,

26-24
finding information about usage, 25-110
SYSLOG records, 26-5
unified

archiving, 26-11
AUDIT_ADMIN role, 4-32
AUDIT_VIEWER role, 4-32
auditing, 25-1

administrators, Database Vault, 25-44
audit options, 25-1
audit trail, sensitive data in, A-20
CDBs, 24-9
committed data, A-22
cursors, affect on auditing, 26-4
database user names, 3-56
Database Vault administrators, 25-44
databases, when unavailable, 26-8
distributed databases and, 24-9
DV_ADMIN role user, 25-44
DV_OWNER role user, 25-44
finding information about audit management,

26-24
finding information about usage, 25-110
fine-grained

See fine-grained auditing, 25-92
functions, 25-17
functions, Oracle Virtual Private Database,

25-19
general steps

commonly used security-relevant
activities, 25-2

Index

3

auditing (continued)
general steps (continued)
specific fine-grained activities, 25-2
SQL statements and other general

activities, 25-1
general steps for, 25-1
guidelines for security, A-20
historical information, A-22
INHERIT PRIVILEGE privilege, 7-8
keeping information manageable, A-21
loading audit records to unified audit trail,

26-8
mandatory auditing, 26-3
multitier environments

See standard auditing, 25-23
One Big Application User authentication,

compromised by, 10-2
operating-system user names, 3-56
Oracle Virtual Private Database policy

functions, 25-19
packages, 25-17
performance, 24-3
PL/SQL packages, 25-17
predefined policies

general steps for using, 25-2
privileges required, 24-8
procedures, 25-17
purging records

example, 26-23
general steps for manual purges, 26-13
general steps for scheduled purges,

26-13
range of focus, 25-1
READ object privileges in policies, 25-20
READ privileges

about, 25-20
how recorded in audit trail, 25-21

recommended settings, A-23
Sarbanes-Oxley Act

auditing, meeting compliance through,
24-2

SELECT privileges
about, 25-20
how recorded in audit trail, 25-21

suspicious activity, A-22
traditional, 25-69
triggers, 25-17
unified audit trail

about, 24-4
VPD predicates

fine-grained audit policies, 25-94
unified audit policies, 25-17

when audit options take effect, 26-2
when records are created, 26-2

See also unified audit policies

auditing, purging records
about, 26-12
cancelling archive timestamp, 26-23
creating audit trail

purge job, 26-14
creating the purge job, 26-17
DBMS_SCHEDULER package, 26-14
deleting a purge job, 26-22
disabling purge jobs, 26-21
enabling purge jobs, 26-21
general steps for, 26-13
purging audit trail manually, 26-18
roadmap, 26-13
scheduling the purge job, 26-17
setting archive timestamp, 26-15
time interval for named purge job, 26-21

AUDSYS user account, 2-33
AUTHENTICATEDUSER role, 4-32
authentication, 3-3, 18-5

about, 3-2
administrators

operating system, 3-50
passwords, 3-50
SYSDBA and SYSOPER access,

centrally controlling, 3-47
by database, 3-52
by SSL, 3-63
client, A-15
client-to-middle tier process, 3-75
configuring multiple methods, 23-4
database administrators, 3-46
databases, using

about, 3-52
advantages, 3-54
procedure, 3-54

directory service, 3-63
directory-based services, 3-59
external authentication

about, 3-65
advantages, 3-66
operating system authentication, 3-67
user creation, 3-67

global authentication
about, 3-62
advantages, 3-64
user creation for private schemas, 3-63
user creation for shared schemas, 3-64

methods, 18-3
middle-tier authentication

proxies, example, 3-77
modes in RADIUS, 22-3
multitier, 3-68
network authentication

Secure Sockets Layer, 3-58
third-party services, 3-58

Index

Index-4

authentication (continued)
One Big Application User, compromised by,

10-2
operating system authentication, 3-61

about, 3-56
advantages, 3-56
disadvantages, 3-56

operating system user in PDBs, 3-61
ORA-28040 errors, 3-32
PDBs, 3-61
proxy user authentication

about, 3-71
expired passwords, 3-74

public key infrastructure, 3-60
RADIUS, 3-59
remote, A-15
schema-only accounts, 3-54

about, 3-55
altering, 3-56
creating users, 3-56

schema-only accounts, users created with,
3-55

specifying when creating a user, 2-10
strong, A-8
SYSDBA on Windows systems, 3-50
Windows native authentication, 3-50

See also passwords, proxy authentication
AUTHENTICATION parameter, C-2
authentication types, 6-4
AUTHID DEFINER clause

used with Oracle Virtual Private Database
functions, 12-4

authorization
about, 4-1
changing for roles, 4-42
global

about, 3-62
advantages, 3-64

multitier, 3-68
omitting for roles, 4-39
operating system, 4-44
roles, about, 4-42

automatic reparse
Oracle Virtual Private Database, how it works

with, 12-47

B
banners

auditing user actions, configuring, 10-30
unauthorized access, configuring, 10-30

BFILEs
guidelines for security, A-11

bind variables
application contexts, used with, 12-4

bind variables (continued)
sensitive columns, 13-19

BLOBS
encrypting, 15-9

C
CAPTURE_ADMIN role, 4-32
cascading revokes, 4-86
catpvf.sql script (password complexity functions),

3-17
CDB common users

about, 2-3
plug-in operations, 2-5

CDB_DBA role, 4-32
CDBs, 2-3

auditing
how affects, 24-9
traditional, 25-69

CBAC role grants with DELEGATE option,
7-17

common privilege grants, 4-15
granting privileges and roles, 4-17
local privilege grants, 4-15
object privileges, 4-17
PDB lockdown profiles, 4-50, 4-52
privilege management, 4-15
privilege profiles, 5-4
revoking privileges, 4-17
roles

altering, 4-42
creating common, 4-22
creating local, 4-23
granting common, 4-24
how common roles work, 4-21
managing, 4-20
privileges required to manage, 4-22
rules for creating common, 4-22

system privileges, 4-16
transparent sensitive data protection, 13-4
user accounts

creating, 2-15
local, 2-5

user privileges, how affects, 4-4
users

CDB common, 2-3
common, 2-3

viewing information about, 4-18
Virtual Private Database

policies, 12-5
Center for Internet Security (CIS), 25-88
certificate, 21-6
certificate authority, 21-5
certificate key algorithm

Secure Sockets Layer, A-19

Index

5

certificate revocation list (CRL)
deleting, F-14
displaying, F-14
displaying list of, F-15
hash value generation, F-15
uploading, F-16

certificate revocation lists, 21-6
manipulating with orapki tool, 21-37
uploading to LDAP directory, 21-37
where to store them, 21-33

certificate revocation status checking
disabling on server, 21-34, 21-36

certificate validation error message
CRL could not be found, 21-42
CRL date verification failed with RSA status,

21-42
CRL signature verification failed with RSA

status, 21-42
Fetch CRL from CRL DP

No CRLs found, 21-42
OID hostname or port number not set, 21-42

certificates, 6-14
creating signed with orapki, F-2

challenge-response authentication in RADIUS,
22-5

change_on_install default password, A-8
character sets

role names, multibyte characters in, 4-39
role passwords, multibyte characters in, 4-43

cipher suites
about, 21-13
authentication methods, 21-14
data integrity, 21-14
encryption algorithms used by, 21-14
procedure for specifying for server, 21-15
Secure Sockets Layer, A-19
Secure Sockets Layer (SSL), C-4
TLS compatibility, 21-14

Cipher Suites
FIPS 140-2 settings, E-3

client authentication in SSL, 21-17
client connections

guidelines for security, A-15
secure external password store, 3-38
securing, A-15

client identifier
setting for applications that use JDBC, 3-83

client identifiers, 11-30
about, 3-81
auditing users, 25-23
consistency between DBMS_SESSION.SET_IDENTIFIER

and
DBMS_APPLICATION_INFO.SET_CLIENT_INFO,
3-83

global application context, independent of, 3-82

client identifiers (continued)
setting with DBMS_SESSION.SET_IDENTIFIER

procedure, 11-30
See also nondatabase users

client session-based application contexts, 11-54
about, 11-54
CLIENTCONTEXT namespace, clearing

value from, 11-57
CLIENTCONTEXT namespace, setting value

in, 11-55
retrieving CLIENTCONTEXT namespace,

11-56
See also application contexts

CLIENT_IDENTIFIER USERENV attribute, 3-82
setting and clearing with DBMS_SESSION

package, 3-83
setting with OCI user session handle

attribute, 3-83
See also USERENV namespace

CLIENTID_OVERWRITE event, 3-83
code based access control (CBAC)

about, 7-12
granting and revoking roles to program unit,

7-18
how works with definers rights, 7-15
how works with invoker’s rights, 7-13
privileges, 7-13
tutorial, 7-19

column masking behavior, 12-14
column specification, 12-15
restrictions, 12-15

columns
granting privileges for selected, 4-82
granting privileges on, 4-82
INSERT privilege and, 4-82
listing users granted to, 4-97
privileges, 4-82
pseudo columns

USER, 4-67
revoking privileges on, 4-85

command line recall attacks, 10-4, 10-6
committed data

auditing, A-22
common privilege grants

about, 4-15
granting, 4-17
revoking, 4-17
with object privileges, 4-17
with system privileges, 4-16

common roles
about, 4-21
auditing, 25-7
creating, 4-22
granting, 4-24
how they work, 4-21

Index

Index-6

common roles (continued)
privileges required to manage, 4-22
rules for creating, 4-22

common user accounts
creating, 2-16
enabling access to other PDBs, 4-18
granting privileges to, 4-15

common users
accessing data in PDBs, 4-19
altering, 2-20

configuration
guidelines for security, A-14

configuration files
Kerberos, C-1
listener.ora, A-16
sample listener.ora file, A-16
server.key encryption file, A-19
tsnames.ora, A-19
typical directory, A-19

configuring
Kerberos authentication service parameters,

20-5
RADIUS authentication, 22-8
SSL, 21-10

on the client, 21-19
on the server, 21-11

thin JDBC support, 17-1
CONNECT role

about, A-24
applications

account provisioning, A-26
affects of, A-25
database upgrades, A-26
installation of, A-26

script to create, 4-32
users

application developers, impact, A-27
client-server applications, impact, A-27
general users, impact, A-27
how affects, A-26

why changed, A-25
connecting

with username and password, 23-1
connection pooling

about, 3-68
finding unnecessarily granted privileges, 5-2
global application contexts, 11-30
nondatabase users, 11-38
proxy authentication, 3-75

container data objects
about, 4-18

container database (CDB)
See CDBs

CONTAINER_DATA objects
viewing information about, 4-18

context profiles
privilege analysis, 5-3

controlled step-in procedures, 7-3
CPU time limit, 2-25
CREATE ANY LIBRARY statement

security guidelines, A-3
CREATE ANY PROCEDURE system privilege,

4-69
CREATE CONTEXT statement

example, 11-8
CREATE LOCKDOWN PROFILE statement,

4-53
CREATE PROCEDURE system privilege, 4-69
CREATE PROFILE statement

password aging and expiration, 3-12
password management, 3-6
passwords, example, 3-13

CREATE ROLE statement
IDENTIFIED EXTERNALLY option, 4-44

CREATE SCHEMA statement
securing, 10-24

CREATE SESSION statement
CONNECT role privilege, A-7
securing, 10-24

CREATE USER statement
explicit account locking, 3-11
IDENTIFIED BY option, 2-10
IDENTIFIED EXTERNALLY option, 2-10

creating Oracle service directory user account,
6-7

CRL, 21-6
CRLAdmins directory administrative group, F-16
CRLs

disabling on server, 21-34, 21-36
where to store them, 21-33

cryptographic hardware devices, 21-7
cryptographic libraries

FIPS 140-2, E-1
CSW_USR_ROLE role, 4-32
CTXAPP role, 4-32
CTXSYS user account, 2-33
cursors

affect on auditing, 26-4
reparsing, for application contexts, 11-16
shared, used with Virtual Private Database,

12-4
CWM_USER role, 4-32

D
data definition language (DDL)

roles and privileges, 4-30
data dictionary

about, 14-1
data dictionary views, 14-6

Index

7

data dictionary (continued)
deleting, 14-4
encrypting sensitive information in,

14-1–14-6
multitenant environment, 14-2
procedure, 14-2
protecting, A-11
rekeying, 14-3
restoring lost keystore, 14-5
securing with

O7_DICTIONARY_ACCESSIBILITY,
4-12

data encryption and integrity parameters
about, B-3
SQLNET.CRYPTO_CHECKSUM_CLIENT, B-6
SQLNET.CRYPTO_CHECKSUM_SERVER, B-5
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT,

B-8
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER,

B-7
SQLNET.ENCRYPTION_CLIENT, B-5
SQLNET.ENCRYPTION_SERVER, B-4
SQLNET.ENCRYPTION_TYPES_CLIENT, B-7
SQLNET.ENCRYPTION_TYPES_SERVER, B-6

Data Encryption Standard (DES)
DES40 encryption algorithm, 16-3
Triple-DES encryption algorithm, 16-3

data files, A-11
guidelines for security, A-11

data manipulation language (DML)
privileges controlling, 4-65

data security
encryption, problems not solved by, 15-3

database administrators (DBAs)
access, controlling, 15-2
authentication, 3-46
malicious, encryption not solved by, 15-2

Database Configuration Assistant (DBCA)
default passwords, changing, A-8
user accounts, automatically locking and

expiring, A-3
database links

application context support, 11-23
application contexts, 11-14
authenticating with Kerberos, 3-59
authenticating with third-party services, 3-58
definer’s rights procedures, 7-24
global user authentication, 3-64
object privileges, 4-58
operating system accounts, care needed,

3-56
RADIUS not supported, 22-1
sensitive credential data

about, 14-1
data dictionary views, 14-6

database links (continued)
sensitive credential data (continued)
deleting, 14-4
encrypting, 14-2
multitenant environment, 14-2
rekeying, 14-3
restoring functioning of after lost

keystore, 14-5
session-based application contexts,

accessing, 11-14
database session-based application contexts,

11-7
about, 11-7
cleaning up after user exits, 11-7
components, 11-7
database links, 11-14
dynamic SQL, 11-13
externalized, using, 11-29
how to use, 11-6
initializing externally, 11-23
initializing globally, 11-25
ownership, 11-8
parallel queries, 11-13
PL/SQL package creation, 11-10
session information, setting, 11-14
SYS_CONTEXT function, 11-12
trusted procedure, 11-2
tutorial, 11-18

See also application contexts
database upgrades and CONNECT role, A-26
databases

access control
password encryption, 3-3

additional security resources, 1-3
authentication, 3-52
database user and application user, 10-2
default password security settings, 3-8

DBCA-created databases, 3-8
manually-created databases, 3-8

default security features, summary, 1-1
granting privileges, 4-77
granting roles, 4-77
limitations on usage, 2-24
schema-only accounts, 3-54
security and schemas, 10-24
security embedded, advantages of, 10-3
security policies based on, 12-3

DATAPUMP_EXP_FULL_DATABASE role, 4-32
DATAPUMP_IMP_FULL_DATABASE role, 4-32
DBA role

about, 4-32
DBA_CONTAINER_DATA data dictionary view,

4-18
DBA_ROLE_PRIVS view

application privileges, finding, 10-19

Index

Index-8

DBA_ROLES data dictionary view
PUBLIC role, 4-14

DBFS_ROLE role, 4-32
DBMS_CREDENTIAL.CREATE_CREDENTIAL

procedure, 10-15
DBMS_CRYPTO package

examples, 15-14
DBMS_CRYPTO PL/SQL package

enabling for FIPS 140-2, E-1
DBMS_FGA package

about, 25-96
ADD_POLICY procedure, 25-98
DISABLE_POLICY procedure, 25-101
DROP_POLICY procedure, 25-102
editions, 25-97
ENABLE_POLICY procedure, 25-102
PDBs, 25-97

DBMS_NETWORK_ACL_ADMIN.REMOVE_HO
ST_ACE procedure, 8-6

DBMS_PRIVILEGE_CAPTURE PL/SQL
package, 5-5

DBMS_RLS.ADD_POLICY
sec_relevant_cols parameter, 12-13
sec_relevant_cols_opt parameter, 12-15

DBMS_RLS.ADD_POLICY procedure
transparent sensitive data protection polices,

13-24
DBMS_SESSION package

client identifiers, using, 3-83
global application context, used in, 11-33
SET_CONTEXT procedure

about, 11-14
DBMS_SESSION.SET_CONTEXT procedure

about, 11-14
syntax, 11-14
username and client_id settings, 11-34

DBMS_SESSION.SET_IDENTIFIER procedure
client session ID, setting, 11-30
DBMS_APPLICATION.SET_CLIENT_INFO

value, overwritten by, 3-83
DBSNMP user account

about, 2-33
password usage, A-8

DDL
See data definition language

debugging
Java stored procedures, 8-21
PL/SQL stored procedures, 8-21

default command rules
ORA_DV_AUDPOL2 predefined audit policy

for, 25-91
default passwords, A-8

change_on_install or manager passwords,
A-8

changing, importance of, 3-6

default passwords (continued)
finding, 3-6

default permissions, A-11
default profiles

about, 3-7
default realms

ORA_DV_AUDPOL2 predefined audit policy
for, 25-91

default roles
setting for user, 2-19
specifying, 4-92

default users
accounts, A-3
Enterprise Manager accounts, A-3
passwords, A-8

defaults
tablespace quota, 2-12
user tablespaces, 2-10

definer’s rights
about, 7-2
code based access control

about, 7-12
granting and revoking roles to program

unit, 7-18
how code based access control works,

7-15
compared with invoker’s rights, 7-1
example of when to use, 7-2
procedure privileges, used with, 7-2
procedure security, 7-2
schema privileges for, 7-2
secure application roles, 10-21
used with Oracle Virtual Private Database

functions, 12-4
views, 7-9

definer’s rights, database links
revokes of INHERIT [ANY] REMOTE

PRIVILEGES, 7-26
grants of INHERIT ANY REMOTE

PRIVILEGES, 7-26
grants of INHERIT ANY REMOTE

PRIVILEGES on connected user to
current user, example, 7-25

grants of INHERIT REMOTE PRIVILEGES to
other users, 7-25

revoking INHERIT REMOTE PRIVILEGES
from PUBLIC, example, 7-27

revoking INHERIT REMOTE PRIVILEGES
on connecting user from procedure
owner, example, 7-27

tutorial, 7-28
definers’s rights, database links

about, 7-24
ORA-25433 error, 7-24

Index

9

DELETE_CATALOG_ROLE role
SYS schema objects, enabling access to,

4-13
denial of service (DoS) attacks

about, 8
denial-of-service (DoS) attacks

bad packets, preventing, 10-27
networks, securing, A-16
password concurrent guesses, 3-3

Department of Defense Database Security
Technical Implementation Guide, 3-18

dictionary protection mechanism, 4-12
dictionary tables

auditing, 25-15
Diffie-Hellman, 21-13
Diffie-Hellman key negotiation algorithm, 16-4
DIP user account, 2-36
direct path load

fine-grained auditing effects on, 25-92
directories

auditing, 25-14
directory authentication, configuring for SYSDBA

or SYSOPER access, 3-47
directory objects

granting EXECUTE privilege on, 4-78
directory-based services authentication, 3-59
disabling unnecessary services

FTP, TFTP, TELNET, A-16
dispatcher processes (Dnnn)

limiting SGA space for each session, 2-25
distributed databases

auditing and, 24-9
DML

See data manipulation language
driving context, 11-57
DROP PROFILE statement

example, 2-30
DROP ROLE statement

example, 4-47
security domain, affected, 4-47

DROP USER statement
about, 2-31
schema objects of dropped user, 2-32

dsi.ora file
about, 6-10

DVF schema
ORA_DV_AUDPOL predefined audit policy

for, 25-90
DVSYS schema

ORA_DV_AUDPOL predefined audit policy
for, 25-90

dynamic Oracle Virtual Private Database policy
types, 12-20

DYNAMIC policy type, 12-20

E
ECB ciphertext encryption mode, 15-11
editions

application contexts, how affects, 11-3
fine-grained auditing packages, results in,

11-34
global application contexts, how affects,

11-34
Oracle Virtual Private Database packages,

results in, 11-34
EJBCLIENT role, 4-32
EM_EXPRESS_ALL role, 4-32
EM_EXPRESS_BASIC role, 4-32
email alert example, 25-103
encrypting information in, 14-1
encryption

access control, 15-1
BLOBS, 15-9
challenges, 15-4
data security, problems not solved by, 15-3
data transfer, A-16
deleted encrypted data, A-11
examples, 15-14
finding information about, 15-19
indexed data, 15-4
key generation, 15-5
key storage, 15-6
key transmission, 15-5
keys, changing, 15-9
malicious database administrators, 15-2
network encryption, 16-4
network traffic, A-16
problems not solved by, 15-1
Transparent Data Encryption, 15-8
transparent tablespace encryption, 15-8

encryption algorithms
ARIA, 16-2
GOST, 16-2
SEED, 16-2

encryption and checksumming
activating, 16-5
negotiating, 16-6
parameter settings, 16-8

encryption of data dictionary sensitive data, 14-1
ENFORCE_CREDENTIAL configuration

parameter
security guideline, A-20

enterprise directory service, 4-45
enterprise roles, 3-62, 4-45
enterprise user management, 10-2
Enterprise User Security

application context, globally initialized, 11-26

Index

Index-10

Enterprise User Security (continued)
proxy authentication

Oracle Virtual Private Database, how it
works with, 12-51

enterprise users
centralized management, 3-62
global role, creating, 4-45
One Big Application User authentication,

compromised by, 10-2
proxy authentication, 3-71
shared schemas, protecting users, 10-25

error messages
ORA-12650, 16-5, 16-7, B-6–B-8
ORA-25433, 7-24

errors
ORA-00036, 25-98
ORA-01720, 4-66
ORA-06512, 8-21, 25-108
ORA-06598, 7-6
ORA-1000, 25-98
ORA-1536, 2-13
ORA-24247, 8-3, 8-21, 25-108
ORA-28009, 4-12
ORA-28017, 2-22
ORA-28040, 3-32, 3-52
ORA-28046, 2-22
ORA-28144, 25-98
ORA-28575, 10-14
ORA-45622, 13-13

example, 25-67
examples, 11-18, 12-27

access control lists
external network connections, 8-13
wallet access, 8-13

account locking, 3-10
audit trail, purging unified trail, 26-23
auditing user SYS, 25-11
data encryption

encrypting and decrypting BLOB data,
15-16

encrypting and decrypting procedure with
AES 256-Bit, 15-15

directory objects, granting EXECUTE
privilege on, 4-78

encrypting procedure, 15-14
Java code to read passwords, 10-8
locking an account with CREATE PROFILE,

3-10
login attempt grace period, 3-13
nondatabase user authentication, 11-38
O7_DICTIONARY_ACCESSIBILITY

initialization parameter, setting, 4-12
passwords

aging and expiration, 3-13
changing, 2-21

examples (continued)
passwords (continued)
creating for user, 2-10

privileges
granting ADMIN OPTION, 4-78
views, 4-94

procedure privileges affecting packages,
4-70, 4-71

profiles, assigning to user, 2-14
roles

altering for external authorization, 4-42
creating for application authorization,

4-43
creating for external authorization, 4-44
creating for password authorization,

4-40, 4-41
default, setting, 4-92
external, 4-41
global, 4-41
using SET ROLE for password-

authenticated roles, 4-43
views, 4-94

secure external password store, 3-37
session ID of user

finding, 2-31
system privilege and role, granting, 4-78
tablespaces

assigning default to user, 2-11
quota, assigning to user, 2-12
temporary, 2-14

type creation, 4-74
users

account creation, 2-7
creating with GRANT statement, 4-78
dropping, 2-32
middle-tier server proxying a client, 3-73
object privileges granted to, 4-79
proxy user, connecting as, 3-73
See also tutorials

exceptions
WHEN NO DATA FOUND, used in

application context package, 11-20
WHEN OTHERS, used in triggers

development environment (debugging)
example, 11-17

production environment example, 11-17
Exclusive Mode

SHA-2 password hashing algorithm,
enabling, 3-30

EXECUTE ANY LIBRARY statement
security guidelines, A-3

EXECUTE_CATALOG_ROLE role
SYS schema objects, enabling access to,

4-13

Index

11

EXEMPT ACCESS POLICY privilege
Oracle Virtual Private Database

enforcements, exemption, 12-49
EXP_FULL_DATABASE role

about, 4-32
expiring a password

explicitly, 3-13
exporting data

direct path export impact on Oracle Virtual
Private Database, 12-49

policy enforcement, 12-49
extended data objects

views and Virtual Private Database, 12-10
external authentication

about, 3-65
advantages, 3-66
network, 3-68
operating system, 3-67
user creation, 3-67

external network services, fine-grained access to
See access control list (ACL)

external network services, syntax for, 8-4
external procedures

configuring extproc process for, 10-15
credentials, 10-13
DBMS_CREDENTIAL.CREATE_CREDENTIAL

procedure, 10-15
legacy applications, 10-17
security guideline, A-20

external roles, 4-41
external tables, A-11
extproc process

about, 10-13
configuring credential for, 10-15
legacy applications, 10-17

F
failed login attempts

account locking, 3-10
password management, 3-10
resetting, 3-10

fallback authentication, Kerberos, 20-21
Federal Information Processing Standard (FIPS)

DBMS_CRYPTO package, E-1
FIPS 140-2

Cipher Suites, E-3
postinstallation checks, E-4
SSLFIPS_140, E-3
verifying connections, E-4

Transparent Data Encryption, E-1
files

BFILEs
operating system access, restricting,

A-11

files (continued)
BLOB, 15-9
keys, 15-8
listener.ora file

guidelines for security, A-16, A-19
restrict listener access, A-16
server.key encryption file, A-19
symbolic links, restricting, A-11
tnsnames.ora, A-19

fine-grained access control
See Oracle Virtual Private Database (VPD)

fine-grained auditing
about, 25-92
alerts, adding to policy, 25-103
archiving audit trail, 26-11
columns, specific, 25-100
DBMS_FGA package, 25-96
direct loads of data, 25-92
edition-based redefinitions, 25-95
editions, results in, 11-34
finding errors by checking trace files, 25-110
how audit records are generated, 25-93
how to use, 25-92
policies

adding, 25-98
disabling, 25-101
dropping, 25-102
enabling, 25-102
modifying, 25-98

policy creation syntax, 25-98
privileges required, 25-93
records

archiving, 26-11
transparent sensitive data protection policy

settings, 13-33
TSDP policies and, 13-32
VPD predicates, 25-94

FIPS 140-2 cryptographic libraries
about, E-1

FIPS Parameter
Configuring, E-2

fips.ora file, E-3
firewalls

advice about using, A-16
database server location, A-16
ports, A-19
supported types, A-16

flashback query
Oracle Virtual Private Database, how it works

with, 12-48
foreign keys

privilege to use parent key, 4-66
FTP service, A-16
functions

auditing, 25-14, 25-17

Index

Index-12

functions (continued)
granting roles to, 4-46
Oracle Virtual Private Database

components of, 12-7
privileges used to run, 12-4

privileges for, 4-68
roles, 4-29

G
GATHER_SYSTEM_STATISTICS role, 4-32
global application contexts, 11-30

about, 11-30
authenticating nondatabase users, 11-38
checking values set globally for all users,

11-35
clearing values set globally for all users,

11-35
components, 11-30
editions, affect on, 11-34
example of authenticating nondatabase

users, 11-39
example of authenticating user moving to

different application, 11-37
example of setting values for all users, 11-35
Oracle RAC environment, 11-31
Oracle RAC instances, 11-30
ownership, 11-32
PL/SQL package creation, 11-33
process, lightweight users, 11-52
process, standard, 11-51
sharing values globally for all users, 11-35
system global area, 11-30
tutorial for client session IDs, 11-46
used for One Big Application User scenarios,

12-51
uses for, 12-51

See also application contexts
global authentication

about, 3-62
advantages, 3-64
user creation for private schemas, 3-63
user creation for shared schemas, 3-64

global authorization
about, 3-62
advantages, 3-64
role creation, 4-45
roles, 3-62

global roles, 4-41
about, 4-45

global users, 3-62
GLOBAL_AQ_USER_ROLE role, 4-32
GLOBAL_EXTPROC_CREDENTIAL

configuration parameter
security guideline, 10-17

GOST encryption algorithm, 16-2
grace period for login attempts

example, 3-13
grace period for password expiration, 3-13
GRANT ALL PRIVILEGES statement

SELECT ANY DICTIONARY privilege,
exclusion of, A-11

GRANT ANY PRIVILEGE system privilege, 4-14
GRANT CONNECT THROUGH clause

consideration when setting
FAILED_LOGIN_ATTEMPTS
parameter, 3-7

for proxy authorization, 3-73
GRANT statement, 4-77

ADMIN OPTION, 4-78
creating a new user, 4-78
object privileges, 4-79, 10-25
system privileges and roles, 4-77
when takes effect, 4-92
WITH GRANT OPTION, 4-80

granting privileges and roles
about, 4-13
specifying ALL, 4-59

guidelines for security
auditing, A-20
custom installation, A-14
data files and directories, A-11
encrypting sensitive data, A-11
guidelines for security

custom installation, A-14
installation and configuration, A-14
networking security, A-14
operating system accounts, limiting

privileges, A-11
operating system users, limiting number of,

A-11
Oracle home default permissions, disallowing

modification, A-11
ORACLE_DATAPUMP access driver, A-12
passwords, A-8
products and options

install only as necessary, A-14
sample schemas, A-14
Sample Schemas

remove or relock for production, A-14
test database, A-14

Secure Sockets Layer
mode, A-19
TCPS protocol, A-19

symbolic links, restricting, A-11
user accounts and privileges, A-3

H
hackers

Index

13

See security attacks
handshake

SSL, 21-3
how it works, 6-3
HR user account, 2-37
HS_ADMIN_EXECUTE_ROLE role

about, 4-32
HS_ADMIN_ROLE role

about, 4-32
HS_ADMIN_SELECT_ROLE role

about, 4-32
HTTP authentication

See access control lists (ACL), wallet access
HTTPS

port, correct running on, A-19

I
IMP_FULL_DATABASE role

about, 4-32
inactive user accounts, locking automatically, 3-9
INACTIVE_ACCOUNT_TIME profile parameter,

3-9
indexed data

encryption, 15-4
indirectly granted roles, 4-26
INHERIT ANY PRIVILEGES privilege

about, 7-6
managing, 7-8
revoking from powerful users, 7-8
when it should be granted, 7-7

INHERIT ANY REMOTE PRIVILEGES, 7-24
INHERIT PRIVILEGES privilege

about, 7-6
auditing, 7-8
managing, 7-8
when it should be granted, 7-6

INHERIT REMOTE PRIVILEGES
about, 7-24

initialization parameter file
parameters for clients and servers using

Kerberos, C-1
parameters for clients and servers using

RADIUS, C-8
parameters for clients and servers using

SSL, C-1
initialization parameters

application protection, 10-27
MAX_ENABLED_ROLES, 4-93
O7_DICTIONARY_ACCESSIBILITY, 4-12
OS_AUTHENT_PREFIX, 3-66
OS_ROLES, 4-44
SEC_MAX_FAILED_LOGIN_ATTEMPTS, 10-29
SEC_RETURN_SERVER_RELEASE_BANNER,

10-29

initialization parameters (continued)
SEC_USER_AUDIT_ACTION_BANNER, 10-30
SEC_USER_UNAUTHORIZED_ACCESS_BANNER,

10-30
INSERT privilege

granting, 4-82
revoking, 4-85

installation
guidelines for security, A-14

intruders
See security attacks

invoker’s rights
about, 7-3
code based access control

about, 7-12
granting and revoking roles to program

unit, 7-18
how code based access control works,

7-13
tutorial, 7-19

compared with definer’s rights, 7-1
controlled step-in, 7-3
procedure privileges, used with, 7-2
procedure security, 7-3
secure application roles, 10-21
secure application roles, requirement for

enabling, 10-21
security risk, 7-5
views

about, 7-9
finding user who invoked invoker’s right

view, 7-10
IP addresses

falsifying, A-16
IX user account, 2-37

J
Java Byte Code Obfuscation, 17-3
Java Database Connectivity (JDBC)

configuration parameters, 17-4
Oracle extensions, 17-2
thin driver features, 17-2

Java Debug Wire Protocol (JDWP)
network access for debugging operations,

8-21
Java schema objects

auditing, 25-14
Java stored procedures

network access for debugging operations,
8-21

JAVA_ADMIN role, 4-32
JAVA_RESTRICT initialization parameter

security guideline, A-11
JAVADEBUGPRIV role, 4-32

Index

Index-14

JAVAIDPRIV role, 4-32
JAVASYSPRIV role, 4-32
JAVAUSERPRIV role, 4-32
JDBC

See Java Database Connectivity
JDBC connections

JDBC Thin Driver proxy authentication
configuring, 3-71
with real user, 3-75

JDBC/OCI proxy authentication, 3-71
multiple user sessions, 3-75
Oracle Virtual Private Database, 12-51

JDeveloper
debugging using Java Debug Wire Protocol,

8-21
JMXSERVER role, 4-32

K
Kerberos, 18-4

authentication adapter utilities, 20-11
authentication fallback behavior, 20-21
configuring authentication, 20-1, 20-5
configuring for database server, 20-3
configuring for Windows 2008 Domain

Controller KDC, 20-16
connecting to database, 20-16
interoperability with Windows 2008 Domain

Controller KDC, 20-17
kinstance, 20-3
kservice, 20-3
realm, 20-3
sqlnet.ora file sample, B-1
system requirements, 18-7

Kerberos authentication, 3-59
configuring for SYSDBA or SYSOPER

access, 3-48
password management, A-8

Kerberos Key Distribution Center (KDC), 20-16
key generation

encryption, 15-5
key storage

encryption, 15-6
key transmission

encryption, 15-5
kinstance (Kerberos), 20-3
kservice (Kerberos), 20-3

L
large objects (LOBs)

about securing, 10-17
encryption management, 10-18

LBAC_DBA role, 4-32

LBACSYS schema
ORA_DV_AUDPOL predefined audit policy

for, 25-90
LBACSYS user account, 2-33
LBACSYS.ORA_GET_AUDITED_LABEL

function
about, 25-58

ldap.ora
which directory SSL port to use for no

authentication, 21-39
ldap.ora file

creating for Microsoft Active Directory
services, 6-12, 6-13

least privilege principle, A-3
about, A-3
granting user privileges, A-3
middle-tier privileges, 3-76

libraries
auditing, 25-14

lightweight users
example using a global application context,

11-46
Lightweight Directory Access Protocol

(LDAP), 12-37
listener

endpoint
SSL configuration, 21-19

not an Oracle owner, A-16
preventing online administration, A-16
restrict privileges, A-16
secure administration, A-16

listener.ora file
administering remotely, A-16
default location, A-19
FIPS 140-2 Cipher Suite settings, E-3
online administration, preventing, A-16
Oracle wallet setting, C-7
TCPS, securing, A-19

lists data dictionary
data dictionary views

See views
granting privileges and roles

finding information about, 4-94
privileges, 4-11

finding information about, 4-94
roles, 10-21

finding information about, 4-94
views, 4-94

privileges, 4-66, 4-94
roles, 4-94

LOB_SIGNATURE_ENABLE initialization
parameter, 10-17

LOBs
about securing, 10-17
encryption management, 10-18

Index

15

local privilege grants
about, 4-15
granting, 4-17
revoking, 4-17

local roles
about, 4-21
creating, 4-23
rules for creating, 4-23

local user accounts
creating, 2-18

local users
about, 2-5

lock and expire
default accounts, A-3
predefined user accounts, A-3

lockdown profiles, PDB, 4-50
locking inactive user accounts automatically, 3-9
log files

owned by trusted user, A-11
logical reads limit, 2-25
logon triggers

externally initialized application contexts,
11-16

for application context packages, 11-16
running database session application context

package, 11-16
secure application roles, 4-49

LOGSTDBY_ADMINISTRATOR role, 4-32

M
malicious database administrators, 15-2

See also security attacks
manager default password, A-8
managing roles with RADIUS server, 22-20
materialized views

auditing, 25-14
MD5 message digest algorithm, 16-3
MDDATA user account, 2-36
MDSYS user account, 2-33
memory

users, viewing, 2-42
MERGE INTO statement, affected by

DBMS_RLS.ADD_POLICY
statement_types parameter, 12-11

metadata links
privilege management, 4-62

methods
privileges on, 4-72

Microsoft Active Directory services, 6-3–6-7,
6-14, 6-17, 6-18

about configuring connection, 6-16
about password authentication, 6-22
access configuration, Oracle wallet

verification, 6-20

Microsoft Active Directory services (continued)
access configuration, testing integration, 6-21
access, Kerberos authentication, 6-25
access, PKI authentication, 6-25
account policies, 6-34
administrative user configuration, exclusive

mapping, 6-30
administrative user configuration, shared

access accounts, 6-30
DSI file, about, 6-10
dsi.ora file, about, 6-10
extending Active Directory schema, 6-8
ldap.ora file, creating, 6-12, 6-13
logon user name with password

authentication, 6-24
net naming services, 6-10
same net service name, 6-13
user authorization, about, 6-27
user authorization, mapping Directory user

group to global role, 6-28
user authorization, verifying, 6-31
user management, altering mapping

definition, 6-29
user management, exclusively mapping

Directory user to database global
user, 6-29

user management, mapping group to shared
global user, 6-28

user management, migrating mapping
definition, 6-29

Microsoft Active Directory services integration,
6-2, 6-3

Microsoft Directory Access services, 6-19
Microsoft Windows

Kerberos
configuring for Windows 2008 Domain

Controller KDC, 20-16
middle-tier systems

client identifiers, 3-81
enterprise user connections, 3-79
password-based proxy authentication, 3-79
privileges, limiting, 3-76
proxies authenticating users, 3-77
proxying but not authenticating users, 3-78
reauthenticating user to database, 3-78
USERENV namespace attributes, accessing,

11-24
mining models

auditing, 25-14
mixed mode auditing capabilities, 24-7
monitoring user actions, 24-2

See also auditing, standard auditing, fine-
grained auditing

multiplex multiple-client network sessions, A-16
multitenant container database (CDB)

Index

Index-16

See CDBs
multitenant option, 6-5
My Oracle Support, A-2

security patches, downloading, A-2
user account for logging service requests,

2-36

N
native network enryption

disabling, 23-2
nCipher hardware security module

using Oracle Net tracing to troubleshoot,
21-48

Net8
See Oracle Net

Netscape Communications Corporation, 21-1
network authentication

external authentication, 3-68
guidelines for securing, A-8
roles, granting using, 4-88
Secure Sockets Layer, 3-58
smart cards, A-8
third-party services, 3-58
token cards, A-8
X.509 certificates, A-8

network connections
denial-of-service (DoS) attacks, addressing,

A-16
guidelines for security, A-14–A-16
securing, A-16

network encryption
about, 16-4
configuring, 16-4

network IP addresses
guidelines for security, A-16

network traffic encryption, A-16
nondatabase users, 11-30

about, 11-30
auditing, 25-82
clearing session data, 11-41
creating client session-based application

contexts, 11-54
global application contexts

package example, 11-39
reason for using, 11-30
setting, 11-38
tutorial, 11-46

One Big Application User authentication
about, 12-51
features compromised by, 10-2
security risks, 10-2

Oracle Virtual Private Database
how it works with, 12-51
tutorial for creating a policy group, 12-39

nondatabase users (continued)
See also application contexts, client identifiers

O
O7_DICTIONARY_ACCESSIBILITY initialization

parameter
about, 4-12
data dictionary protection, A-11
default setting, A-11
securing data dictionary with, 4-12

obfuscation, 17-3
object privileges, 4-58, A-3

about, 4-58
granting on behalf of the owner, 4-81
managing, 10-25
revoking, 4-84
revoking on behalf of owner, 4-84
schema object privileges, 4-58
synonyms, 4-61
with common privilege grants, 4-17

See also schema object privileges
object types

auditing, 25-14
objects

applications, managing privileges in, 10-25
granting privileges, 10-26
privileges

applications, 10-25
managing, 4-72

protecting in shared schemas, 10-25
protecting in unique schemas, 10-24
SYS schema, access to, 4-13

OE user account, 2-37
OEM_ADVISOR role, 4-32
OEM_MONITOR role, 4-32
OFB ciphertext encryption mode, 15-11
okcreate

Kerberos adapter utility, 20-11
okcreate options, 20-15
okdstry

Kerberos adapter utility, 20-11
okdstry options, 20-15
okinit

Kerberos adapter utility, 20-11
okinit utility options, 20-12
oklist

Kerberos adapter utility, 20-11
OLAP_DBA role, 4-32
OLAP_USER role, 4-32
OLAP_XS_ADMIN role, 4-32
OLAPSYS user account, 2-33
One Big Application User authentication

See nondatabase users

Index

17

operating system
audit files written to, 26-7

operating system users
configuring for PDBs, 3-61

operating systems, 3-61
accounts, 4-89
authentication

about, 3-56
advantages, 3-56
disadvantages, 3-56
external, 3-67
operating system user for PDB, 3-61
roles, using, 4-88

default permissions, A-11
enabling and disabling roles, 4-91
operating system account privileges, limiting,

A-11
role identification, 4-89
roles and, 4-31
roles, granting using, 4-88
users, limiting number of, A-11

OPTIMIZER_PROCESSING_RATE role, 4-32
ORA_ACCOUNT_MGMT predefined unified

audit policy, 25-88
ORA_CIS_RECOMMENDATIONS predefined

unified audit policy, 25-88
ORA_DATABASE_PARAMETER predefined

unified audit policy, 25-87
ORA_DV_AUDPOL predefined unified audit

policy, 25-90
ORA_DV_AUDPOL2 predefined unified audit

policy, 25-91
ORA_LOGON_FAILURES predefined unified

audit policy, 25-86
ORA_SECURECONFIG predefined unified audit

policy, 25-87
ORA_STIG_PROFILE profile, 3-18
ORA-01720 error, 4-66
ORA-06512 error, 8-21, 25-108
ORA-06598 error, 7-6
ORA-12650 error, B-7
ORA-1536 error, 2-13
ORA-24247 error, 8-3, 8-21, 25-108
ORA-28009 error, 4-12
ORA-28017 error, 2-22
ORA-28040 error, 3-32, 3-52
ORA-28575 error, 10-14
ORA-40300 error, 21-48
ORA-40301 error, 21-48
ORA-40302 error, 21-48
ORA-45622 errors, 13-13
ORA-64219: invalid LOB locator encountered,

10-17
ORA$DEPENDENCY profile, 5-4

Oracle Advanced Security
checksum sample for sqlnet.ora file, B-1
configuration parameters, 17-4
encryption sample for sqlnet.ora file, B-1
Java implementation, 17-3
network authentication services, A-8
SSL features, 21-3
user access to application schemas, 10-25

Oracle Audit Vault and Database Firewall
schema-only accounts, 3-55

Oracle Call Interface (OCI)
application contexts, client session-based,

11-54
proxy authentication, 3-71

Oracle Virtual Private Database, how it
works with, 12-51

proxy authentication with real user, 3-75
security-related initialization parameters,

10-27
Oracle Connection Manager

securing client networks with, A-16
Oracle Data Guard

SYSDG administrative privilege, 4-8
Oracle Data Mining

audit events, 25-59
Oracle Data Pump

audit events, 25-62
exported data from VPD policies, 12-50
unified audit trail, 26-10

Oracle Database Enterprise User Security
password security threats, 3-29

Oracle Database Real Application Clusters
archive timestamp for audit records, 26-15
global contexts, 11-30

Oracle Database Real Application Security
ALL audit events, 25-39
auditing, 25-33
security class and ACL audit events, 25-36
session audit events, 25-37
user, privilege, and role audit events, 25-35

Oracle Database Vault
auditing, 25-42
command rules, audit events, 25-47
Data Pump, audit events, 25-50
enable and disable, audit events, 25-50
factors, audit events, 25-47
OLS, audit events, 25-49
realms, audit events, 25-45
rule sets and rules, audit events, 25-46
secure application roles, audit events, 25-49

Oracle Developer Tools For Visual Studio (ODT)
debugging using Java Debug Wire Protocol,

8-21
Oracle E-Business Suite

schema-only accounts, 3-55

Index

Index-18

Oracle Enterprise Manager
PDBs, 9-1
statistics monitor, 2-26

Oracle Enterprise Security Manager
role management with, 3-59

Oracle home
default permissions, disallowing modification,

A-11
Oracle Internet Directory

Diffie-Hellman SSL port, 21-39
Oracle Internet Directory (OID)

authenticating with directory-based service,
3-59

SYSDBA and SYSOPER access, controlling,
3-47

Oracle Java Virtual Machine
JAVA_RESTRICT initialization parameter

security guideline, A-11
Oracle Java Virtual Machine (OJVM)

permissions, restricting, A-3
Oracle Label Security

audit events, 25-54
auditing, 25-53
auditing internal predicates in policies, 25-17
user session label audit events, 25-56

Oracle Label Security (OLS)
Oracle Virtual Private Database, using with,

12-48
Oracle native encryption

configured with SSL authentication, 16-12
Oracle Net, A-16

firewall support, A-16
Oracle parameters

authentication, 23-5
Oracle Password Protocol, 17-3
Oracle Real Application Clusters

global application contexts, 11-31
SYSRAC administrative privilege, 4-9

Oracle Real Application Security
auditing internal predicates in policies, 25-17

Oracle Recovery Manager
audit events, 25-41
auditing, 25-40
SYSBACKUP administrative privilege, 4-6

Oracle Scheduler
sensitive credential data

about, 14-1
data dictionary views, 14-6
deleting, 14-4
encrypting, 14-2
multitenant environment, 14-2
rekeying, 14-3
restoring functioning of lost keystore,

14-5

Oracle SQL*Loader
Direct Load Path audit events, 25-64

Oracle Technology Network
security alerts, A-2

Oracle Virtual Private Database, 12-2
exporting data using Data Pump Export,

12-50
Oracle Virtual Private Database (VPD), 12-3

about, 12-2
ANSI operations, 12-46
application containers, 12-5
application contexts

tutorial, 12-32
used with, 12-4

applications
how it works with, 12-47
users who are database users, how it

works with, 12-51
applications using for security, 10-3
automatic reparsing, how it works with, 12-47
benefits, 12-3
CDBs, 12-5
column level, 12-13
column masking behavior

enabling, 12-14
restrictions, 12-15

column-level display, 12-13
components, 12-6
configuring, 12-8
cursors, shared, 12-4
edition-based redefinitions, 12-46
editions, results in, 11-34
Enterprise User Security proxy

authentication, how it works with,
12-51

exporting data, 12-49
extended data objects in views, 12-10
finding information about, 12-52
flashback query, how it works with, 12-48
function

components, 12-7
how it is executed, 12-4

JDBC proxy authentication, how it works
with, 12-51

nondatabase user applications, how works
with, 12-51

OCI proxy authentication, how it works with,
12-51

Oracle Label Security
exceptions in behavior, 12-49
using with, 12-48

outer join operations, 12-46
performance benefit, 12-3
policies, Oracle Virtual Private Database

about, 12-9

Index

19

Oracle Virtual Private Database (VPD) (continued)
policies, Oracle Virtual Private Database (continued)
applications, validating, 12-18
attaching to database object, 12-10
column display, 12-13
column-level display, default, 12-14
dynamic, 12-20
multiple, 12-18
optimizing performance, 12-20
privileges used to run, 12-4
SQL statements, specifying, 12-11

policy groups
about, 12-16
benefits, 12-16
creating, 12-17
default, 12-17
tutorial, implementation, 12-39

policy types
context sensitive, about, 12-23
context sensitive, altering existing policy,

12-25
context sensitive, creating, 12-24
context sensitive, refreshing, 12-25
context sensitive, restricting evaluation,

12-23
context sensitive, when to use, 12-26
context-sensitive, audited, 25-19
DYNAMIC, 12-20
dynamic, audited, 25-19
shared context sensitive, about, 12-25
shared context sensitive, when to use,

12-26
shared static, about, 12-22
shared static, when to use, 12-23
static, about, 12-21
static, audited, 25-19
static, when to use, 12-23
summary of features, 12-27

privileges required to create policies, 12-4
SELECT FOR UPDATE statements in

policies, 12-46
tutorial, simple, 12-28
user models, 12-51
Web-based applications, how it works with,

12-51
Oracle Virtual Private Datebase (VPD)

predicates
audited in fine-grained audit policies,

25-94
audited in unified audit policies, 25-17

Oracle Wallet Manager, 3-60
X.509 Version 3 certificates, 3-60

Oracle wallets
authentication method, 3-60
setting location, 21-12

Oracle wallets (continued)
sqlnet.listener.ora setting, C-7
sqlnet.ora location setting, C-7

ORACLE_DATAPUMP access driver
guidelines for security, A-12

ORACLE_OCM user account, 2-36
OracleMetaLink

See My Oracle Support
orapki utility

about, F-1
adding a certificate request to a wallet with,

F-7
adding a root certificate to a wallet with, F-8
adding a trusted certificate to a wallet with,

F-8
adding user certificates to a wallet with, F-8
cert create command, F-13
cert display command, F-13
certificate revocation lists, 21-37
changing the wallet password with, F-6
converting wallet to use AES256 algorithm,

F-7
creating a local auto-login wallet with, F-6
creating a wallet with, F-4
creating an auto-login wallet with, F-5
creating signed certificates for testing, F-2
crl delete command, F-14
crl display command, F-14
crl hash command, F-15
crl list command, F-15
crl upload command, F-16
examples, F-10
exporting a certificate from a wallet with, F-9
exporting a certificate request from a wallet

with, F-9
managing certificate revocation lists, F-10
syntax, F-2
viewing a test certificate with, F-3
viewing a wallet with, F-6
wallet add command, F-16
wallet convert command, F-17
wallet create command, F-17
wallet display command, F-18
wallet export command, F-18

ORAPWD utility
case sensitivity in passwords, 3-27
changing SYS password, 2-23
changing SYS password with, 2-22

ORDDATA user account, 2-33
ORDPLUGINS user account, 2-33
ORDSYS user account, 2-33
OS_AUTHENT_PREFIX parameter, 23-6
OS_ROLES initialization parameter

operating system role grants, 4-91
operating-system authorization and, 4-44

Index

Index-20

OS_ROLES initialization parameter (continued)
REMOTE_OS_ROLES and, 4-91
using, 4-89

OSS.SOURCE.MY_WALLET parameter, 21-12,
21-22

outer join operations
Oracle Virtual Private Database affect on,

12-46

P
packages

auditing, 25-14, 25-17
examples, 4-71
examples of privilege use, 4-70
granting roles to, 4-46
privileges

divided by construct, 4-70
executing, 4-68, 4-70

parallel execution servers, 11-13
parallel query, and SYS_CONTEXT, 11-13
parameters

authentication
Kerberos, C-1
RADIUS, C-8
Secure Sockets Layer (SSL), C-1

configuration for JDBC, 17-4
encryption and checksumming, 16-8

pass phrase
read and parse server.key file, A-19

PASSWORD command
about, 2-21

password complexity functions
aboutr, 3-17
administrative users, for, 3-45
customizing, 3-19
enabling, 3-20
how database checks password complexity,

3-17
ora12c_stig_verify_function, 3-19
ora12c_strong_verify_function, 3-18
ora12c_verify_function, 3-18
privileges required, 3-17
verify_function_11G, 3-17

password files
case sensitivity, effect on

SEC_CASE_SENSITIVE_LOGON
parameter, 3-22

how used to authenticate administrators,
3-50

migration of for administrative users, 3-44
password limits

administrative logins, 3-50

password management
inactive user accounts, locking automatically,

3-9
password versions

target databases that run earlier releases,
3-34

using 12C exclusively, 3-32
PASSWORD_LIFE_TIME profile parameter, 3-12
PASSWORD_LOCK_TIME profile parameter,

3-10
PASSWORD_REUSE_MAX profile parameter,

3-11
PASSWORD_REUSE_TIME profile parameter,

3-11
passwords, 3-3

10G password version, finding and resetting,
3-25

about managing, 3-6
account locking, 3-10
administrator

authenticating with, 3-50
guidelines for securing, A-8

aging and expiration, 3-12
ALTER PROFILE statement, 3-6
altering, 2-21
application design guidelines, 10-5
applications, strategies for protecting

passwords, 10-4
brute force attacks, 3-3
case sensitivity, configuring, 3-21
changing for roles, 4-42
changing SYS with ORAPWD utility, 2-23
complexity verification

about, 3-17
complexity, guidelines for enforcing, A-8
connecting without, 3-56
CREATE PROFILE statement, 3-6
danger in storing as clear text, A-8
database user authentication, 3-52
default profile settings

about, 3-7
default user account, A-8
default, finding, 3-6
delays for incorrect passwords, 3-3
duration, A-8
encrypting, 3-3, A-8
examples of creating, 3-4
expiring

explicitly, 3-13
procedure for, 3-12
proxy account passwords, 3-74
with grace period, 3-13

failed logins, resetting, 3-10
grace period, example, 3-13
guidelines for security, A-8

Index

21

passwords (continued)
history, 3-11, A-8
Java code example to read passwords, 10-8
length, A-8
life time set too low, 3-15
lifetime for, 3-12
lock time, 3-10
management rules, A-8
managing, 3-5
maximum reuse time, 3-11
ORAPWD utility, 3-27
password complexity verification, 3-17

how database checks, 3-17
ora12c_stig_verify_function, 3-19
ora12c_verify_function function, 3-18
privileges required, 3-17
verify_function_11G function, 3-17

password file risks, 3-52
PASSWORD_LOCK_TIME profile

parameter, 3-10
PASSWORD_REUSE_MAX profile

parameter, 3-11
PASSWORD_REUSE_TIME profile

parameter, 3-11
policies, 3-5
privileges for changing for roles, 4-42
privileges to alter, 2-19
protections, built-in, 3-3
proxy authentication, 3-79
requirements

additional, A-8
minimum, 3-4

reusing, 3-11, A-8
reusing passwords, 3-11
role password case sensitivity, 3-22
roles authenticated by passwords, 4-39
roles enabled by SET ROLE statement, 4-43
secure external password store, 3-36
security risks, 3-52
SYS account, 2-22
SYS and SYSTEM, A-8
used in roles, 4-27
utlpwdmg.sql password script

password management, 3-17
verified using SHA-512 hash function, 3-32
versions, management of, 3-23

See also authentication, and access control list
(ACL), wallet access

PDB lockdown profiles
about, 4-50
creating, 4-53
default, 4-52
disabling, 4-54
dropping, 4-56
enabling, 4-54

PDB lockdown profiles (continued)
inheritance, 4-52

PDB_DBA role, 4-32
PDBs

application common users
about, 2-3

auditing
types of audit settings allowed, 24-9
unified audit policy syntax, 25-5
what can be audited, 24-2

CDB common users
about, 2-3

common roles
about, 4-21
creating, 4-22
granting, 4-24
how they work, 4-21
privileges required for management, 4-22
revoking, 4-24
rules for creating, 4-22

common users
accessing data in PDBs, 4-19
creating, 2-16
viewing privilege information, 4-18

Enterprise Manager
about, 9-1
creating common roles, 9-8
creating common users, 9-4
creating local roles, 9-10
creating local users, 9-6
dropping common roles, 9-9
dropping common users, 9-5
dropping local roles, 9-11
dropping local users, 9-7
editing common roles, 9-8
editing common users, 9-4
editing local roles, 9-10
editing local users, 9-6
logging in, 9-2
revoking common privilege grants, 9-9
revoking local privilege grants, 9-11
switching to different container, 9-3

fine-grained audit policies, 25-94
local roles

about, 4-21
creating, 4-23
rules for creating, 4-23

local users
about, 2-5
creating, 2-18

operating system user configuration, 3-61
operating system user for, setting, 3-61
privilege analysis, 5-4
privileges

common, 4-16

Index

Index-22

PDBs (continued)
privileges (continued)
granting, 4-17
how affected, 4-4
object, 4-17
revoking, 4-17
viewing information about, 4-18

PUBLIC role, 4-22
sqlnet.ora settings, 3-32
transparent sensitive data protection, 13-4
viewing information about, 4-18
Virtual Private Database policies, 12-5

performance
application contexts, 11-2
auditing, 24-3
Oracle Virtual Private Database policies,

12-3
Oracle Virtual Private Database policy types,

12-20
resource limits and, 2-24

permissions
default, A-11
run-time facilities, A-3

PKCS #11 devices, 21-7
PKCS #11 error

ORA-40300, 21-48
ORA-40301, 21-48
ORA-40302, 21-48

PKI
See public key infrastructure (PKI)

PL/SQL
roles in procedures, 4-29

PL/SQL packages
auditing, 25-14, 25-17

PL/SQL procedures
setting application context, 11-11

PL/SQL stored procedures
network access for debugging operations,

8-21
PM user account, 2-37
PMON background process

application contexts, cleaning up, 11-7
POODLE attacks, preventing with, 21-19
positional parameters

security risks, 10-6
predefined schema user accounts, 2-32
principle of least privilege, A-3

about, A-3
granting user privileges, A-3
middle-tier privileges, 3-76

privilege analysis
about, 5-2
accessing reports in Cloud Control, 5-13
benefits, 5-2
CDBs, 5-4

privilege analysis (continued)
creating, 5-6
creating role in Cloud Control, 5-15
data dictionary views, 5-28
DBMS_PRIVILEGE_CAPTURE PL/SQL package, 5-5
disabling, 5-10
dropping, 5-14
enabling, 5-8
examples of creating and enabling, 5-9
general steps for managing, 5-5
generating regrant scripts, 5-17
generating reports

about, 5-11
in Cloud Control, 5-13
using DBMS_PRIVILEGE_CAPTURE.GENERATE_REPORT,

5-12
generating revoke scripts, 5-16
logon users, 5-3
multiple named capture runs, 5-11
pre-compiled database objects, 5-4
privilege uses captured, 5-3
requirements for using, 5-3
restrictions, 5-3
revoking and re-granting in Cloud Control, 5-15
revoking and regranting using scripts, 5-16
tutorial, 5-23
tutorial for ANY privileges, 5-18
use cases, 5-2

finding application pool privileges, 5-2
finding overly privileged users, 5-3

privileges, 4-11
about, 4-2
access control lists, checking for external

network services, 8-19
altering

passwords, 2-21
users, 2-19

altering role authentication method, 4-42
applications, managing, 10-19
auditing use of, 25-9
auditing, recommended settings for, A-23
cascading revokes, 4-86
column, 4-82
compiling procedures, 4-69
creating or replacing procedures, 4-69
creating users, 2-7
data links

privilege management, 4-63
dropping profiles, 2-30
extended data links

privilege management, 4-64
granting

about, 4-13, 4-77
examples, 4-70, 4-71
object privileges, 4-59, 4-79

Index

23

privileges (continued)
granting (continued)
system, 4-77
system privileges, 4-77

grants, listing, 4-96
grouping with roles, 4-24
managing, 10-25
metadata links, 4-62
middle tier, 3-76
object, 4-58, 4-59, 10-26

granting and revoking, 4-59
on selected columns, 4-85
procedures, 4-68

creating and replacing, 4-69
executing, 4-68
in packages, 4-70

READ ANY TABLE system privilege
about, 4-60
restrictions, 4-61

READ object privilege, 4-60
reasons to grant, 4-3
revoking privileges

about, 4-13
object, 4-84
object privileges, cascading effect, 4-87
object privileges, requirements for, 4-84
schema object, 4-59

revoking system privileges, 4-83
roles

creating, 4-39
dropping, 4-47
restrictions on, 4-30

roles, why better to grant, 4-3
schema object, 4-58

DML and DDL operations, 4-65
packages, 4-70
procedures, 4-68

SELECT system privilege, 4-60
SQL statements permitted, 10-26
synonyms and underlying objects, 4-61
system

granting and revoking, 4-13
SELECT ANY DICTIONARY, A-11

SYSTEM and OBJECT, A-3
system privileges

about, 4-11
trigger privileges, 7-2
used for Oracle Virtual Private Database

policy functions, 12-4
view privileges

creating a view, 4-66
using a view, 4-67

views, 4-66
See also access control list (ACL) and system
privileges, privilege captures

procedures
auditing, 25-14, 25-17
compiling, 4-69
definer’s rights

about, 7-2
roles disabled, 4-29

examples of, 4-71
examples of privilege use, 4-70
granting roles to, 4-46
invoker’s rights

about, 7-3
roles used, 4-30

privileges for procedures
create or replace, 4-69
executing, 4-68
executing in packages, 4-70

privileges required for, 4-69
security enhanced by, 7-2

process monitor process (PMON)
cleans up timed-out sessions, 2-25

PRODUCT_USER_PROFILE table
SQL commands, disabling with, 4-48

profile parameters
FAILED_LOGIN_ATTEMPTS, 3-7
INACTIVE_ACCOUNT_TIME, 3-7, 3-9
PASSWORD_GRACE_TIME, 3-7, 3-13
PASSWORD_LIFE_TIME, 3-7, 3-13, 3-15
PASSWORD_LOCK_TIME, 3-7, 3-10
PASSWORD_REUSE_MAX, 3-7, 3-11
PASSWORD_REUSE_TIME, 3-7, 3-11

profiles, 2-27
about, 2-27
application, 2-29
assigning to user, 2-29
CDB, 2-29
common, 2-29
creating, 2-28
dropping, 2-30
finding information about, 2-38
finding settings for default profile, 2-40
managing, 2-27
ora_stig_profile user profile, 2-28
privileges for dropping, 2-30
specifying for user, 2-14
viewing, 2-40

program units
granting roles to, 4-46

PROVISIONER role, 4-32
proxy authentication

about, 3-71
advantages, 3-72
auditing operations, 3-68
auditing users, 25-23
client-to-middle tier sequence, 3-75
creating proxy user accounts, 3-72

Index

Index-24

proxy authentication (continued)
middle-tier

authorizing but not authenticating users,
3-78

authorizing to proxy and authenticate
users, 3-77

limiting privileges, 3-76
reauthenticating users, 3-78

passwords, expired, 3-74
privileges required for creating users, 3-72
secure external password store, used with,

3-75
security benefits, 3-72
users, passing real identity of, 3-75

proxy user accounts
privileges required for creation, 3-72

PROXY_USERS view, 3-74
pseudo columns

USER, 4-67
public key infrastructure (PKI), 3-60, 18-5

about, 3-60
Public Key Infrastructure (PKI)

certificate, 21-6
certificate authority, 21-5
certificate revocation lists, 21-6
PKCS #11 hardware devices, 21-7
wallets, 21-7

PUBLIC role
about, 4-14
granting and revoking privileges, 4-87
procedures and, 4-87
security domain of users, 4-29

PUBLIC role, CDBs, 4-22
PUBLIC_DEFAULT profile

profiles, dropping, 2-30

Q
quotas

tablespace, 2-12
temporary segments and, 2-12
unlimited, 2-13
viewing, 2-40

R
RADIUS, 18-4

accounting, 22-18
asynchronous authentication mode, 22-5
authentication modes, 22-3
authentication parameters, C-8
challenge-response

authentication, 22-5
user interface, D-1

configuring, 22-8

RADIUS (continued)
database links not supported, 22-1
initialization parameter file setting, C-14
location of secret key, 22-13
minimum parameters to set, C-14
smartcards and, 18-4, 22-7, 22-14, D-1
SQLNET.AUTHENTICATION_SERVICES

parameter, C-9
sqlnet.ora file sample, B-1
SQLNET.RADIUS_ALTERNATE parameter, C-10
SQLNET.RADIUS_ALTERNATE_PORT parameter,

C-10
SQLNET.RADIUS_ALTERNATE_RETRIES

parameter, C-10
SQLNET.RADIUS_ALTERNATE_TIMEOUT

parameter, C-10
SQLNET.RADIUS_AUTHENTICATION parameter,

C-11
SQLNET.RADIUS_AUTHENTICATION_INTERFACE

parameter, C-11
SQLNET.RADIUS_AUTHENTICATION_PORT

parameter, C-11
SQLNET.RADIUS_AUTHENTICATION_RETRIES

parameter, C-12
SQLNET.RADIUS_CHALLENGE_KEYWORD

parameter, C-13
SQLNET.RADIUS_CHALLENGE_RESPONSE

parameter, C-12
SQLNET.RADIUS_CLASSPATH parameter, C-13
SQLNET.RADIUS_SECRET parameter, C-13
SQLNET.RADIUS_SEND_ACCOUNTING

parameter, C-14
synchronous authentication mode, 22-3
system requirements, 18-7

RADIUS authentication, 3-59
READ ANY TABLE system privilege

about, 4-60
restrictions, 4-61

READ object privilege
about, 4-60
guideline for using, A-3
SQL92_SECURITY initialization parameter,

4-61
reads

limits on data blocks, 2-25
realm (Kerberos), 20-3
REDACT_AUDIT transparent sensitive data

protection default policy, 13-18
redo log files

auditing committed and rolled back
transactions, A-22

REFERENCES privilege
CASCADE CONSTRAINTS option, 4-86
revoking, 4-85, 4-86

remote authentication, A-15

Index

25

remote debugging
configuring network access, 8-21

REMOTE_OS_AUTHENT initialization parameter
guideline for securing, A-15
setting, 3-67

REMOTE_OS_ROLES initialization parameter
OS role management risk on network, 4-91
setting, 4-44

resource limits
about, 2-24
call level, limiting, 2-25
connection time for each session, 2-25
CPU time, limiting, 2-25
determining values for, 2-26
idle time in each session, 2-25
logical reads, limiting, 2-25
private SGA space for each session, 2-25
profiles, 2-27
session level, limiting, 2-24
sessions

concurrent for user, 2-25
elapsed connection time, 2-25
idle time, 2-25
SGA space, 2-25

types, 2-24
RESOURCE privilege

CREATE SCHEMA statement, needed for,
10-24

RESOURCE role, 4-72
about, 4-32

restrictions, 18-8
REVOKE CONNECT THROUGH clause

revoking proxy authorization, 3-74
REVOKE statement

system privileges and roles, 4-83
when takes effect, 4-92

revoking privileges and roles
cascading effects, 4-86
on selected columns, 4-85
REVOKE statement, 4-83
specifying ALL, 4-59
when using operating-system roles, 4-90

role identification
operating system accounts, 4-89

ROLE_SYS_PRIVS view
application privileges, 10-19

ROLE_TAB_PRIVS view
application privileges, finding, 10-19

roles, 10-21
about, 4-2, 4-26
ADM_PARALLEL_EXECUTE_TASK role,

4-32
ADMIN OPTION and, 4-78
advantages in application use, 10-19
application, 4-29, 4-47, 10-23, 10-25

roles (continued)
application privileges, 10-19
applications, for user, 10-23
AUDIT_ADMIN role, 4-32
AUDIT_VIEWER role, 4-32
AUTHENTICATEDUSER role, 4-32
authorization, 4-42
authorized by enterprise directory service,

4-45
CAPTURE_ADMIN role, 4-32
CDB_DBA role, 4-32
changing authorization for, 4-42
changing passwords, 4-42
common, auditing, 25-7
common, granting, 4-24
CONNECT role

about, 4-32
create your own, A-7
CSW_USR_ROLE role, 4-32
CTXAPP role, 4-32
CWM_USER role, 4-32
database role, users, 10-23
DATAPUMP_EXP_FULL_DATABASE role,

4-32
DATAPUMP_IMP_FULL_DATABASE role,

4-32
DBA role, 4-32
DBFS_ROLE role, 4-32
DDL statements and, 4-30
default, 4-92
default, setting for user, 2-19
definer’s rights procedures disable, 4-29
dependency management in, 4-30
disabling, 4-92
dropping, 4-47
EJBCLIENT role, 4-32
EM_EXPRESS_ALL role, 4-32
EM_EXPRESS_BASIC role, 4-32
enabled or disabled, 4-26, 4-46
enabling, 4-92, 10-23
enterprise, 3-62, 4-45
EXP_FULL_DATABASE role, 4-32
external, 4-41
functionality, 4-3, 4-26
functionality of, 4-26
GATHER_SYSTEM_STATISTICS role, 4-32
global authorization, 4-45

about, 4-45
global roles

about, 3-62
creating, 4-45
example, 4-41
external sources, and, 4-44

GLOBAL_AQ_USER_ROLE role, 4-32
GRANT statement, 4-91

Index

Index-26

roles (continued)
granted to other roles, 4-26
granting and revoking to program units, 7-18
granting roles

about, 4-77
methods for, 4-46
system, 4-77
system privileges, 4-13

granting to program units, 4-46
guidelines for security, A-7
HS_ADMIN_EXECUTE_ROLE role, 4-32
HS_ADMIN_ROLE role, 4-32
HS_ADMIN_SELECT_ROLE role, 4-32
IMP_FULL_DATABASE role, 4-32
in applications, 4-27
indirectly granted, 4-26
invoker’s rights procedures use, 4-30
JAVA_ADMIN role, 4-32
JAVADEBUGPRIV role, 4-32
JAVAIDPRIV role, 4-32
JAVASYSPRIV role, 4-32
JAVAUSERPRIV role, 4-32
JMXSERVER role, 4-32
job responsibility privileges only, A-7
LBAC_DBA role, 4-32
listing grants, 4-96
listing privileges and roles in, 4-99
listing roles, 4-98
LOGSTDBY_ADMINISTRATOR role, 4-32
management using the operating system,

4-88
managing roles

about, 4-24
categorizing users, 10-25

managing through operating system, 4-31
managing with RADIUS server, 22-20
maximum number a user can enable, 4-93
multibyte characters in names, 4-39
multibyte characters in passwords, 4-43
naming, 4-26
network authorization, 4-44
network client authorization, 4-44
OEM_ADVISOR role, 4-32
OEM_MONITOR role, 4-32
OLAP_DBA role, 4-32
OLAP_USER role, 4-32
OLAP_XS_ADMIN role, 4-32
One Big Application User, compromised by,

10-2
operating system, 4-89
operating system authorization, 4-44
operating system granting of, 4-91
operating system identification of, 4-89
operating system management and the

shared server, 4-91

roles (continued)
operating system-managed, 4-90
operating-system authorization, 4-44
OPTIMIZER_PROCESSING_RATE role,

4-32
password case sensitivity, 3-22
PDB_DBA role, 4-32
predefined, 4-32
privilege analysis, 5-3
privileges for creating, 4-39
privileges for dropping, 4-47
privileges, changing authorization method

for, 4-42
privileges, changing passwords, 4-42
PROVISIONER role, 4-32
RESOURCE role, 4-32
restricting from tool users, 4-47
restrictions on privileges of, 4-30
REVOKE statement, 4-91
revoking, 4-46, 4-83
SCHEDULER_ADMIN role, 4-32
schemas do not contain, 4-26
security domains of, 4-29
SET ROLE statement

about, 4-43
example, 4-43
OS_ROLES parameter, 4-91

setting in PL/SQL blocks, 4-30
SODA_APP role, 4-32
SPATIAL_CSW_ADMIN role, 4-32
SPATIAL_WFS_ADMIN role, 4-32
unique names for, 4-39
use of passwords with, 4-27
user, 4-29, 10-25
users capable of granting, 4-46
uses of, 4-26, 4-28
WFS_USR_ROLE role, 4-32
WITH GRANT OPTION and, 4-80
without authorization, 4-39
WM_ADMIN_ROLE role, 4-32
XDB_SET_INVOKER roles, 4-32
XDB_WEBSERVICES role, 4-32
XDB_WEBSERVICES_OVER_HTTP role,

4-32
XDB_WEBSERVICES_WITH_PUBLIC role,

4-32
XDBADMIN role, 4-32
XS_CACHE_ADMIN role, 4-32
XS_NSATTR_ADMIN role, 4-32
XS_RESOURCE role, 4-32

See also secure application roles
root container

viewing information about, 4-18

Index

27

root file paths
for files and packages outside the database,

A-3
row-level security

See fine-grained access control, Oracle Virtual
Private Database (VPD)

RSA private key, A-19
run-time facilities, A-3

restriction permissions, A-3

S
Sarbanes-Oxley Act

auditing to meet compliance, 24-2
SCHEDULER_ADMIN role

about, 4-32
schema object privileges, 4-58
schema objects

cascading effects on revoking, 4-87
default tablespace for, 2-10
dropped users, owned by, 2-30
granting privileges, 4-79
privileges

DML and DDL operations, 4-65
granting and revoking, 4-59
view privileges, 4-66

privileges on, 4-58
privileges to access, 4-59
privileges with, 4-59
revoking privileges, 4-84

schema user accounts, predefined, 2-32
schema-independent users, 10-25
schema-only accounts, 3-54
schemas

auditing, recommended settings for, A-23
private, 3-63
shared among enterprise users, 3-64
shared, protecting objects in, 10-25
unique, 10-24
unique, protecting objects in, 10-24

SCOTT user
about, 2-37

SCOTT user account
restricting privileges of, A-7

SEC_CASE_SENSITIVE_LOGON initialization
parameter

deprecated, 3-21
SEC_CASE_SENSITIVE_LOGON parameter

conflict with
SQLNET.ALLOWED_LOGON_VERSION_SERVER
setting, 3-21

secure role passwords, 3-22
SEC_MAX_FAILED_LOGIN_ATTEMPTS

initialization parameter, 10-29

SEC_PROTOCOL_ERROR_FURTHER_ACTIO
N initialization parameter, 10-28

sec_relevant_cols_opt parameter, 12-15
SEC_RETURN_SERVER_RELEASE_BANNER

initialization parameter, 10-29
SEC_USER_AUDIT_ACTION_BANNER

initialization parameter, 10-30
SEC_USER_UNAUTHORIZED_ACCESS_BANN

ER initialization parameter, 10-30
secconf.sql script

password settings, 3-8
secret key

location in RADIUS, 22-13
secure application roles, 10-21

about, 4-49
creating, 10-20
creating PL/SQL package, 10-21
finding with DBA_ROLES view, 4-94
invoker’s rights, 10-21
invoker’s rights requirement, 10-21
package for, 10-21
user environment information from

SYS_CONTEXT SQL function, 10-21
using to ensure database connection, 4-49

secure external password store
about, 3-36
client configuration, 3-38
examples, 3-37
how it works, 3-37
proxy authentication, used with, 3-75

Secure Sockets Layer (SSL), 3-58, 18-5
about, 3-58
ANO encryption and, 16-12
architecture, 21-8
AUTHENTICATION parameter, C-2
authentication parameters, C-1
authentication process in an Oracle

environment, 21-3
certificate key algorithm, A-19
cipher suites, A-19, C-4
client and server parameters, C-2
client authentication parameter, C-5
client configuration, 21-19
combining with other authentication methods,

21-8
configuration files, securing, A-19
configuration troubleshooeting, 21-29
configuring, 21-10
configuring ANO encryption with, 16-12
configuring for SYSDBA or SYSOPER

access, 3-49
enabling, 21-10
filtering certificates, 21-27
FIPS mode setting (SSLFIPS_140), E-3
global users with private schemas, 3-63

Index

Index-28

Secure Sockets Layer (SSL) (continued)
guidelines for security, A-19
handshake, 21-3
industry standard protocol, 21-1
listener, administering, A-16
MD5 certification, F-3
mode, A-19
multiple certificates, filtering, 21-27
parameters, ways of configuring, C-2
pass phrase, A-19
requiring client authentication, 21-17
RSA private key, A-19
Secure Sockets Layer (SSL), 3-58, 18-5

SSL_CLIENT_AUTHENTICATION, C-5
securing SSL connection, A-19
server configuration, 21-11
server.key file, A-19
SHA–1 certification, F-3
SQLNET.AUTHENTICATION_SERVICES

parameter, C-2
sqlnet.ora file sample, B-1
SSL_CIPHER_SUITES parameter, C-3
SSL_CLIENT_AUTHENTICATION

parameter, 21-17, 21-22, C-5
SSL_SERVER_CERT_DN, C-7
SSL_SERVER_DN_MATCH, C-6
SSL_VERSION parameter, C-4
system requirements, 18-7
TCPS, A-19
version parameter, C-4
wallet location, parameter, C-7
ways to configure parameters for, C-1

SecurID, 22-4
token cards, 22-4

security, A-3
application enforcement of, 4-27
default user accounts

locked and expired automatically, A-3
locking and expiring, A-3

domains, enabled roles and, 4-46
enforcement in application, 10-3
enforcement in database, 10-3
multibyte characters in role names, 4-39
multibyte characters in role passwords, 4-43
passwords, 3-52
policies

applications, 10-2
SQL*Plus users, restricting, 4-47
tables or views, 12-3

procedures enhance, 7-2
resources, additional, 1-3
roles, advantages in application use, 10-19

See also security risks
security alerts, A-2

security attacks, 3-3, 3-75, 15-2, A-16
access to server after protocol errors,

preventing, 10-28
application context values, attempts to

change, 11-9
application design to prevent attacks, 10-4
command line recall attacks, 10-4, 10-6
denial of service, A-16
denial-of-service

bad packets, addressing, 10-27
denial-of-service attacks through listener,

A-16
disk flooding, preventing, 10-27
eavesdropping, A-15
encryption, problems not solved by, 15-2
falsified IP addresses, A-15
falsified or stolen client system identities,

A-15
hacked operating systems or applications,

A-15
intruders, 15-2
password cracking, 3-3
password protections against, 3-3
preventing malicious attacks from clients,

10-27
preventing password theft with proxy

authentication and secure external
password store, 3-75

session ID, need for encryption, 11-44
shoulder surfing, 10-6
SQL injection attacks, 10-5
unlimited authenticated requests, preventing,

10-29
user session output, hiding from intruders,

11-17
See also security risks

security domains
enabled roles and, 4-26

security patches
about, A-2
downloading, A-2

security policies
See Oracle Virtual Private Database, policies

security risks, 3-75, A-3
ad hoc tools, 4-48
application users not being database users,

10-2
applications enforcing rather than database,

10-3
bad packets to server, 10-27
database version displaying, 10-29
encryption keys, users managing, 15-8
invoker’s rights procedures, 7-5
password files, 3-52

Index

29

security risks (continued)
passwords exposed in large deployments,

3-36
passwords, exposing in programs or scripts,

10-6
positional parameters in SQL scripts, 10-6
privileges carelessly granted, 4-14
remote user impersonating another user,

4-44
sensitive data in audit trail, A-20
server falsifying identities, A-19
users with multiple roles, 10-23

See also security attacks
security settings scripts

password settings
secconf.sql, 3-8

Security Sockets Layer (SSL)
use of term includes TLS, 21-2

Security Technical Implementation Guides
(STIG)

ora_stig_profile user profile, 2-28
ora12c_stig_verify_function password

complexity function, 3-19
SEED encryption algorithm, 16-2
SELECT ANY DICTIONARY privilege

data dictionary, accessing, A-11
exclusion from GRANT ALL PRIVILEGES

privilege, A-11
SELECT FOR UPDATE statement in Virtual

Private Database policies, 12-46
SELECT object privilege

guideline for using, A-3
privileges enabled, 4-60

SELECT_CATALOG_ROLE role
SYS schema objects, enabling access to,

4-13
separation of duty concepts, 21
sequences

auditing, 25-14
server.key file

pass phrase to read and parse, A-19
SESSION_ROLES data dictionary view

PUBLIC role, 4-14
SESSION_ROLES view

queried from PL/SQL block, 4-29
sessions

listing privilege domain of, 4-97
memory use, viewing, 2-42
time limits on, 2-25
when auditing options take effect, 26-2

SET ROLE statement
application code, including in, 10-24
associating privileges with role, 10-23
disabling roles with, 4-92
enabling roles with, 4-92

SET ROLE statement (continued)
when using operating-system roles, 4-91

SGA
See System Global Area (SGA)

SH user account, 2-37
SHA-512 cryptographic hash function

enabling exclusive mode, 3-32
Shared Global Area (SGA)

See System Global Area (SGA)
shared server

limiting private SQL areas, 2-25
operating system role management

restrictions, 4-91
shoulder surfing, 10-6
SI_INFORMTN_SCHEMA user account, 2-33
smart cards

guidelines for security, A-8
smartcards, 18-4

and RADIUS, 18-4, 22-7, 22-14, D-1
SODA_APP role, 4-32
SPATIAL_CSW_ADMIN role, 4-32
SPATIAL_CSW_ADMIN_USR user account,

2-36
SPATIAL_WFS_ADMIN role, 4-32
SPATIAL_WFS_ADMIN_USR user account, 2-36
SQL Developer

debugging using Java Debug Wire Protocol,
8-21

SQL injection attacks, 10-5
SQL statements

dynamic, 11-13
object privileges permitting in applications,

10-26
privileges required for, 4-58, 10-26
resource limits and, 2-25
restricting ad hoc use, 4-48

SQL statements, top-level in unified audit
policies, 25-66

SQL*Net
See Oracle Net Services

SQL*Plus
connecting with, 3-56
restricting ad hoc use, 4-48
statistics monitor, 2-26

SQL92_SECURITY initialization parameter
READ object privilege impact, 4-61

SQLNET.ALLOWED_LOGON_VERSION
See
SQLNET.ALLOWED_LOGON_VERSION_CLIENT,
SQLNET.ALLOWED_LOGON_VERSION_SERVE
R,

SQLNET.ALLOWED_LOGON_VERSION_CLIENT
target databases from earlier releases, 3-34

SQLNET.ALLOWED_LOGON_VERSION_SERVER
target databases from earlier releases, 3-34
using only 12C password version, 3-32

Index

Index-30

SQLNET.ALLOWED_LOGON_VERSION_SERVER
parameter

conflict with SEC_CASE_SENSITIVE_LOGON
FALSE setting, 3-21

effect on role passwords, 3-22
SQLNET.AUTHENTICATION_KERBEROS5_SE

RVICE parameter, 20-5
SQLNET.AUTHENTICATION_SERVICES

parameter, 20-5, 21-18, 21-27, 22-9,
23-2, 23-4, A-19, C-2, C-9

SQLNET.CRYPTO_CHECKSUM_CLIENT
parameter, 16-10, B-6

SQLNET.CRYPTO_CHECKSUM_SERVER
parameter, 16-10, B-5

SQLNET.CRYPTO_CHECKSUM_TYPES_CLIE
NT parameter, 16-10, B-8

SQLNET.CRYPTO_CHECKSUM_TYPES_SERV
ER parameter, 16-10, B-7

SQLNET.ENCRYPTION_CLIENT
with ANO encryption and SSL authentication,

16-12
SQLNET.ENCRYPTION_CLIENT parameter,

16-8, 23-2, B-5
SQLNET.ENCRYPTION_SERVER

with ANO encryption and SSL authentication,
16-12

SQLNET.ENCRYPTION_SERVER parameter,
16-8, 23-2, B-4

SQLNET.ENCRYPTION_TYPES_CLIENT
parameter, 16-8, B-7

SQLNET.ENCRYPTION_TYPES_SERVER
parameter, 16-8, B-6

SQLNET.IGNORE_ANO_ENCRYPTION_FOR_TCPS
setting, 16-12
with ANO encryption and SSL authentication,

16-12
SQLNET.KERBEROS5_CC_NAME parameter,

20-8
SQLNET.KERBEROS5_CLOCKSKEW

parameter, 20-8
SQLNET.KERBEROS5_CONF parameter, 20-8
SQLNET.KERBEROS5_REALMS parameter,

20-8
sqlnet.ora file

Common sample, B-1
FIPS 140-2

Cipher Suite settings, E-3
enabling tracing, E-4

Kerberos sample, B-1
Oracle Advanced Security checksum sample, B-1
Oracle Advanced Security encryption sample, B-1
Oracle wallet setting, C-7
OSS.SOURCE.MY_WALLET parameter, 21-12, 21-22
parameters for clients and servers using Kerberos, C-1
parameters for clients and servers using RADIUS, C-8

sqlnet.ora file (continued)
parameters for clients and servers using SSL, C-1
PDBs, 3-32
RADIUS sample, B-1
sample, B-1
SQLNET.AUTHENTICATION_KERBEROS5_SERVICE

parameter, 20-5
SQLNET.AUTHENTICATION_SERVICES parameter,

20-5, 21-18, 21-27, 23-2, 23-4, A-19
SQLNET.CRYPTO_CHECKSUM_CLIENT parameter,

16-10
SQLNET.CRYPTO_CHECKSUM_SERVER parameter,

16-10
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT

parameter, 16-10, B-8
SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER

parameter, 16-10, B-7
SQLNET.ENCRYPTION_CLIEN parameter, 23-2
SQLNET.ENCRYPTION_CLIENT parameter, B-5
SQLNET.ENCRYPTION_SERVER parameter, 16-8,

23-2, B-4
SQLNET.ENCRYPTION_TYPES_CLIENT parameter,

16-8
SQLNET.ENCRYPTION_TYPES_SERVER parameter,

16-8
SQLNET.KERBEROS5_CC_NAME parameter, 20-8
SQLNET.KERBEROS5_CLOCKSKEW parameter,

20-8
SQLNET.KERBEROS5_CONF parameter, 20-8
SQLNET.KERBEROS5_REALMS parameter, 20-8
SQLNET.SSL_EXTENDED_KEY_USAGE, 21-27
SSL sample, B-1
SSL_CLIENT_AUTHENTICATION parameter, 21-17
SSL_CLIENT_AUTHETNICATION parameter, 21-22
SSL_VERSION parameter, 21-16, 21-26
Trace File Set Up sample, B-1

sqlnet.ora parameters
ADD_SSLV3_TO_DEFAULT, 21-19

SQLNET.RADIUS_ALTERNATE parameter,
22-16, C-10

SQLNET.RADIUS_ALTERNATE_PORT
parameter, 22-16, C-10

SQLNET.RADIUS_ALTERNATE_RETRIES
parameter, 22-16, C-10

SQLNET.RADIUS_ALTERNATE_TIMEOUT
parameter, 22-16, C-10

SQLNET.RADIUS_AUTHENTICATION
parameter, C-11

SQLNET.RADIUS_AUTHENTICATION_INTERF
ACE parameter, C-11

SQLNET.RADIUS_AUTHENTICATION_PORT
parameter, C-11

SQLNET.RADIUS_AUTHENTICATION_RETRIE
S parameter, C-12

Index

31

SQLNET.RADIUS_AUTHENTICATION_TIMEOU
T parameter, C-12

SQLNET.RADIUS_CHALLENGE_KEYWORDpar
ameter, C-13

SQLNET.RADIUS_CHALLENGE_RESPONSE
parameter, C-12

SQLNET.RADIUS_CLASSPATH parameter,
C-13

SQLNET.RADIUS_SECRET parameter, C-13
SQLNET.RADIUS_SEND_ACCOUNTING

parameter, 22-19, C-14
SQLNET.SSL_EXTENDED_KEY_USAGE

parameter, 21-27
SSL

See Secure Sockets Layer (SSL)
SSL_CIPHER_SUITES parameter, C-3
SSL_CLIENT_AUTHENTICATION parameter,

21-17, 21-22, C-5
SSL_SERVER_CERT_DN parameter, C-7
SSL_SERVER_DN_MATCH parameter, C-6
SSL_VERSION parameter, 21-16, 21-26, C-4
standard audit trail

records, purging, 26-11
standard auditing

affected by editions, 25-19
archiving audit trail, 26-11
privilege auditing

about, 25-9
multitier environment, 25-23

records
archiving, 26-11

statement auditing
multitier environment, 25-23

statement_types parameter of
DBMS_RLS.ADD_POLICY procedure,
12-11

storage
quotas and, 2-12
unlimited quotas, 2-13

stored procedures
using privileges granted to PUBLIC role, 4-87

strong authentication
centrally controlling SYSDBA and SYSOPER

access to multiple databases, 3-47
disabling, 23-2
guideline, A-8

symbolic links
restricting, A-11

synchronous authentication mode, RADIUS, 22-3
synonyms

object privileges, 4-61
privileges, guidelines on, A-3

SYS account
auditing, 25-77
changing password, 2-22

SYS account (continued)
policy enforcement, 12-49
privilege analysis, 5-3

SYS and SYSTEM
passwords, A-8

SYS and SYSTEM accounts
auditing, 25-77

SYS objects
auditing, 25-15

SYS schema
objects, access to, 4-13

SYS user
auditing example, 25-11

SYS user account
about, 2-33

SYS_CONTEXT function
about, 11-11
auditing nondatabase users with, 25-83
Boolean expressions used in privilege

analysis, 5-6
database links, 11-14
dynamic SQL statements, 11-13
example, 11-15
parallel query, 11-13
syntax, 11-12
unified audit policies, 25-26
used in views, 7-9
validating users, 10-21

SYS_DEFAULT Oracle Virtual Private Database
policy group, 12-17

SYS_SESSION_ROLES namespace, 11-11
SYS.AUD$ table

archiving, 26-11
SYS.FGA_LOG$ table

archiving, 26-11
SYS.LINK$ system table, 14-1
SYS.SCHEDULER$_CREDENTIAL system

table, 14-1
SYSASM privilege

password file, 3-50
SYSBACKUP privilege

operations supported, 4-6
password file, 3-50

SYSBACKUP user account
about, 2-33

SYSDBA privilege, 4-6
directory authentication, 3-47
Kerberos authentication, 3-48
password file, 3-50
SSL authentication, 3-49

SYSDG privilege
operations supported, 4-8
password file, 3-50

SYSDG user account
about, 2-33

Index

Index-32

SYSKM privilege
operations supported, 4-9
password file, 3-50

SYSKM user account
about, 2-33

syslog
capturing audit trail records, 26-6

SYSLOG
audit trail records, 26-5

SYSMAN user account, A-8
SYSOPER privilege, 4-6

directory authentication, 3-47
password file, 3-50

SYSRAC privilege
operations supported, 4-9

System Global Area (SGA), 11-2
application contexts, storing in, 11-2
global application context information

location, 11-30
limiting private SQL areas, 2-25

system privileges, A-3
about, 4-11
ADMIN OPTION, 4-14
ANY

guidelines for security, A-11
CDBs, 4-16
GRANT ANY PRIVILEGE, 4-14
granting, 4-77
granting and revoking, 4-13
power of, 4-11
restriction needs, 4-12
revoking, cascading effect of, 4-86
SELECT ANY DICTIONARY, A-11
with common privilege grants, 4-16

system requirements
Kerberos, 18-7
RADIUS, 18-7
SSL, 18-7
strong authentication, 18-7

SYSTEM user account
about, 2-33

T
table encryption

transparent sensitive data protection policy
settings, 13-36

tables
auditing, 25-14
privileges on, 4-65

tablespaces
assigning defaults for users, 2-10
default quota, 2-12
quotas for users, 2-12
quotas, viewing, 2-40

tablespaces (continued)
temporary

assigning to users, 2-13
unlimited quotas, 2-13

TCPS protocol
Secure Sockets Layer, used with, A-16
tnsnames.ora file, used in, A-19

TELNET service, A-16
TFTP service, A-16
thin JDBC support, 17-1
TLS See Secure Sockets Layer (SSL), 21-2
token cards, 18-4, A-8
trace file

set up sample for sqlnet.ora file, B-1
trace files

access to, importance of restricting, A-11
bad packets, 10-27
FIPS 140-2, E-4
location of, finding, 11-57

Transparent Data Encryption
about, 15-8
enabling for FIPS 140-2, E-1
SYSKM administrative privilege, 4-9

Transparent Data Encryption (TDE), 14-1
TSDP with TDE column encryption, 13-35

transparent sensitive data protection (TSDP
unified auditing

general steps, 13-30
transparent sensitive data protection (TSDP)

about, 13-2
altering policies, 13-14
benefits, 13-2
bind variables

about, 13-18
expressions of conditions, 13-19

creating policies, 13-5
disabling policies, 13-15
disabling REDACT_AUDIT policy, 13-21
dropping policies, 13-16
enabling REDACT_AUDIT policy, 13-22
finding information about, 13-36
fine-grained auditing

general steps, 13-32
general steps, 13-2
PDBs, 13-4
privileges required, 13-4
REDACT_AUDIT policy, 13-18
sensitive columns in INSERT or UPDATE

operations, 13-20
sensitive columns in same SELECT query,

13-20
sensitive columns in views, 13-21
TDE column encryption

general steps, 13-35
settings used, 13-36

Index

33

transparent sensitive data protection (TSDP) (continued)
unified auditing:settings used, 13-31
use cases, 13-3
Virtual Private Database

DBMS_RLS.ADD_POLICY parameters,
13-24

general steps, 13-23
tutorial, 13-25

transparent sensitive data protection (TSDP);
fine-grained auditing

settings used, 13-33
transparent tablespace encryption

about, 15-8
Transport Layer Security (SSL)

compared to SSL, 21-2
Transport Layer Security (TLS)

application containers, 21-2
triggers

auditing, 25-14, 25-17
CREATE TRIGGER ON, 10-26
logon

examples, 11-16
externally initialized application contexts,

11-16
privileges for executing, 7-2

roles, 4-29
WHEN OTHERS exception, 11-17

troubleshooting, 20-22
finding errors by checking trace files, 11-57

trusted procedure
database session-based application

contexts, 11-2
tsnames.ora configuration file, A-19
tutorials, 11-18, 12-27

application context, database session-based,
11-18

auditing
creating policy to audit nondatabase

users, 25-82
creating policy using email alert, 25-103

definer’s rights, database links, 7-28
external network services, using email alert,

25-103
global application context with client session

ID, 11-46
invoker’s rights procedure using CBAC, 7-19
nondatabase users

creating Oracle Virtual Private Database
policy group, 12-39

global application context, 11-46
Oracle Virtual Private Database

policy groups, 12-39
policy implementing, 12-32
simple example, 12-28

privilege analysis, 5-23

tutorials (continued)
privilege analysis for ANY privileges, 5-18
TSDP with VPD, 13-25

See also examples
types

creating, 4-74
privileges on, 4-72
user defined

creation requirements, 4-73

U
UDP and TCP ports

close for ALL disabled services, A-16
UGA

See User Global Area (UGA)
unified audit policies, 24-2, 25-1

about, 25-4
best practices for creating, 25-5
dropping

about, 25-81
procedure, 25-82

location of, 25-5
predefined

ORA_ACCOUNT_MGMT, 25-88
ORA_CIS_RECOMMENDATIONS,

25-88
ORA_DATABASE_PARAMETER, 25-87
ORA_DV_AUDPOL, 25-90
ORA_DV_AUDPOL2, 25-91
ORA_LOGON_FAILURES, 25-86
ORA_SECURECONFIG, 25-87

syntax for creating, 25-5
top-level statements, 25-67
users, applying to, 25-77
users, excluding, 25-77
users, success or failure, 25-77

unified audit policies, administrative users
configuring, 25-12
example, 25-13
users that can be audited, 25-12

unified audit policies, altering
about, 25-74
configuring, 25-75
examples, 25-76

unified audit policies, application containers
example, 25-73

unified audit policies, CDBs
about, 25-68
appearance in audit trail, 25-73
configuring, 25-70
examples, 25-72

unified audit policies, conditions
about, 25-26
configuring, 25-26

Index

Index-34

unified audit policies, conditions (continued)
examples, 25-28

unified audit policies, disabling
about, 25-77, 25-80
configuring, 25-80

unified audit policies, enabling
about, 25-77
configuring, 25-79
for groups of users through roles, 25-77

unified audit policies, object actions
about, 25-14
actions that can be audited, 25-14
appearance in audit trail, 25-16
configuring, 25-15
dictionary tables

auditing, 25-15
examples, 25-15
SYS objects, 25-15

unified audit policies, Oracle Data Miner
about, 25-59

unified audit policies, Oracle Data Mining
configuring, 25-60
how events appear in audit trail, 25-61

unified audit policies, Oracle Data Pump
about, 25-62
appearance in audit trail, 25-63, 25-65
configuring, 25-62
examples, 25-63
how events appear in audit trail, 25-63

unified audit policies, Oracle Database Real
Application Security

about, 25-33
configuring, 25-39
events to audit, 25-34
examples, 25-39
how events appear in audit trail, 25-40
predefined

about, 25-89
ORA_RAS_POLICY_MGMT, 25-89
ORA_RAS_SESSION_MGMT, 25-90

unified audit policies, Oracle Database Vault
about, 25-44
appearance in audit trail, 25-52
attributes to audit, 25-45
configuring, 25-51
data dictionary views, 25-44
example of auditing factors, 25-52
example of auditing realm, 25-51
example of auditing rule set, 25-52
example of auditing two events, 25-52
how events appear in audit trail, 25-52

unified audit policies, Oracle Label Security
about, 25-53
appearance in audit trail, 25-58
configuring, 25-56

unified audit policies, Oracle Label Security (continued)
examples, 25-57
how events appear in audit trail, 25-58
LBACSYS.ORA_GET_AUDITED_LABEL

function, 25-58
unified audit policies, Oracle Recovery Manager

about, 25-40
how events appear in audit trail, 25-42

unified audit policies, Oracle SQL*Loader
about, 25-64
configuring, 25-65
example, 25-65
how events appear in audit trail, 25-65

unified audit policies, privileges
about, 25-9
appearance in audit trail, 25-11
configuring, 25-10
examples, 25-11
privileges that can be audited, 25-9
privileges that cannot be audited, 25-10

unified audit policies, roles
about, 25-7
configuring, 25-8
examples, 25-8

unified audit policies, top-level statements, 25-66
appearance in audit trail, 25-67
how events appear in audit trail, 25-67

unified audit session ID, finding, 25-29
unified audit trail

about, 24-4
archiving, 26-11
loading audit records to, 26-8
Oracle Data Pump, 26-10
when records are created, 26-2
writing audit trail records to AUDSYS

about, 26-4
immediate-write mode, 26-4
minimum flush threshold for queues,

26-2
queued-write mode, 26-4

unified audit trail, object actions
READ object actions, 25-20
SELECT object actions, 25-20

unified audit trail, Oracle Data Mining
examples, 25-60

unified audit trail, top-level statements, 25-67
unified audit trial

Oracle Data Mining audit events, 25-59
Oracle Data Pump audit events, 25-62
Oracle Database Real Application Security

ALL audit events, 25-39
Oracle Database Real Application Security

security class and ACL audit events,
25-36

Index

35

unified audit trial (continued)
Oracle Database Real Application Security

session audit events, 25-37
Oracle Database Real Application Security

user, privilege, and role audit events,
25-35

Oracle Database Vault command rule
events, 25-47

Oracle Database Vault Data Pump events,
25-50

Oracle Database Vault enable and disable
events, 25-50

Oracle Database Vault factor events, 25-47
Oracle Database Vault OLS events, 25-49
Oracle Database Vault realm events, 25-45
Oracle Database Vault rule set and rule

events, 25-46
Oracle Database Vault secure application

role events, 25-49
Oracle Label Security audit events, 25-54
Oracle Label Security user session label

events, 25-56
Oracle Recovery Manager audit events,

25-41
Oracle SQL*Loader Direct Load Path audit

events, 25-64
unified auditing

benefits, 24-4
compared with mixed mode auditing, 24-6
database creation, 24-7
disabling, 26-9
enablement of, 24-7
finding if migrated to, 24-5
mixed mode auditing

about, 24-6
capabilities, 24-7

purging records
example, 26-23
general steps for manual purges, 26-13
general steps for scheduledl purges,

26-13
transparent sensitive data protection policy

settings, 13-31
tutorial, 25-82

unified audting
TSDP policies and, 13-30

UNIFIED_AUDIT_SYSTEMLOG initialization
parameter

about, 26-5
using, 26-6

UNIFIED_AUDIT_TRAIL data dictionary view
best practices for using, A-24

UNLIMITED TABLESPACE privilege, 2-13
UPDATE privilege

revoking, 4-85

user accounts
administrative user passwords, A-8
application common user

about, 2-3
CDB common user

about, 2-3
common

creating, 2-16
default user account, A-8
local

creating, 2-18
local user

about, 2-5
password guidelines, A-8
passwords, encrypted, A-8
predefined

administrative, 2-33
non-administrative, 2-36
sample schema, 2-37

predefined schema, 2-32
privileges required to create, 2-6
proxy users, 3-72

user accounts, predefined
ANONYMOUS, 2-33
ASMSNMP, 2-33
AUDSYS, 2-33
CTXSYS, 2-33
DBSNMP, 2-33
DIP, 2-36
HR, 2-37
IX, 2-37
LBACSYS, 2-33
MDDATA, 2-36
MDSYS, 2-33
OE, 2-37
OLAPSYS, 2-33
ORACLE_OCM, 2-36
ORDDATA, 2-33
ORDPLUGINS, 2-33
ORDSYS, 2-33
PM, 2-37
SCOTT, 2-37
SH, 2-37
SI_INFORMTN_SCHEMA, 2-33
SPATIAL_CSW_ADMIN_USR, 2-36
SPATIAL_WFS_ADMIN_USR, 2-36
SYS, 2-33
SYSBACKUP, 2-33
SYSDG, 2-33
SYSKM, 2-33
SYSTEM, 2-33
WMSYS, 2-33
XDB, 2-33
XS$NULL, 2-36

Index

Index-36

User Global Area (UGA), 11-2
application contexts, storing in, 11-2

user names
schemas, 10-24

user privileges
CDBs, 4-4

USER pseudo column, 4-67
user sessions, multiple within single database

connection, 3-75
USERENV function, 15-9

used in views, 7-9
USERENV namespace, 3-82

about, 11-12
See also CLIENT_IDENTIFIER USERENV
attribute

users
administrative option (ADMIN OPTION), 4-78
altering, 2-19
altering common users, 2-20
altering local users, 2-20
application users not known to database,

3-81
assigning unlimited quotas for, 2-13
auditing, 25-77
database role, current, 10-23
default roles, changing, 2-19
default tablespaces, 2-10
dropping, 2-30, 2-31
dropping profiles and, 2-30
dropping roles and, 4-47
enabling roles for, 10-23
enterprise, 3-62, 4-45
enterprise, shared schema protection, 10-25
external authentication

about, 3-65
advantages, 3-66
assigning profiles, 2-29
operating system, 3-67
user creation, 3-67

finding information about, 2-38
finding information about authentication, 3-85
global, 3-62

assigning profiles, 2-29
hosts, connecting to multiple

See external network services, fine-
grained access to, 8-2

information about, viewing, 2-40
listing roles granted to, 4-96
memory use, viewing, 2-42
names

case sensitivity, 2-9
how stored in database, 2-9

network authentication, external, 3-68
nondatabase, 11-30, 11-38
objects after dropping, 2-30

users (continued)
operating system external authentication,

3-67
password encryption, 3-3
privileges

for changing passwords, 2-19
for creating, 2-7
granted to, listing, 4-96
of current database role, 10-23

profiles
assigning, 2-29
creating, 2-28
specifying, 2-14

profiles, CDB or application, 2-29
proxy authentication, 3-71
proxy users, connecting as, 3-71
PUBLIC role, 4-29, 4-87
quota limits for tablespace, 2-13
restricting application roles, 4-47
restrictions on user names, 2-8
roles and, 4-27

for types of users, 4-29
schema-independent, 10-25
schemas, private, 3-63
security domains of, 4-29
security, about, 2-1
tablespace quotas, 2-12
tablespace quotas, viewing, 2-40
user accounts, creating, 2-7
user models and Oracle Virtual Private

Database, 12-51
user name, specifying with CREATE USER

statement, 2-8
views for finding information about, 2-38

users supported, 6-4
utlpwdmg.sql

about, 3-17

V
valid node checking, A-16
views, 4-94

about, 4-66
access control list data

external network services, 8-22
wallet access, 8-22

application contexts, 11-57
audit management settings, 26-24
audit trail usage, 25-110
audited activities, 25-110
auditing, 25-14
authentication, 3-85
bind variables in TSDP sensitive columns,

13-21
DBA_COL_PRIVS, 4-97

Index

37

views (continued)
DBA_HOST_ACES, 8-22
DBA_HOST_ACLS, 8-22
DBA_ROLE_PRIVS, 4-96
DBA_ROLES, 4-98
DBA_SYS_PRIVS, 4-96
DBA_TAB_PRIVS, 4-97
DBA_USERS_WITH_DEFPWD, 3-6
DBA_WALLET_ACES, 8-22
DBA_WALLET_ACLS, 8-22
definer’s rights, 7-9
encrypted data, 15-19
invoker’s rights, 7-9
Oracle Virtual Private Database policies,

12-52
privileges, 4-66, 4-94
profiles, 2-38
ROLE_SYS_PRIVS, 4-99
ROLE_TAB_PRIVS, 4-99
security applications of, 4-67
SESSION_PRIVS, 4-97
SESSION_ROLES, 4-97
transparent sensitive data protection, 13-36
USER_HOST_ACES, 8-22
USER_WALLET_ACES, 8-22
users, 2-38

Virtual Private Database
See Oracle Virtual Private Database

VPD
See Oracle Virtual Private Database

vulnerable run-time call, A-3
made more secure, A-3

W
Wallet Manager

See Oracle Wallet Manager
wallets, 8-2, 21-7

adding certificate to, 6-14

wallets (continued)
authentication method, 3-60
certificates

adding to wallet, 6-14
See also access control lists (ACL), wallet
access

Web applications
user connections, 11-30, 11-38

Web-based applications
Oracle Virtual Private Database, how it works

with, 12-51
WFS_USR_ROLE role, 4-32
WHEN OTHERS exceptions

logon triggers, used in, 11-17
Windows Event Viewer

capturing audit trail records, 26-6
Windows native authentication, 3-50
WITH GRANT OPTION clause

about, 4-80
user and role grants, 4-58

WM_ADMIN_ROLE role, 4-32
WMSYS user account, 2-33

X
X.509 certificates

guidelines for security, A-8
XDB user account, 2-33
XDB_SET_INVOKER role, 4-32
XDB_WEBSERVICES role, 4-32
XDB_WEBSERVICES_OVER_HTTP role

about, 4-32
XDB_WEBSERVICES_WITH_PUBLIC role, 4-32
XDBADMIN role, 4-32
XS_CACHE_ADMIN role, 4-32
XS_NSATTR_ADMIN role, 4-32
XS_RESOURCE role, 4-32
XS$NULL user account, 2-36

Index

Index-38

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Changes in This Release for Oracle Database Security Guide
	Changes in Oracle Database Security 19c
	Signature-Based Security for LOB Locators
	Default User Accounts Now Schema Only
	Privilege Analysis Now Available in Oracle Database Enterprise Edition
	Ability to Grant or Revoke Administrative Privileges to and from Schema-Only Accounts
	Automatic Support for Both SASL and Non-SASL Active Directory Connections
	Support for Oracle Native Encryption and SSL Authentication for Different Users Concurrently
	Support for Host Name-Based Partial DN Matching for Matching for Server Certificates
	Ability to Audit Only Top-Level SQL Statements
	Improved Read Performance for the Unified Audit Trial
	PDB_GUID as Audit Record Field Name for SYSLOG and the Windows Event Viewer

	Changes in Oracle Database Security 18c
	Ability to Create Schema Only Accounts
	Integration of Active Directory Services with Oracle Database
	Ability to Encrypt Sensitive Credential Data in the Data Dictionary
	PDB Lockdown Profile Enhancements
	New Authentication and Certification Parameters
	Ability to Write Unified Audit Trail Records to SYSLOG or the Windows Event Viewer
	Ability to Use Oracle Data Pump to Export and Import the Unified Audit Trail

	1 Introduction to Oracle Database Security
	About Oracle Database Security
	Additional Oracle Database Security Resources

	Part I Managing User Authentication and Authorization
	2 Managing Security for Oracle Database Users
	About User Security
	Creating User Accounts
	About Common Users and Local Users
	About Common Users
	How Plugging in PDBs Affects CDB Common Users
	About Local Users

	Who Can Create User Accounts?
	Creating a New User Account That Has Minimum Database Privileges
	Restrictions on Creating the User Name for a New Account
	Uniqueness of User Names
	User Names in a Multitenant Environment
	Case Sensitivity for User Names

	Assignment of User Passwords
	Default Tablespace for the User
	About Assigning a Default Tablespace for a User
	DEFAULT TABLESPACE Clause for Assigning a Default Tablespace

	Tablespace Quotas for a User
	About Assigning a Tablespace Quota for a User
	CREATE USER Statement for Assigning a Tablespace Quota
	Restriction of the Quota Limits for User Objects in a Tablespace
	Grants to Users for the UNLIMITED TABLESPACE System Privilege

	Temporary Tablespaces for the User
	About Assigning a Temporary Tablespace for a User
	TEMPORARY TABLESPACE Clause for Assigning a Temporary Tablespace

	Profiles for the User
	Creation of a Common User or a Local User
	About Creating Common User Accounts
	CREATE USER Statement for Creating a Common User Account
	About Creating Local User Accounts
	CREATE USER Statement for Creating a Local User Account

	Creating a Default Role for the User

	Altering User Accounts
	About Altering User Accounts
	ALTER USER Statement for Altering Common or Local User Accounts
	Changing Non-SYS User Passwords
	About Changing Non-SYS User Passwords
	Using the PASSWORD Command or ALTER USER Statement to Change a Password

	Changing the SYS User Password
	About Changing the SYS User Password
	ORAPWD Utility for Changing the SYS User Password

	Configuring User Resource Limits
	About User Resource Limits
	Types of System Resources and Limits
	Limits to the User Session Level
	Limits to Database Call Levels
	Limits to CPU Time
	Limits to Logical Reads
	Limits to Other Resources

	Values for Resource Limits of Profiles
	Managing Resources with Profiles
	About Profiles
	ora_stig_profile User Profile
	Creating a Profile
	Creating a CDB Profile or an Application Profile
	Assigning a Profile to a User
	Dropping Profiles

	Dropping User Accounts
	About Dropping User Accounts
	Terminating a User Session
	About Dropping a User After the User Is No Longer Connected to the Database
	Dropping a User Whose Schema Contains Objects

	Predefined Schema User Accounts Provided by Oracle Database
	About the Predefined Schema User Accounts
	Predefined Administrative Accounts
	Predefined Non-Administrative User Accounts
	Predefined Sample Schema User Accounts

	Database User and Profile Data Dictionary Views
	Data Dictionary Views That List Information About Users and Profiles
	Query to Find All Users and Associated Information
	Query to List All Tablespace Quotas
	Query to List All Profiles and Assigned Limits
	Query to View Memory Use for Each User Session

	3 Configuring Authentication
	About Authentication
	Configuring Password Protection
	What Are the Oracle Database Built-in Password Protections?
	Minimum Requirements for Passwords
	Creating a Password by Using the IDENTIFIED BY Clause
	Using a Password Management Policy
	About Managing Passwords
	Finding User Accounts That Have Default Passwords
	Password Settings in the Default Profile
	Using the ALTER PROFILE Statement to Set Profile Limits
	Disabling and Enabling the Default Password Security Settings
	Automatically Locking Inactive Database User Accounts
	Automatically Locking User Accounts After Failed Logins
	Example: Locking an Account with the CREATE PROFILE Statement
	Explicitly Locking a User Account
	Controlling the User Ability to Reuse Previous Passwords
	About Controlling Password Aging and Expiration
	Using the CREATE PROFILE or ALTER PROFILE Statement to Set a Password Lifetime
	Checking the Status of a User Account
	Password Change Life Cycle
	PASSWORD_LIFE_TIME Profile Parameter Low Value

	Managing the Complexity of Passwords
	About Password Complexity Verification
	How Oracle Database Checks the Complexity of Passwords
	Who Can Use the Password Complexity Functions?
	verify_function_11G Function Password Requirements
	ora12c_verify_function Password Requirements
	ora12c_strong_verify_function Function Password Requirements
	ora12c_stig_verify_function Password Requirements
	About Customizing Password Complexity Verification
	Enabling Password Complexity Verification

	Managing Password Case Sensitivity
	SEC_CASE_SENSITIVE_LOGON Parameter and Password Case Sensitivity
	Using the ALTER SYSTEM Statement to Enable Password Case Sensitivity
	Management of Case Sensitivity for Secure Role Passwords
	Management of Password Versions of Users
	Finding and Resetting User Passwords That Use the 10G Password Version
	How Case Sensitivity Affects Password Files
	How Case Sensitivity Affects Passwords Used in Database Link Connections

	Ensuring Against Password Security Threats by Using the 12C Password Version
	About the 12C Version of the Password Hash
	Oracle Database 12C Password Version Configuration Guidelines
	Configuring Oracle Database to Use the 12C Password Version Exclusively
	How Server and Client Logon Versions Affect Database Links
	Configuring Oracle Database Clients to Use the 12C Password Version Exclusively

	Managing the Secure External Password Store for Password Credentials
	About the Secure External Password Store
	How Does the External Password Store Work?
	About Configuring Clients to Use the External Password Store
	Configuring a Client to Use the External Password Store
	Example: Sample SQLNET.ORA File with Wallet Parameters Set
	Managing External Password Store Credentials
	Listing External Password Store Contents
	Adding Credentials to an External Password Store
	Modifying Credentials in an External Password Store
	Deleting Credentials from an External Password Store

	Managing Passwords for Administrative Users
	About Managing Passwords for Administrative Users
	Setting the LOCK and EXPIRED Status of Administrative Users
	Password Profile Settings for Administrative Users
	Last Successful Login Time for Administrative Users
	Management of the Password File of Administrative Users
	Migration of the Password File of Administrative Users
	How the Multitenant Option Affects Password Files for Administrative Users
	Password Complexity Verification Functions for Administrative Users

	Authentication of Database Administrators
	About Authentication of Database Administrators
	Strong Authentication, Centralized Management for Administrators
	About Strong Authentication for Database Administrators
	Configuring Directory Authentication for Administrative Users
	Configuring Kerberos Authentication for Administrative Users
	Configuring Secure Sockets Layer Authentication for Administrative Users

	Authentication of Database Administrators by Using the Operating System
	Authentication of Database Administrators by Using Their Passwords
	Risks of Using Password Files for Database Administrator Authentication

	Database Authentication of Users
	About Database Authentication
	Advantages of Database Authentication
	Creating Users Who Are Authenticated by the Database

	Schema-Only Accounts
	About Schema-Only Accounts
	Creating a Schema-Only Account
	Altering a Schema-Only Account

	Operating System Authentication of Users
	Network Authentication of Users
	Authentication with Secure Sockets Layer
	Authentication with Third-Party Services
	About Authentication Using Third-Party Services
	Authentication with Kerberos
	Authentication with RADIUS
	Authentication with Directory-Based Services
	Authentication with Public Key Infrastructure

	Configuring Operating System Users for a PDB
	About Configuring Operating System Users for a PDB
	Configuring an Operating System User for a PDB

	Global User Authentication and Authorization
	About Configuring Global User Authentication and Authorization
	Configuration of Users Who Are Authorized by a Directory Service
	Creating a Global User Who Has a Private Schema
	Creating Multiple Enterprise Users Who Share Schemas

	Advantages of Global Authentication and Global Authorization

	Configuring an External Service to Authenticate Users and Passwords
	About External Authentication
	Advantages of External Authentication
	Enabling External Authentication
	Creating a User Who Is Authenticated Externally
	Authentication of User Logins By Using the Operating System
	Authentication of User Logins Using Network Authentication

	Multitier Authentication and Authorization
	Administration and Security in Clients, Application Servers, and Database Servers
	Preserving User Identity in Multitiered Environments
	Middle Tier Server Use for Proxy Authentication
	About Proxy Authentication
	Advantages of Proxy Authentication
	Who Can Create Proxy User Accounts?
	Guidelines for Creating Proxy User Accounts
	Creating Proxy User Accounts and Authorizing Users to Connect Through Them
	Proxy User Accounts and the Authorization of Users to Connect Through Them
	Using Proxy Authentication with the Secure External Password Store
	How the Identity of the Real User Is Passed with Proxy Authentication
	Limits to the Privileges of the Middle Tier
	Authorizing a Middle Tier to Proxy and Authenticate a User
	Authorizing a Middle Tier to Proxy a User Authenticated by Other Means
	Reauthenticating a User Through the Middle Tier to the Database
	Using Password-Based Proxy Authentication
	Using Proxy Authentication with Enterprise Users

	Using Client Identifiers to Identify Application Users Unknown to the Database
	About Client Identifiers
	How Client Identifiers Work in Middle Tier Systems
	Use of the CLIENT_IDENTIFIER Attribute to Preserve User Identity
	Use of the CLIENT_IDENTIFIER Independent of Global Application Context
	Setting the CLIENT_IDENTIFIER Independent of Global Application Context
	Use of the DBMS_SESSION PL/SQL Package to Set and Clear the Client Identifier
	Enabling the CLIENTID_OVERWRITE Event System-Wide
	Enabling the CLIENTID_OVERWRITE Event for the Current Session
	Disabling the CLIENTID_OVERWRITE Event

	User Authentication Data Dictionary Views

	4 Configuring Privilege and Role Authorization
	About Privileges and Roles
	Who Should Be Granted Privileges?
	How the Oracle Multitenant Option Affects Privileges
	Managing Administrative Privileges
	About Administrative Privileges
	Grants of Administrative Privileges to Users
	SYSDBA and SYSOPER Privileges for Standard Database Operations
	SYSBACKUP Administrative Privilege for Backup and Recovery Operations
	SYSDG Administrative Privilege for Oracle Data Guard Operations
	SYSKM Administrative Privilege for Transparent Data Encryption
	SYSRAC Administrative Privilege for Oracle Real Application Clusters

	Managing System Privileges
	About System Privileges
	Why Is It Important to Restrict System Privileges?
	About the Importance of Restricting System Privileges
	Restricting System Privileges by Securing the Data Dictionary
	User Access to Objects in the SYS Schema

	Grants and Revokes of System Privileges
	Who Can Grant or Revoke System Privileges?
	About ANY Privileges and the PUBLIC Role

	Managing Commonly and Locally Granted Privileges
	About Commonly and Locally Granted Privileges
	How Commonly Granted System Privileges Work
	How Commonly Granted Object Privileges Work
	Granting or Revoking Privileges to Access a PDB
	Example: Granting a Privilege in a Multitenant Environment
	Enabling Common Users to View CONTAINER_DATA Object Information
	Viewing Data About the Root, CDB, and PDBs While Connected to the Root
	Enabling Common Users to Query Data in Specific PDBs

	Managing Common Roles and Local Roles
	About Common Roles and Local Roles
	How Common Roles Work
	How the PUBLIC Role Works in a Multitenant Environment
	Privileges Required to Create, Modify, or Drop a Common Role
	Rules for Creating Common Roles
	Creating a Common Role
	Rules for Creating Local Roles
	Creating a Local Role
	Role Grants and Revokes for Common Users and Local Users

	Managing User Roles
	About User Roles
	What Are User Roles?
	The Functionality of Roles
	Properties of Roles and Why They Are Advantageous
	Typical Uses of Roles
	Common Uses of Application Roles
	Common Uses of User Roles
	How Roles Affect the Scope of a User's Privileges
	How Roles Work in PL/SQL Blocks
	Roles Used in Named Blocks with Definer's Rights
	Roles Used in Named Blocks with Invoker's Rights and Anonymous PL/SQL Blocks

	How Roles Aid or Restrict DDL Usage
	How Operating Systems Can Aid Roles
	How Roles Work in a Distributed Environment

	Predefined Roles in an Oracle Database Installation
	Creating a Role
	About the Creation of Roles
	Creating a Role That Is Authenticated With a Password
	Creating a Role That Has No Password Authentication
	Creating a Role That Is External or Global
	Altering a Role

	Specifying the Type of Role Authorization
	Authorizing a Role by Using the Database
	Authorizing a Role by Using an Application
	Authorizing a Role by Using an External Source
	Authorizing a Role by Using the Operating System
	Authorizing a Role by Using a Network Client
	Authorizing a Global Role by an Enterprise Directory Service

	Granting and Revoking Roles
	About Granting and Revoking Roles
	Who Can Grant or Revoke Roles?
	Granting and Revoking Roles to and from Program Units

	Dropping Roles
	Restricting SQL*Plus Users from Using Database Roles
	Potential Security Problems of Using Ad Hoc Tools
	How the PRODUCT_USER_PROFILE System Table Can Limit Roles
	How Stored Procedures Can Encapsulate Business Logic

	Role Privileges and Secure Application Roles

	Restricting Operations on PDBs Using PDB Lockdown Profiles
	About PDB Lockdown Profiles
	PDB Lockdown Profile Inheritance
	Default PDB Lockdown Profiles
	Creating a PDB Lockdown Profile
	Enabling or Disabling a PDB Lockdown Profile
	Dropping a PDB Lockdown Profile

	Managing Object Privileges
	About Object Privileges
	Who Can Grant Object Privileges?
	Grants and Revokes of Object Privileges
	About Granting and Revoking Object Privileges
	How the ALL Clause Grants or Revokes All Available Object Privileges

	READ and SELECT Object Privileges
	About Managing READ and SELECT Object Privileges
	Enabling Users to Use the READ Object Privilege to Query Any Table in the Database
	Restrictions on the READ and READ ANY TABLE Privileges

	Object Privilege Use with Synonyms
	Sharing Application Common Objects
	Metadata-Linked Application Common Objects
	Data-Linked Application Common Objects
	Extended Data-Linked Application Common Objects

	Table Privileges
	How Table Privileges Affect Data Manipulation Language Operations
	How Table Privileges Affect Data Definition Language Operations

	View Privileges
	Privileges Required to Create Views
	The Use of Views to Increase Table Security

	Procedure Privileges
	The Use of the EXECUTE Privilege for Procedure Privileges
	Procedure Execution and Security Domains
	System Privileges Required to Create or Replace a Procedure
	System Privileges Required to Compile a Procedure
	How Procedure Privileges Affect Packages and Package Objects
	About the Effect of Procedure Privileges on Packages and Package Objects
	Example: Procedure Privileges Used in One Package
	Example: Procedure Privileges and Package Objects

	Type Privileges
	System Privileges for Named Types
	Object Privileges for Named Types
	Method Execution Model for Named Types
	Privileges Required to Create Types and Tables Using Types
	Example: Privileges for Creating Types and Tables Using Types
	Privileges on Type Access and Object Access
	Type Dependencies

	Grants of User Privileges and Roles
	Granting System Privileges and Roles to Users and Roles
	Privileges for Grants of System Privileges and Roles to Users and Roles
	Example: Granting a System Privilege and a Role to a User
	Example: Granting the EXECUTE Privilege on a Directory Object
	Use of the ADMIN Option to Enable Grantee Users to Grant the Privilege
	Creating a New User with the GRANT Statement

	Granting Object Privileges to Users and Roles
	About Granting Object Privileges to Users and Roles
	How the WITH GRANT OPTION Clause Works
	Grants of Object Privileges on Behalf of the Object Owner
	Grants of Privileges on Columns
	Row-Level Access Control

	Revokes of Privileges and Roles from a User
	Revokes of System Privileges and Roles
	Revokes of Object Privileges
	About Revokes of Object Privileges
	Revokes of Multiple Object Privileges
	Revokes of Object Privileges on Behalf of the Object Owner
	Revokes of Column-Selective Object Privileges
	Revokes of the REFERENCES Object Privilege

	Cascading Effects of Revoking Privileges
	Cascading Effects When Revoking System Privileges
	Cascading Effects When Revoking Object Privileges

	Grants and Revokes of Privileges to and from the PUBLIC Role
	Grants of Roles Using the Operating System or Network
	About Granting Roles Using the Operating System or Network
	Operating System Role Identification
	Operating System Role Management
	Role Grants and Revokes When OS_ROLES Is Set to TRUE
	Role Enablements and Disablements When OS_ROLES Is Set to TRUE
	Network Connections with Operating System Role Management

	How Grants and Revokes Work with SET ROLE and Default Role Settings
	When Grants and Revokes Take Effect
	How the SET ROLE Statement Affects Grants and Revokes
	Specifying the Default Role for a User
	The Maximum Number of Roles That a User Can Have Enabled

	User Privilege and Role Data Dictionary Views
	Data Dictionary Views to Find Information about Privilege and Role Grants
	Query to List All System Privilege Grants
	Query to List All Role Grants
	Query to List Object Privileges Granted to a User
	Query to List the Current Privilege Domain of Your Session
	Query to List Roles of the Database
	Query to List Information About the Privilege Domains of Roles

	5 Performing Privilege Analysis to Find Privilege Use
	What Is Privilege Analysis?
	About Privilege Analysis
	Benefits and Use Cases of Privilege Analysis
	Least Privileges Best Practice
	Development of Secure Applications

	Who Can Perform Privilege Analysis?
	Types of Privilege Analysis
	How Does a Multitenant Environment Affect Privilege Analysis?
	How Privilege Analysis Works with Pre-Compiled Database Objects

	Creating and Managing Privilege Analysis Policies
	About Creating and Managing Privilege Analysis Policies
	General Steps for Managing Privilege Analysis
	Creating a Privilege Analysis Policy
	Enabling a Privilege Analysis Policy
	Examples of Creating and Enabling Privilege Analysis Policies
	Example: Privilege Analysis of Database-Wide Privileges
	Example: Privilege Analysis of Privilege Usage of Two Roles
	Example: Privilege Analysis of Privileges During SQL*Plus Use
	Example: Privilege Analysis of PSMITH Privileges During SQL*Plus Access

	Disabling a Privilege Analysis Policy
	Generating a Privilege Analysis Report
	About Generating a Privilege Analysis Report
	General Process for Managing Multiple Named Capture Runs
	Generating a Privilege Analysis Report Using DBMS_PRIVILEGE_CAPTURE
	Generating a Privilege Analysis Report Using Cloud Control
	Accessing Privilege Analysis Reports Using Cloud Control

	Dropping a Privilege Analysis Policy

	Creating Roles and Managing Privileges Using Cloud Control
	Creating a Role from a Privilege Analysis Report in Cloud Control
	Revoking and Regranting Roles and Privileges Using Cloud Control
	Generating a Revoke or Regrant Script Using Cloud Control
	About Generating Revoke and Regrant Scripts
	Generating a Revoke Script
	Generating a Regrant Script

	Tutorial: Using Capture Runs to Analyze ANY Privilege Use
	Step 1: Create User Accounts
	Step 2: Create and Enable a Privilege Analysis Policy
	Step 3: Use the READ ANY TABLE System Privilege
	Step 4: Disable the Privilege Analysis Policy
	Step 5: Generate and View a Privilege Analysis Report
	Step 6: Create a Second Capture Run
	Step 7: Remove the Components for This Tutorial

	Tutorial: Analyzing Privilege Use by a User Who Has the DBA Role
	Step 1: Create User Accounts
	Step 2: Create and Enable a Privilege Analysis Policy
	Step 3: Perform the Database Tuning Operations
	Step 4: Disable the Privilege Analysis Policy
	Step 5: Generate and View Privilege Analysis Reports
	Step 6: Remove the Components for This Tutorial

	Privilege Analysis Policy and Report Data Dictionary Views

	6 Configuring Centrally Managed Users with Microsoft Active Directory
	Introduction to Centrally Managed Users with Microsoft Active Directory
	About the Oracle Database-Microsoft Active Directory Integration
	How Centrally Managed Users with Microsoft Active Directory Works
	Centrally Managed User-Microsoft Active Directory Architecture
	Supported Authentication Methods
	Users Supported by Centrally Managed Users with Microsoft Active Directory
	How the Oracle Multitenant Option Affects Centrally Managed Users

	Configuring the Oracle Database-Microsoft Active Directory Integration
	About Configuring the Oracle Database-Microsoft Active Directory Connection
	Connecting to Microsoft Active Directory
	Step 1: Create an Oracle Service Directory User Account on Microsoft Active Directory
	Step 2: For Password Authentication, Install the Password Filter and Extend the Microsoft Active Directory Schema
	Step 3: If Necessary, Install the Oracle Database Software
	Step 4: Create the dsi.ora or ldap.ora File
	About Using a dsi.ora File
	Creating the dsi.ora File
	About Using an ldap.ora File
	Creating the ldap.ora File

	Step 5: Request an Active Directory Certificate for a Secure Connection
	Step 6: Create the Wallet for a Secure Connection
	Step 7: Configure the Microsoft Active Directory Connection
	About Configuring the Microsoft Active Directory Connection
	Configuring the Access Manually Using Database System Parameters
	Configuring the Access Using the Database Configuration Assistant GUI
	Configuring the Access Using Database Configuration Assistant Silent Mode

	Step 8: Verify the Oracle Wallet
	Step 9: Test the Integration

	Configuring Authentication for Centrally Managed Users
	Configuring Password Authentication for Centrally Managed Users
	About Configuring Password Authentication for Centrally Managed Users
	Configuring Password Authentication for a Centrally Managed User
	Logging in to an Oracle Database Using Password Authentication

	Configuring Kerberos Authentication for Centrally Managed Users
	Configuring Authentication Using PKI Certificates for Centrally Managed Users

	Configuring Authorization for Centrally Managed Users
	About Configuring Authorization for Centrally Managed Users
	Mapping a Directory Group to a Shared Database Global User
	Mapping a Directory Group to a Global Role
	Exclusively Mapping a Directory User to a Database Global User
	Altering or Migrating a User Mapping Definition
	Configuring Administrative Users
	Configuring Database Administrative Users with Shared Access Accounts
	Configuring Database Administrative Users Using Exclusive Mapping

	Verifying the Centrally Managed User Logon Information

	Integration of Oracle Database with Microsoft Active Directory Account Policies

	7 Managing Security for Definer's Rights and Invoker's Rights
	About Definer's Rights and Invoker's Rights
	How Procedure Privileges Affect Definer's Rights
	How Procedure Privileges Affect Invoker's Rights
	When You Should Create Invoker's Rights Procedures
	Controlling Invoker's Rights Privileges for Procedure Calls and View Access
	How the Privileges of a Schema Affect the Use of Invoker's Rights Procedures
	How the INHERIT [ANY] PRIVILEGES Privileges Control Privilege Access
	Grants of the INHERIT PRIVILEGES Privilege to Other Users
	Example: Granting INHERIT PRIVILEGES on an Invoking User
	Example: Revoking INHERIT PRIVILEGES
	Grants of the INHERIT ANY PRIVILEGES Privilege to Other Users
	Example: Granting INHERIT ANY PRIVILEGES to a Trusted Procedure Owner
	Managing INHERIT PRIVILEGES and INHERIT ANY PRIVILEGES

	Definer's Rights and Invoker's Rights in Views
	About Controlling Definer's Rights and Invoker's Rights in Views
	Using the BEQUEATH Clause in the CREATE VIEW Statement
	Finding the User Name or User ID of the Invoking User
	Finding BEQUEATH DEFINER and BEQUEATH_CURRENT_USER Views

	Using Code Based Access Control for Definer's Rights and Invoker's Rights
	About Using Code Based Access Control for Applications
	Who Can Grant Code Based Access Control Roles to a Program Unit?
	How Code Based Access Control Works with Invoker's Rights Program Units
	How Code Based Access Control Works with Definer's Rights Program Units
	Grants of Database Roles to Users for Their CBAC Grants
	Grants and Revokes of Database Roles to a Program Unit
	Tutorial: Controlling Access to Sensitive Data Using Code Based Access Control
	About This Tutorial
	Step 1: Create the User and Grant HR the CREATE ROLE Privilege
	Step 2: Create the print_employees Invoker's Rights Procedure
	Step 3: Create the hr_clerk Role and Grant Privileges for It
	Step 4: Test the Code Based Access Control HR.print_employees Procedure
	Step 5: Create the view_emp_role Role and Grant Privileges for It
	Step 6: Test the HR.print_employees Procedure Again
	Step 7: Remove the Components of This Tutorial

	Controlling Definer's Rights Privileges for Database Links
	About Controlling Definer's Rights Privileges for Database Links
	Grants of the INHERIT REMOTE PRIVILEGES Privilege to Other Users
	Example: Granting INHERIT REMOTE PRIVILEGES on a Connected User
	Grants of the INHERIT ANY REMOTE PRIVILEGES Privilege to Other Users
	Revokes of the INHERIT [ANY] REMOTE PRIVILEGES Privilege
	Example: Revoking the INHERIT REMOTE PRIVILEGES Privilege
	Example: Revoking the INHERIT REMOTE PRIVILEGES Privilege from PUBLIC
	Tutorial: Using a Database Link in a Definer's Rights Procedure
	About This Tutorial
	Step 1: Create User Accounts
	Step 2: As User dbuser2, Create a Table to Store User IDs
	Step 3: As User dbuser1, Create a Database Link and Definer's Rights Procedure
	Step 4: Test the Definer's Rights Procedure
	Step 5: Remove the Components of This Tutorial

	8 Managing Fine-Grained Access in PL/SQL Packages and Types
	About Managing Fine-Grained Access in PL/SQL Packages and Types
	About Fine-Grained Access Control to External Network Services
	About Access Control to Oracle Wallets
	Upgraded Applications That Depend on Packages That Use External Network Services
	Configuring Access Control for External Network Services
	Syntax for Configuring Access Control for External Network Services
	Example: Configuring Access Control for External Network Services
	Revoking Access Control Privileges for External Network Services
	Example: Revoking External Network Services Privileges

	Configuring Access Control to an Oracle Wallet
	About Configuring Access Control to an Oracle Wallet
	Step 1: Create an Oracle Wallet
	Step 2: Configure Access Control Privileges for the Oracle Wallet
	Step 3: Make the HTTP Request with the Passwords and Client Certificates
	Making the HTTPS Request with the Passwords and Client Certificates
	Using a Request Context to Hold the Wallet When Sharing the Session with Other Applications
	Use of Only a Client Certificate to Authenticate
	Use of a Password to Authenticate

	Revoking Access Control Privileges for Oracle Wallets

	Examples of Configuring Access Control for External Network Services
	Example: Configuring Access Control for a Single Role and Network Connection
	Example: Configuring Access Control for a User and Role
	Example: Using the DBA_HOST_ACES View to Show Granted Privileges
	Example: Configuring ACL Access Using Passwords in a Non-Shared Wallet
	Example: Configuring ACL Access for a Wallet in a Shared Database Session

	Specifying a Group of Network Host Computers
	Precedence Order for a Host Computer in Multiple Access Control List Assignments
	Precedence Order for a Host in Access Control List Assignments with Port Ranges
	Checking Privilege Assignments That Affect User Access to Network Hosts
	About Privilege Assignments that Affect User Access to Network Hosts
	How to Check User Network Connection and Domain Privileges
	Example: Administrator Checking User Network Access Control Permissions
	How Users Can Check Their Network Connection and Domain Privileges
	Example: User Checking Network Access Control Permissions

	Configuring Network Access for Java Debug Wire Protocol Operations
	Data Dictionary Views for Access Control Lists Configured for User Access

	9 Managing Security for a Multitenant Environment in Enterprise Manager
	About Managing Security for a Multitenant Environment in Enterprise Manager
	Logging into a Multitenant Environment in Enterprise Manager
	Logging into a CDB or a PDB
	Switching to a Different PDB or to the Root

	Managing Common and Local Users in Enterprise Manager
	Creating a Common User Account in Enterprise Manager
	Editing a Common User Account in Enterprise Manager
	Dropping a Common User Account in Enterprise Manager
	Creating a Local User Account in Enterprise Manager
	Editing a Local User Account in Enterprise Manager
	Dropping a Local User Account in Enterprise Manager

	Managing Common and Local Roles and Privileges in Enterprise Manager
	Creating a Common Role in Enterprise Manager
	Editing a Common Role in Enterprise Manager
	Dropping a Common Role in Enterprise Manager
	Revoking Common Privilege Grants in Enterprise Manager
	Creating a Local Role in Enterprise Manager
	Editing a Local Role in Enterprise Manager
	Dropping a Local Role in Enterprise Manager
	Revoking Local Privilege Grants in Enterprise Manager

	Part II Application Development Security
	10 Managing Security for Application Developers
	About Application Security Policies
	Considerations for Using Application-Based Security
	Are Application Users Also Database Users?
	Is Security Better Enforced in the Application or in the Database?

	Securing Passwords in Application Design
	General Guidelines for Securing Passwords in Applications
	Platform-Specific Security Threats
	Guidelines for Designing Applications to Handle Password Input
	Guidelines for Configuring Password Formats and Behavior
	Guidelines for Handling Passwords in SQL Scripts

	Use of an External Password Store to Secure Passwords
	Securing Passwords Using the ORAPWD Utility
	Example: Java Code for Reading Passwords

	Securing External Procedures
	About Securing External Procedures
	General Process for Configuring extproc for a Credential Authentication
	extproc Process Authentication and Impersonation Expected Behaviors
	Configuring Authentication for External Procedures
	External Procedures for Legacy Applications

	Securing LOBs with LOB Locator Signatures
	About Securing LOBs with LOB Locator Signatures
	Managing the Encryption of a LOB Locator Signature Key

	Managing Application Privileges
	Advantages of Using Roles to Manage Application Privileges
	Creating Secure Application Roles to Control Access to Applications
	Step 1: Create the Secure Application Role
	Step 2: Create a PL/SQL Package to Define the Access Policy for the Application
	About Creating a PL/SQL Package to Define the Access Policy for an Application
	Creating a PL/SQL Package or Procedure to Define the Access Policy for an Application
	Testing the Secure Application Role

	Association of Privileges with User Database Roles
	Why Users Should Only Have the Privileges of the Current Database Role
	Use of the SET ROLE Statement to Automatically Enable or Disable Roles

	Protecting Database Objects by Using Schemas
	Protecting Database Objects in a Unique Schema
	Protection of Database Objects in a Shared Schema

	Object Privileges in an Application
	What Application Developers Must Know About Object Privileges
	SQL Statements Permitted by Object Privileges

	Parameters for Enhanced Security of Database Communication
	Bad Packets Received on the Database from Protocol Errors
	Controlling Server Execution After Receiving a Bad Packet
	Configuration of the Maximum Number of Authentication Attempts
	Configuring the Display of the Database Version Banner
	Configuring Banners for Unauthorized Access and Auditing User Actions

	Part III Controlling Access to Data
	11 Using Application Contexts to Retrieve User Information
	About Application Contexts
	What Is an Application Context?
	Components of the Application Context
	Where Are the Application Context Values Stored?
	Benefits of Using Application Contexts
	How Editions Affects Application Context Values
	Application Contexts in a Multitenant Environment

	Types of Application Contexts
	Using Database Session-Based Application Contexts
	About Database Session-Based Application Contexts
	Components of a Database Session-Based Application Context
	Creating Database Session-Based Application Contexts
	About Creating Database Session-Based Application Contexts
	Creating a Database Session-Based Application Context
	Database Session-Based Application Contexts for Multiple Applications

	Creating a Package to Set a Database Session-Based Application Context
	About the Package That Manages the Database Session-Based Application Context
	Using the SYS_CONTEXT Function to Retrieve Session Information
	Checking the SYS_CONTEXT Settings
	Dynamic SQL with SYS_CONTEXT
	SYS_CONTEXT in a Parallel Query
	SYS_CONTEXT with Database Links
	DBMS_SESSION.SET_CONTEXT for Setting Session Information
	Example: Simple Procedure to Create an Application Context Value

	Logon Triggers to Run a Database Session Application Context Package
	Example: Creating a Simple Logon Trigger
	Example: Creating a Logon Trigger for a Production Environment
	Example: Creating a Logon Trigger for a Development Environment
	Tutorial: Creating and Using a Database Session-Based Application Context
	Step 1: Create User Accounts and Ensure the User SCOTT Is Active
	Step 2: Create the Database Session-Based Application Context
	Step 3: Create a Package to Retrieve Session Data and Set the Application Context
	Step 4: Create a Logon Trigger for the Package
	Step 5: Test the Application Context
	Step 6: Remove the Components of This Tutorial

	Initializing Database Session-Based Application Contexts Externally
	About Initializing Database Session-Based Application Contexts Externally
	Default Values from Users
	Values from Other External Resources
	Example: Creating an Externalized Database Session-based Application Context
	Initialization of Application Context Values from a Middle-Tier Server

	Initializing Database Session-Based Application Contexts Globally
	About Initializing Database Session-Based Application Contexts Globally
	Database Session-Based Application Contexts with LDAP
	How Globally Initialized Database Session-Based Application Contexts Work
	Initializing a Database Session-Based Application Context Globally

	Externalized Database Session-Based Application Contexts

	Global Application Contexts
	About Global Application Contexts
	Uses for Global Application Contexts
	Components of a Global Application Context
	Global Application Contexts in an Oracle Real Application Clusters Environment
	Creating Global Application Contexts
	Ownership of the Global Application Context
	Creating a Global Application Context

	PL/SQL Package to Manage a Global Application Context
	About the Package That Manages the Global Application Context
	How Editions Affects the Results of a Global Application Context PL/SQL Package
	DBMS_SESSION.SET_CONTEXT username and client_id Parameters
	Sharing Global Application Context Values for All Database Users
	Example: Package to Manage Global Application Values for All Database Users
	Global Contexts for Database Users Who Move Between Applications
	Global Application Context for Nondatabase Users
	Example: Package to Manage Global Application Context Values for Nondatabase Users
	Clearing Session Data When the Session Closes

	Embedding Calls in Middle-Tier Applications to Manage the Client Session ID
	About Managing Client Session IDs Using a Middle-Tier Application
	Step 1: Retrieve the Client Session ID Using a Middle-Tier Application
	Step 2: Set the Client Session ID Using a Middle-Tier Application
	About Setting the Client Session ID Using a Middle-Tier Application
	Setting the Client Session ID Using a Middle-Tier Application
	Checking the Value of the Client Identifier

	Step 3: Clear the Session Data Using a Middle-Tier Application

	Tutorial: Creating a Global Application Context That Uses a Client Session ID
	About This Tutorial
	Step 1: Create User Accounts
	Step 2: Create the Global Application Context
	Step 3: Create a Package for the Global Application Context
	Step 4: Test the Newly Created Global Application Context
	Step 5: Modify the Session ID and Test the Global Application Context Again
	Step 6: Remove the Components of This Tutorial

	Global Application Context Processes
	Simple Global Application Context Process
	Global Application Context Process for Lightweight Users

	Using Client Session-Based Application Contexts
	About Client Session-Based Application Contexts
	Setting a Value in the CLIENTCONTEXT Namespace
	Retrieving the CLIENTCONTEXT Namespace
	Example: Retrieving a Client Session ID Value for Client Session-Based Contexts
	Clearing a Setting in the CLIENTCONTEXT Namespace
	Clearing All Settings in the CLIENTCONTEXT Namespace

	Application Context Data Dictionary Views

	12 Using Oracle Virtual Private Database to Control Data Access
	About Oracle Virtual Private Database
	What Is Oracle Virtual Private Database?
	Benefits of Using Oracle Virtual Private Database Policies
	Security Policies Based on Database Objects Rather Than Applications
	Control Over How Oracle Database Evaluates Policy Functions

	Who Can Create Oracle Virtual Private Database Policies?
	Privileges to Run Oracle Virtual Private Database Policy Functions
	Oracle Virtual Private Database Use with an Application Context
	Oracle Virtual Private Database in a Multitenant Environment

	Components of an Oracle Virtual Private Database Policy
	Function to Generate the Dynamic WHERE Clause
	Policies to Attach the Function to the Objects You Want to Protect

	Configuration of Oracle Virtual Private Database Policies
	About Oracle Virtual Private Database Policies
	Attaching a Policy to a Database Table, View, or Synonym
	Example: Attaching a Simple Oracle Virtual Private Database Policy to a Table
	Enforcing Policies on Specific SQL Statement Types
	Example: Specifying SQL Statement Types with DBMS_RLS.ADD_POLICY
	Control of the Display of Column Data with Policies
	Policies for Column-Level Oracle Virtual Private Database
	Example: Creating a Column-Level Oracle Virtual Private Database Policy
	Display of Only the Column Rows Relevant to the Query
	Column Masking to Display Sensitive Columns as NULL Values
	Example: Adding Column Masking to an Oracle Virtual Private Database Policy

	Oracle Virtual Private Database Policy Groups
	About Oracle Virtual Private Database Policy Groups
	Creation of a New Oracle Virtual Private Database Policy Group
	Default Policy Group with the SYS_DEFAULT Policy Group
	Multiple Policies for Each Table, View, or Synonym
	Validation of the Application Used to Connect to the Database

	Optimizing Performance by Using Oracle Virtual Private Database Policy Types
	About Oracle Virtual Private Database Policy Types
	Dynamic Policy Type to Automatically Rerun Policy Functions
	Example: Creating a DYNAMIC Policy with DBMS_RLS.ADD_POLICY
	Static Policy to Prevent Policy Functions from Rerunning for Each Query
	Example: Creating a Static Policy with DBMS_RLS.ADD_POLICY
	Example: Shared Static Policy to Share a Policy with Multiple Objects
	When to Use Static and Shared Static Policies
	Context-Sensitive Policy for Application Context Attributes That Change
	Example: Creating a Context-Sensitive Policy with DBMS_RLS.ADD_POLICY
	Example: Refreshing Cached Statements for a VPD Context-Sensitive Policy
	Example: Altering an Existing Context-Sensitive Policy
	Example: Using a Shared Context Sensitive Policy to Share a Policy with Multiple Objects
	When to Use Context-Sensitive and Shared Context-Sensitive Policies
	Summary of the Five Oracle Virtual Private Database Policy Types

	Tutorials: Creating Oracle Virtual Private Database Policies
	Tutorial: Creating a Simple Oracle Virtual Private Database Policy
	About This Tutorial
	Step 1: Ensure That the OE User Account Is Active
	Step 2: Create a Policy Function
	Step 3: Create the Oracle Virtual Private Database Policy
	Step 4: Test the Policy
	Step 5: Remove the Components of This Tutorial

	Tutorial: Implementing a Session-Based Application Context Policy
	About This Tutorial
	Step 1: Create User Accounts and Sample Tables
	Step 2: Create a Database Session-Based Application Context
	Step 3: Create a PL/SQL Package to Set the Application Context
	Step 4: Create a Logon Trigger to Run the Application Context PL/SQL Package
	Step 5: Test the Logon Trigger
	Step 6: Create a PL/SQL Policy Function to Limit User Access to Their Orders
	Step 7: Create the New Security Policy
	Step 8: Test the New Policy
	Step 9: Remove the Components of This Tutorial

	Tutorial: Implementing an Oracle Virtual Private Database Policy Group
	About This Tutorial
	Step 1: Create User Accounts and Other Components for This Tutorial
	Step 2: Create the Two Policy Groups
	Step 3: Create PL/SQL Functions to Control the Policy Groups
	Step 4: Create the Driving Application Context
	Step 5: Add the PL/SQL Functions to the Policy Groups
	Step 6: Test the Policy Groups
	Step 7: Remove the Components of This Tutorial

	How Oracle Virtual Private Database Works with Other Oracle Features
	Oracle Virtual Private Database Policies with Editions
	SELECT FOR UPDATE Statement in User Queries on VPD-Protected Tables
	Oracle Virtual Private Database Policies and Outer or ANSI Joins
	Oracle Virtual Private Database Security Policies and Applications
	Automatic Reparsing for Fine-Grained Access Control Policies Functions
	Oracle Virtual Private Database Policies and Flashback Queries
	Oracle Virtual Private Database and Oracle Label Security
	Using Oracle Virtual Private Database to Enforce Oracle Label Security Policies
	Oracle Virtual Private Database and Oracle Label Security Exceptions

	Export of Data Using the EXPDP Utility access_method Parameter
	User Models and Oracle Virtual Private Database

	Oracle Virtual Private Database Data Dictionary Views

	13 Using Transparent Sensitive Data Protection
	About Transparent Sensitive Data Protection
	General Steps for Using Transparent Sensitive Data Protection
	Use Cases for Transparent Sensitive Data Protection Policies
	Privileges Required for Using Transparent Sensitive Data Protection
	How a Multitenant Environment Affects Transparent Sensitive Data Protection
	Creating Transparent Sensitive Data Protection Policies
	Step 1: Create a Sensitive Type
	Step 2: Identify the Sensitive Columns to Protect
	Step 3: Import the Sensitive Columns List from ADM into Your Database
	Step 4: Create the Transparent Sensitive Data Protection Policy
	About Creating the Transparent Sensitive Data Protection Policy
	Creating the Transparent Sensitive Data Protection Policy
	Setting the Oracle Data Redaction or Virtual Private Database Feature Options
	Setting Conditions for the Transparent Sensitive Data Protection Policy
	Specifying the DBMS_TSDP_PROTECT.ADD_POLICY Procedure

	Step 5: Associate the Policy with a Sensitive Type
	Step 6: Enable the Transparent Sensitive Data Protection Policy
	Enabling Protection for the Current Database in a Protected Source
	Enabling Protection for a Specific Table Column
	Enabling Protection for a Specific Column Type

	Step 7: Optionally, Export the Policy to Other Databases

	Altering Transparent Sensitive Data Protection Policies
	Disabling Transparent Sensitive Data Protection Policies
	Dropping Transparent Sensitive Data Protection Policies
	Using the Predefined REDACT_AUDIT Policy to Mask Bind Values
	About the REDACT_AUDIT Policy
	Variables Associated with Sensitive Columns
	About Variables Associated with Sensitive Columns
	Bind Variables and Sensitive Columns in the Expressions of Conditions
	A Bind Variable and a Sensitive Column Appearing in the Same SELECT Item
	Bind Variables in Expressions Assigned to Sensitive Columns in INSERT or UPDATE Operations

	How Bind Variables on Sensitive Columns Behave with Views
	Disabling the REDACT_AUDIT Policy
	Enabling the REDACT_AUDIT Policy

	Transparent Sensitive Data Protection Policies with Data Redaction
	Using Transparent Sensitive Data Protection Policies with Oracle VPD Policies
	About Using TSDP Policies with Oracle Virtual Private Database Policies
	DBMS_RLS.ADD_POLICY Parameters That Are Used for TSDP Policies
	Tutorial: Creating a TSDP Policy That Uses Virtual Private Database Protection
	Step 1: Create the hr_appuser User Account
	Step 2: Identify the Sensitive Columns
	Step 3: Create an Oracle Virtual Private Database Function
	Step 4: Create and Enable a Transparent Sensitive Data Protection Policy
	Step 5: Test the Transparent Sensitive Data Protection Policy
	Step 6: Remove the Components of This Tutorial

	Using Transparent Sensitive Data Protection Policies with Unified Auditing
	About Using TSDP Policies with Unified Audit Policies
	Unified Audit Policy Settings That Are Used with TSDP Policies

	Using Transparent Sensitive Data Protection Policies with Fine-Grained Auditing
	About Using TSDP Policies with Fine-Grained Auditing
	Fine-Grained Auditing Parameters That Are Used with TSDP Policies

	Using Transparent Sensitive Data Protection Policies with TDE Column Encryption
	About Using TSDP Policies with TDE Column Encryption
	TDE Column Encryption ENCRYPT Clause Settings Used with TSDP Policies

	Transparent Sensitive Data Protection Data Dictionary Views

	14 Encryption of Sensitive Credential Data in the Data Dictionary
	About Encrypting Sensitive Credential Data in the Data Dictionary
	How the Multitenant Option Affects the Encryption of Sensitive Data
	Encrypting Sensitive Credential Data in System Tables
	Rekeying Sensitive Credential Data in the SYS.LINK⁠$ System Table
	Deleting Sensitive Credential Data in System Tables
	Restoring the Functioning of Database Links After a Lost Keystore
	Data Dictionary Views for Encrypted Data Dictionary Credentials

	15 Manually Encrypting Data
	Security Problems That Encryption Does Not Solve
	Principle 1: Encryption Does Not Solve Access Control Problems
	Principle 2: Encryption Does Not Protect Against a Malicious Administrator
	Principle 3: Encrypting Everything Does Not Make Data Secure

	Data Encryption Challenges
	Encrypted Indexed Data
	Generated Encryption Keys
	Transmitted Encryption Keys
	Storing Encryption Keys
	About Storing Encryption Keys
	Storage of Encryption Keys in the Database
	Storage of Encryption Keys in the Operating System
	Users Managing Their Own Encryption Keys
	Manual Encryption with Transparent Database Encryption and Tablespace Encryption

	Importance of Changing Encryption Keys
	Encryption of Binary Large Objects

	Data Encryption Storage with the DBMS_CRYPTO Package
	Using Ciphertexts Encrypted in OFB Mode in Oracle Database Release 11g
	Examples of Using the Data Encryption API
	Example: Data Encryption Procedure
	Example: AES 256-Bit Data Encryption and Decryption Procedures
	Example: Encryption and Decryption Procedures for BLOB Data

	Data Dictionary Views for Encrypted Data

	Part IV Securing Data on the Network
	16 Configuring Oracle Database Native Network Encryption and Data Integrity
	About Oracle Database Native Network Encryption and Data Integrity
	How Oracle Database Native Network Encryption and Integrity Works
	Advanced Encryption Standard
	ARIA
	GOST
	SEED
	Triple-DES Support

	Oracle Database Native Network Encryption Data Integrity
	Data Integrity Algorithms Support
	Diffie-Hellman Based Key Negotiation
	Configuration of Data Encryption and Integrity
	About Activating Encryption and Integrity
	About Negotiating Encryption and Integrity
	About the Values for Negotiating Encryption and Integrity
	REJECTED Configuration Parameter
	ACCEPTED Configuration Parameter
	REQUESTED Configuration Parameter
	REQUIRED Configuration Parameter

	Configuring Encryption and Integrity Parameters Using Oracle Net Manager
	Configuring Encryption on the Client and the Server
	Configuring Integrity on the Client and the Server
	Enabling Both Oracle Native Encryption and SSL Authentication for Different Users Concurrently
	About Enabling Both Oracle Native Encryption and SSL Authentication for Different Users Concurrently
	Configuring Both Oracle Native Encryption and SSL Authentication for Different Users Concurrently

	17 Configuring the Thin JDBC Client Network
	About the Java Implementation
	Java Database Connectivity Support
	Thin JDBC Features
	Implementation Overview
	Obfuscation of the Java Cryptography Code
	Configuration Parameters for the Thin JDBC Network Implementation
	About the Thin JDBC Network Implementation Configuration Parameters
	Client Encryption Level Parameter
	Client Encryption Selected List Parameter
	Client Integrity Level Parameter
	Client Integrity Selected List Parameter
	Client Authentication Service Parameter
	AnoServices Constants

	Part V Managing Strong Authentication
	18 Introduction to Strong Authentication
	What Is Strong Authentication?
	Centralized Authentication and Single Sign-On
	How Centralized Network Authentication Works
	Supported Strong Authentication Methods
	About Kerberos
	About Remote Authentication Dial-In User Service (RADIUS)
	About Secure Sockets Layer

	Oracle Database Native Network Encryption/Strong Authentication Architecture
	System Requirements for Strong Authentication
	Oracle Database Native Network Encryption and Strong Authentication Restrictions

	19 Strong Authentication Administration Tools
	About the Configuration and Administration Tools
	Native Network Encryption and Strong Authentication Configuration Tools
	About Oracle Net Manager
	Kerberos Adapter Command-Line Utilities

	Public Key Infrastructure Credentials Management Tools
	About Oracle Wallet Manager
	About the orapki Utility

	Duties of Strong Authentication Administrators

	20 Configuring Kerberos Authentication
	Enabling Kerberos Authentication
	Step 1: Install Kerberos
	Step 2: Configure a Service Principal for an Oracle Database Server
	Step 3: Extract a Service Key Table from Kerberos
	Step 4: Install an Oracle Database Server and an Oracle Client
	Step 5: Configure Oracle Net Services and Oracle Database
	Step 6: Configure Kerberos Authentication
	Step 6A: Configure Kerberos on the Client and on the Database Server
	Step 6B: Set the Initialization Parameters
	Step 6C: Set sqlnet.ora Parameters (Optional)

	Step 7: Create a Kerberos User
	Step 8: Create an Externally Authenticated Oracle User
	Step 9: Get an Initial Ticket for the Kerberos/Oracle User

	Utilities for the Kerberos Authentication Adapter
	okinit Utility Options for Obtaining the Initial Ticket
	oklist Utility Options for Displaying Credentials
	okdstry Utility Options for Removing Credentials from the Cache File
	okcreate Utility Options for Automatic Keytab Creation

	Connecting to an Oracle Database Server Authenticated by Kerberos
	Configuring Interoperability with a Windows 2008 Domain Controller KDC
	About Configuring Interoperability with a Windows 2008 Domain Controller KDC
	Step 1: Configure Oracle Kerberos Client for Windows 2008 Domain Controller
	Step 1A: Create the Client Kerberos Configuration Files
	Step 1B: Specify the Oracle Configuration Parameters in the sqlnet.ora File
	Step 1C: Specify the Listening Port Number

	Step 2: Configure a Windows 2008 Domain Controller KDC for the Oracle Client
	Step 2A: Create the User Account
	Step 2B: Create the Oracle Database Principal User Account and Keytab

	Step 3: Configure Oracle Database for a Windows 2008 Domain Controller KDC
	Step 3A: Set Configuration Parameters in the sqlnet.ora File
	Step 3B: Create an Externally Authenticated Oracle User

	Step 4: Obtain an Initial Ticket for the Kerberos/Oracle User

	Configuring Kerberos Authentication Fallback Behavior
	Troubleshooting the Oracle Kerberos Authentication Configuration

	21 Configuring Secure Sockets Layer Authentication
	Secure Sockets Layer and Transport Layer Security
	The Difference Between Secure Sockets Layer and Transport Layer Security
	Using Transport Layer Security in a Multitenant Environment

	How Oracle Database Uses Secure Sockets Layer for Authentication
	How Secure Sockets Layer Works in an Oracle Environment: The SSL Handshake
	Public Key Infrastructure in an Oracle Environment
	About Public Key Cryptography
	Public Key Infrastructure Components in an Oracle Environment
	Certificate Authority
	Certificates
	Certificate Revocation Lists
	Wallets
	Hardware Security Modules

	Secure Sockets Layer Combined with Other Authentication Methods
	Architecture: Oracle Database and Secure Sockets Layer
	How Secure Sockets Layer Works with Other Authentication Methods

	Secure Sockets Layer and Firewalls
	Secure Sockets Layer Usage Issues
	Enabling Secure Sockets Layer
	Step 1: Configure Secure Sockets Layer on the Server
	Step 1A: Confirm Wallet Creation on the Server
	Step 1B: Specify the Database Wallet Location on the Server
	Step 1C: Set the Secure Sockets Layer Cipher Suites on the Server (Optional)
	About the Secure Sockets Layer Cipher Suites
	SSL Cipher Suite Authentication, Encryption, Integrity, and TLS Versions
	Specifying Secure Sockets Cipher Suites for the Database Server

	Step 1D: Set the Required Secure Sockets Layer Version on the Server (Optional)
	Step 1E: Set SSL Client Authentication on the Server (Optional)
	Step 1F: Set SSL as an Authentication Service on the Server (Optional)
	Step 1G: Disable SSLv3 on the Server and Client (Optional)
	Step 1H: Create a Listening Endpoint that Uses TCP/IP with SSL on the Server

	Step 2: Configure Secure Sockets Layer on the Client
	Step 2A: Confirm Client Wallet Creation
	Step 2B: Configure Server DN Matching and Use TCP/IP with SSL on the Client
	About Configuring the Server DN Matching and Using TCP/IP with SSL on the Client
	Configuring the Server DN Matching and Using TCP/IP with SSL on the Client

	Step 2C: Specify Required Client SSL Configuration (Wallet Location)
	Step 2D: Set the Client Secure Sockets Layer Cipher Suites (Optional)
	About Setting the Client Secure Sockets Layer Cipher Suites
	Setting the Client Secure Sockets Layer Cipher Suites

	Step 2E: Set the Required SSL Version on the Client (Optional)
	Step 2F: Set SSL as an Authentication Service on the Client (Optional)
	About the SQLNET.AUTHENTICATION_SERVICES Parameter
	Setting the SQLNET.AUTHENTICATION_SERVICES Parameter

	Step 2G: Specify the Certificate to Use for Authentication on the Client (Optional)
	About the SQLNET.SSL_EXTENDED_KEY_USAGE Parameter
	Setting the SQLNET.SSL_EXTENDED_KEY_USAGE Parameter

	Step 3: Log in to the Database Instance

	Troubleshooting the Secure Sockets Layer Configuration
	Certificate Validation with Certificate Revocation Lists
	About Certificate Validation with Certificate Revocation Lists
	What CRLs Should You Use?
	How CRL Checking Works
	Configuring Certificate Validation with Certificate Revocation Lists
	About Configuring Certificate Validation with Certificate Revocation Lists
	Enabling Certificate Revocation Status Checking for the Client or Server
	Disabling Certificate Revocation Status Checking

	Certificate Revocation List Management
	About Certificate Revocation List Management
	Displaying orapki Help for Commands That Manage CRLs
	Renaming CRLs with a Hash Value for Certificate Validation
	Uploading CRLs to Oracle Internet Directory
	Listing CRLs Stored in Oracle Internet Directory
	Viewing CRLs in Oracle Internet Directory
	Deleting CRLs from Oracle Internet Directory

	Troubleshooting CRL Certificate Validation
	Oracle Net Tracing File Error Messages Associated with Certificate Validation

	Configuring Your System to Use Hardware Security Modules
	General Guidelines for Using Hardware Security Modules for SSL
	Configuring Your System to Use nCipher Hardware Security Modules
	About Configuring Your System to Use nCipher Hardware Security Modules
	Oracle Components Required To Use an nCipher Hardware Security Module
	Directory Path Requirements for Installing an nCipher Hardware Security Module

	Configuring Your System to Use SafeNET Hardware Security Modules
	About Configuring Your System to Use SafeNET Hardware Security Modules
	Oracle Components Required for SafeNET Luna SA Hardware Security Modules
	Directory Path Requirements for Installing a SafeNET Hardware Security Module

	Troubleshooting Using Hardware Security Modules
	Errors in the Oracle Net Trace Files
	Error Messages Associated with Using Hardware Security Modules

	22 Configuring RADIUS Authentication
	About Configuring RADIUS Authentication
	RADIUS Components
	RADIUS Authentication Modes
	Synchronous Authentication Mode
	Sequence for Synchronous Authentication Mode
	Example: Synchronous Authentication with SecurID Token Cards

	Challenge-Response (Asynchronous) Authentication Mode
	Sequence for Challenge-Response (Asynchronous) Authentication Mode
	Example: Asynchronous Authentication with Smart Cards
	Example: Asynchronous Authentication with ActivCard Tokens

	Enabling RADIUS Authentication, Authorization, and Accounting
	Step 1: Configure RADIUS Authentication
	Step 1A: Configure RADIUS on the Oracle Client
	Step 1B: Configure RADIUS on the Oracle Database Server
	Step 1B (1): Create the RADIUS Secret Key File on the Oracle Database Server
	Step 1B (2): Configure RADIUS Parameters on the Server (sqlnet.ora file)
	Step 1B (3): Set Oracle Database Server Initialization Parameters

	Step 1C: Configure Additional RADIUS Features
	Step 1C(1): Change Default Settings
	Step 1C(2): Configure Challenge-Response Mode
	Step 1C(3): Set Parameters for an Alternate RADIUS Server

	Step 2: Create a User and Grant Access
	Step 3: Configure External RADIUS Authorization (Optional)
	Step 3A: Configure the Oracle Server (RADIUS Client)
	Step 3B: Configure the Oracle Client Where Users Log In
	Step 3C: Configure the RADIUS Server

	Step 4: Configure RADIUS Accounting
	Step 4A: Set RADIUS Accounting on the Oracle Database Server
	Step 4B: Configure the RADIUS Accounting Server

	Step 5: Add the RADIUS Client Name to the RADIUS Server Database
	Step 6: Configure the Authentication Server for Use with RADIUS
	Step 7: Configure the RADIUS Server for Use with the Authentication Server
	Step 8: Configure Mapping Roles

	Using RADIUS to Log in to a Database
	RSA ACE/Server Configuration Checklist

	23 Customizing the Use of Strong Authentication
	Connecting to a Database Using Strong Authentication
	Disabling Strong Authentication and Native Network Encryption
	Configuring Multiple Authentication Methods
	Configuring Oracle Database for External Authentication
	Setting the SQLNET.AUTHENTICATION_SERVICES Parameter in sqlnet.ora
	Setting OS_AUTHENT_PREFIX to a Null Value

	Part VI Monitoring Database Activity with Auditing
	24 Introduction to Auditing
	What Is Auditing?
	Why Is Auditing Used?
	Best Practices for Auditing
	What Is Unified Auditing?
	Benefits of the Unified Audit Trail
	Checking if Your Database Has Migrated to Unified Auditing
	Mixed Mode Auditing
	About Mixed Mode Auditing
	Enablement of Unified Auditing
	How Database Creation Determines the Type of Auditing You Have Enabled
	Capabilities of Mixed Mode Auditing

	Who Can Perform Auditing?
	About Auditing in a Multitenant Environment
	Auditing in a Distributed Database

	25 Configuring Audit Policies
	Selecting an Auditing Type
	Auditing SQL Statements, Privileges, and Other General Activities
	Auditing Commonly Used Security-Relevant Activities
	Auditing Specific, Fine-Grained Activities

	Auditing Activities with Unified Audit Policies and the AUDIT Statement
	About Auditing Activities with Unified Audit Policies and AUDIT
	Best Practices for Creating Unified Audit Policies
	Syntax for Creating a Unified Audit Policy
	Auditing Roles
	About Role Auditing
	Configuring Role Unified Audit Policies
	Example: Auditing the DBA Role in a Multitenant Environment

	Auditing System Privileges
	About System Privilege Auditing
	System Privileges That Can Be Audited
	System Privileges That Cannot Be Audited
	Configuring a Unified Audit Policy to Capture System Privilege Use
	Example: Auditing a User Who Has ANY Privileges
	Example: Using a Condition to Audit a System Privilege
	How System Privilege Unified Audit Policies Appear in the Audit Trail

	Auditing Administrative Users
	Administrative User Accounts That Can Be Audited
	Configuring a Unified Audit Policy to Capture Administrator Activities
	Example: Auditing the SYS User

	Auditing Object Actions
	About Auditing Object Actions
	Object Actions That Can Be Audited
	Configuring an Object Action Unified Audit Policy
	Example: Auditing Actions on SYS Objects
	Example: Auditing Multiple Actions on One Object
	Example: Auditing Both Actions and Privileges on an Object
	Example: Auditing All Actions on a Table
	Example: Auditing All Actions in the Database
	How Object Action Unified Audit Policies Appear in the Audit Trail
	Auditing Functions, Procedures, Packages, and Triggers
	Auditing of Oracle Virtual Private Database Predicates
	Audit Policies for Oracle Virtual Private Database Policy Functions
	Unified Auditing with Editioned Objects

	Auditing the READ ANY TABLE and SELECT ANY TABLE Privileges
	About Auditing the READ ANY TABLE and SELECT ANY TABLE Privileges
	Creating a Unified Audit Policy to Capture READ Object Privilege Operations
	How the Unified Audit Trail Captures READ ANY TABLE and SELECT ANY TABLE

	Auditing SQL Statements and Privileges in a Multitier Environment
	Creating a Condition for a Unified Audit Policy
	About Conditions in Unified Audit Policies
	Configuring a Unified Audit Policy with a Condition
	Example: Auditing Access to SQL*Plus
	Example: Auditing Actions Not in Specific Hosts
	Example: Auditing Both a System-Wide and a Schema-Specific Action
	Example: Auditing a Condition Per Statement Occurrence
	Example: Unified Audit Session ID of a Current Administrative User Session
	Example: Unified Audit Session ID of a Current Non-Administrative User Session
	How Audit Records from Conditions Appear in the Audit Trail

	Auditing Application Context Values
	About Auditing Application Context Values
	Configuring Application Context Audit Settings
	Disabling Application Context Audit Settings
	Example: Auditing Application Context Values in a Default Database
	Example: Auditing Application Context Values from Oracle Label Security
	How Audited Application Contexts Appear in the Audit Trail

	Auditing Oracle Database Real Application Security Events
	About Auditing Oracle Database Real Application Security Events
	Oracle Database Real Application Security Auditable Events
	Oracle Database Real Application Security User, Privilege, and Role Audit Events
	Oracle Database Real Application Security Security Class and ACL Audit Events
	Oracle Database Real Application Security Session Audit Events
	Oracle Database Real Application Security ALL Events
	Configuring a Unified Audit Policy for Oracle Database Real Application Security
	Example: Auditing Real Application Security User Account Modifications
	Example: Using a Condition in a Real Application Security Unified Audit Policy
	How Oracle Database Real Application Security Events Appear in the Audit Trail

	Auditing Oracle Recovery Manager Events
	About Auditing Oracle Recovery Manager Events
	Oracle Recovery Manager Unified Audit Trail Events
	How Oracle Recovery Manager Audited Events Appear in the Audit Trail

	Auditing Oracle Database Vault Events
	About Auditing Oracle Database Vault Events
	Who Is Audited in Oracle Database Vault?
	About Oracle Database Vault Unified Audit Trail Events
	Oracle Database Vault Realm Audit Events
	Oracle Database Vault Rule Set and Rule Audit Events
	Oracle Database Vault Command Rule Audit Events
	Oracle Database Vault Factor Audit Events
	Oracle Database Vault Secure Application Role Audit Events
	Oracle Database Vault Oracle Label Security Audit Events
	Oracle Database Vault Oracle Data Pump Audit Events
	Oracle Database Vault Enable and Disable Audit Events
	Configuring a Unified Audit Policy for Oracle Database Vault
	Example: Auditing an Oracle Database Vault Realm
	Example: Auditing an Oracle Database Vault Rule Set
	Example: Auditing Two Oracle Database Vault Events
	Example: Auditing Oracle Database Vault Factors
	How Oracle Database Vault Audited Events Appear in the Audit Trail

	Auditing Oracle Label Security Events
	About Auditing Oracle Label Security Events
	Oracle Label Security Unified Audit Trail Events
	Oracle Label Security Auditable User Session Labels
	Configuring a Unified Audit Policy for Oracle Label Security
	Example: Auditing Oracle Label Security Session Label Attributes
	Example: Excluding a User from an Oracle Label Security Policy
	Example: Auditing Oracle Label Security Policy Actions
	Example: Querying for Audited OLS Session Labels
	How Oracle Label Security Audit Events Appear in the Audit Trail

	Auditing Oracle Data Mining Events
	About Auditing Oracle Data Mining Events
	Oracle Data Mining Unified Audit Trail Events
	Configuring a Unified Audit Policy for Oracle Data Mining
	Example: Auditing Multiple Oracle Data Mining Operations by a User
	Example: Auditing All Failed Oracle Data Mining Operations by a User
	How Oracle Data Mining Events Appear in the Audit Trail

	Auditing Oracle Data Pump Events
	About Auditing Oracle Data Pump Events
	Oracle Data Pump Unified Audit Trail Events
	Configuring a Unified Audit Policy for Oracle Data Pump
	Example: Auditing Oracle Data Pump Import Operations
	Example: Auditing All Oracle Data Pump Operations
	How Oracle Data Pump Audited Events Appear in the Audit Trail

	Auditing Oracle SQL*Loader Direct Load Path Events
	About Auditing in Oracle SQL*Loader Direct Path Load Events
	Oracle SQL*Loader Direct Load Path Unified Audit Trail Events
	Configuring a Unified Audit Trail Policy for Oracle SQL*Loader Direct Path Events
	Example: Auditing Oracle SQL*Loader Direct Path Load Operations
	How SQL*Loader Direct Path Load Audited Events Appear in the Audit Trail

	Auditing Only Top-Level Statements
	About Auditing Only Top-Level SQL Statements
	Configuring a Unified Audit Policy to Capture Only Top-Level Statements
	Example: Auditing Top-Level Statements
	How the Unified Audit Trail Captures Top-Level SQL Statements

	Unified Audit Policies or AUDIT Settings in a Multitenant Environment
	About Local, CDB Common, and Application Common Audit Policies
	Traditional Auditing in a Multitenant Environment
	Configuring a Local Unified Audit Policy or Common Unified Audit Policy
	Example: Local Unified Audit Policy
	Example: CDB Common Unified Audit Policy
	Example: Application Common Unified Audit Policy
	How Local or Common Audit Policies or Settings Appear in the Audit Trail

	Altering Unified Audit Policies
	About Altering Unified Audit Policies
	Altering a Unified Audit Policy
	Example: Altering a Condition in a Unified Audit Policy
	Example: Altering an Oracle Label Security Component in a Unified Audit Policy
	Example: Altering Roles in a Unified Audit Policy
	Example: Dropping a Condition from a Unified Audit Policy
	Example: Altering an Existing Unified Audit Policy Top-Level Statement Audits

	Enabling and Applying Unified Audit Policies to Users and Roles
	About Enabling Unified Audit Policies
	Enabling a Unified Audit Policy
	Example: Enabling a Unified Audit Policy

	Disabling Unified Audit Policies
	About Disabling Unified Audit Policies
	Disabling a Unified Audit Policy
	Example: Disabling a Unified Audit Policy

	Dropping Unified Audit Policies
	About Dropping Unified Audit Policies
	Dropping a Unified Audit Policy
	Example: Disabling and Dropping a Unified Audit Policy

	Tutorial: Auditing Nondatabase Users
	Step 1: Create the User Accounts and Ensure the User OE Is Active
	Step 2: Create the Unified Audit Policy
	Step 3: Test the Policy
	Step 4: Remove the Components of This Tutorial

	Auditing Activities with the Predefined Unified Audit Policies
	Logon Failures Predefined Unified Audit Policy
	Secure Options Predefined Unified Audit Policy
	Oracle Database Parameter Changes Predefined Unified Audit Policy
	User Account and Privilege Management Predefined Unified Audit Policy
	Center for Internet Security Recommendations Predefined Unified Audit Policy
	Oracle Database Real Application Security Predfined Audit Policies
	System Administrator Operations Predefined Unified Audit Policy
	Session Operations Predefined Unified Audit Policy

	Oracle Database Vault Predefined Unified Audit Policy for DVSYS and LBACSYS Schemas
	Oracle Database Vault Predefined Unified Audit Policy for Default Realms and Command Rules

	Auditing Specific Activities with Fine-Grained Auditing
	About Fine-Grained Auditing
	Where Are Fine-Grained Audit Records Stored?
	Who Can Perform Fine-Grained Auditing?
	Fine-Grained Auditing on Tables or Views That Have Oracle VPD Policies
	Fine-Grained Auditing in a Multitenant Environment
	Fine-Grained Audit Policies with Editions
	Using the DBMS_FGA PL/SQL Package to Manage Fine-Grained Audit Policies
	About the DBMS_FGA PL/SQL PL/SQL Package
	The DBMS_FGA PL/SQL Package with Editions
	The DBMS_FGA PL/SQL Package in a Multitenant Environment
	Creating a Fine-Grained Audit Policy
	About Creating a Fine-Grained Audit Policy
	Syntax for Creating a Fine-Grained Audit Policy
	Audits of Specific Columns and Rows

	Example: Using DBMS_FGA.ADD_POLICY to Create a Fine-Grained Audit Policy
	Disabling a Fine-Grained Audit Policy
	Enabling a Fine-Grained Audit Policy
	Dropping a Fine-Grained Audit Policy

	Tutorial: Adding an Email Alert to a Fine-Grained Audit Policy
	About This Tutorial
	Step 1: Install and Configure the UTL_MAIL PL/SQL Package
	Step 2: Create User Accounts
	Step 3: Configure an Access Control List File for Network Services
	Step 4: Create the Email Security Alert PL/SQL Procedure
	Step 5: Create and Test the Fine-Grained Audit Policy Settings
	Step 6: Test the Alert
	Step 7: Remove the Components of This Tutorial

	Audit Policy Data Dictionary Views

	26 Administering the Audit Trail
	Managing the Unified Audit Trail
	When and Where Are Audit Records Created?
	Activities That Are Mandatorily Audited
	How Do Cursors Affect Auditing?
	Writing the Unified Audit Trail Records to the AUDSYS Schema
	Writing the Unified Audit Trail Records to SYSLOG or the Windows Event Viewer
	About Writing the Unified Audit Trail Records to SYSLOG or the Windows Event Viewer
	Enabling syslog and Windows Event Viewer Captures for the Unified Audit Trail

	When Audit Records Are Written to the Operating System
	Moving Operating System Audit Records into the Unified Audit Trail
	Disabling Unified Auditing
	Exporting and Importing the Unified Audit Trail Using Oracle Data Pump

	Archiving the Audit Trail
	Archiving the Traditional Operating System Audit Trail
	Archiving the Unified and Traditional Database Audit Trails

	Purging Audit Trail Records
	About Purging Audit Trail Records
	Selecting an Audit Trail Purge Method
	Purging the Audit Trail on a Regularly Scheduled Basis
	Manually Purging the Audit Trail at a Specific Time

	Scheduling an Automatic Purge Job for the Audit Trail
	About Scheduling an Automatic Purge Job
	Step 1: If Necessary, Tune Online and Archive Redo Log Sizes
	Step 2: Plan a Timestamp and Archive Strategy
	Step 3: Optionally, Set an Archive Timestamp for Audit Records
	Step 4: Create and Schedule the Purge Job

	Manually Purging the Audit Trail
	About Manually Purging the Audit Trail
	Using DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL to Manually Purge the Audit Trail

	Other Audit Trail Purge Operations
	Enabling or Disabling an Audit Trail Purge Job
	Setting the Default Audit Trail Purge Job Interval for a Specified Purge Job
	Deleting an Audit Trail Purge Job
	Clearing the Archive Timestamp Setting

	Example: Directly Calling a Unified Audit Trail Purge Operation

	Audit Trail Management Data Dictionary Views

	Part VII Appendixes
	A Keeping Your Oracle Database Secure
	About the Oracle Database Security Guidelines
	Downloading Security Patches and Contacting Oracle Regarding Vulnerabilities
	Downloading Security Patches and Workaround Solutions
	Contacting Oracle Security Regarding Vulnerabilities in Oracle Database

	Guidelines for Securing User Accounts and Privileges
	Guidelines for Securing Roles
	Guidelines for Securing Passwords
	Guidelines for Securing Data
	Guidelines for Securing the ORACLE_LOADER Access Driver
	Guidelines for Securing a Database Installation and Configuration
	Guidelines for Securing the Network
	Client Connection Security
	Network Connection Security
	Secure Sockets Layer Connection Security

	Guideline for Securing External Procedures
	Guidelines for Auditing
	Manageability of Audited Information
	Audits of Typical Database Activity
	Audits of Suspicious Database Activity
	Recommended Audit Settings
	Best Practices for Querying the UNIFIED_AUDIT_TRAIL Data Dictionary View

	Addressing the CONNECT Role Change
	Why Was the CONNECT Role Changed?
	How the CONNNECT Role Change Affects Applications
	How the CONNECT Role Change Affects Database Upgrades
	How the CONNECT Role Change Affects Account Provisioning
	How the CONNECT Role Change Affects Applications Using New Databases

	How the CONNECT Role Change Affects Users
	How the CONNECT Role Change Affects General Users
	How the CONNECT Role Change Affects Application Developers
	How the CONNECT Role Change Affects Client Server Applications

	Approaches to Addressing the CONNECT Role Change
	Creating a New Database Role
	Restoring the CONNECT Privilege
	Data Dictionary View to Show CONNECT Grantees
	Least Privilege Analysis Studies

	B Data Encryption and Integrity Parameters
	About Using sqlnet.ora for Data Encryption and Integrity
	Sample sqlnet.ora File
	Data Encryption and Integrity Parameters
	About the Data Encryption and Integrity Parameters
	SQLNET.ENCRYPTION_SERVER
	SQLNET.ENCRYPTION_CLIENT
	SQLNET.CRYPTO_CHECKSUM_SERVER
	SQLNET.CRYPTO_CHECKSUM_CLIENT
	SQLNET.ENCRYPTION_TYPES_SERVER
	SQLNET.ENCRYPTION_TYPES_CLIENT
	SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER
	SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT

	C Kerberos, SSL, and RADIUS Authentication Parameters
	Parameters for Clients and Servers Using Kerberos Authentication
	Parameters for Clients and Servers Using Secure Sockets Layer
	Ways to Configure a Parameter for Secure Sockets Layer
	Secure Sockets Layer Authentication Parameters for Clients and Servers
	Cipher Suite Parameters for Secure Sockets Layer
	Supported Secure Sockets Layer Cipher Suites
	Secure Sockets Layer Version Parameters
	Secure Sockets Layer Client Authentication Parameters
	Secure Sockets Layer X.509 Server Match Parameters
	SSL_SERVER_DN_MATCH
	SSL_SERVER_CERT_DN

	Oracle Wallet Location

	Parameters for Clients and Servers Using RADIUS Authentication
	sqlnet.ora File Parameters
	SQLNET.AUTHENTICATION_SERVICES
	SQLNET.RADIUS_ALTERNATE
	SQLNET.RADIUS_ALTERNATE_PORT
	SQLNET.RADIUS_ALTERNATE_TIMEOUT
	SQLNET.RADIUS_ALTERNATE_RETRIES
	SQLNET.RADIUS_AUTHENTICATION
	SQLNET.RADIUS_AUTHENTICATION_INTERFACE
	SQLNET.RADIUS_AUTHENTICATION_PORT
	SQLNET.RADIUS_AUTHENTICATION_TIMEOUT
	SQLNET.RADIUS_AUTHENTICATION_RETRIES
	SQLNET.RADIUS_CHALLENGE_RESPONSE
	SQLNET.RADIUS_CHALLENGE_KEYWORD
	SQLNET.RADIUS_CLASSPATH
	SQLNET.RADIUS_SECRET
	SQLNET.RADIUS_SEND_ACCOUNTING

	Minimum RADIUS Parameters
	Initialization File Parameter for RADIUS

	D Integrating Authentication Devices Using RADIUS
	About the RADIUS Challenge-Response User Interface
	Customizing the RADIUS Challenge-Response User Interface
	Example: Using the OracleRadiusInterface Interface

	E Oracle Database FIPS 140-2 Settings
	About the Oracle Database FIPS 140-2 Settings
	Configuring FIPS 140-2 for Transparent Data Encryption and DBMS_CRYPTO
	Configuration of FIPS 140-2 for Secure Sockets Layer
	Configuring the SSLFIPS_140 Parameter for Secure Sockets Layer
	Approved SSL Cipher Suites for FIPS 140-2

	Postinstallation Checks for FIPS 140-2
	Verifying FIPS 140-2 Connections

	F Managing Public Key Infrastructure (PKI) Elements
	Uses of the orapki Utility
	orapki Utility Syntax
	Creating Signed Certificates for Testing Purposes
	Viewing a Certificate
	Controlling MD5 and SHA-1 Certificate Use
	Managing Oracle Wallets with orapki Utility
	About Managing Wallets with orapki
	Creating, Viewing, and Modifying Wallets with orapki
	Creating a PKCS#12 Wallet
	Creating an Auto-Login Wallet
	Creating an Auto-Login Wallet That Is Associated with a PKCS#12 Wallet
	Creating an Auto-Login Wallet That Is Local to the Computer and User Who Created It
	Viewing a Wallet
	Modifying the Password for a Wallet
	Converting an Oracle Wallet to Use the AES256 Algorithm

	Adding Certificates and Certificate Requests to Oracle Wallets with orapki
	Adding a Certificate Request to an Oracle Wallet
	Adding a Trusted Certificate to an Oracle Wallet
	Adding a Root Certificate to an Oracle Wallet
	Adding a User Certificate to an Oracle Wallet
	Verifying Credentials on the Hardware Device That Uses a PKCS#11 Wallet
	Adding PKCS#11 Information to an Oracle Wallet

	Exporting Certificates and Certificate Requests from Oracle Wallets with orapki

	Management of Certificate Revocation Lists (CRLs) with orapki Utility
	orapki Usage
	Example: Wallet with a Self-Signed Certificate and Export of the Certificate
	Example: Creating a Wallet and a User Certificate

	orapki Utility Commands Summary
	orapki cert create
	orapki cert display
	orapki crl delete Command
	orapki crl display
	orapki crl hash
	orapki crl list
	orapki crl upload
	orapki wallet add
	orapki wallet convert
	orapki wallet create
	orapki wallet display
	orapki wallet export

	G How the Unified Auditing Migration Affects Individual Audit Features

	Glossary
	access control
	Access Control Lists (ACLs)
	Advanced Encryption Standard
	AES
	application context
	attribute
	application role
	authentication
	authentication method
	authorization
	auto-login wallet
	CDB
	base
	CA
	certificate
	certificate authority
	certificate chain
	certificate request
	certificate revocation list (CRL)
	checksumming
	cleartext
	Cipher Block Chaining (CBC)
	CIDR
	cipher suite
	cipher suite name
	ciphertext
	Classless Inter-Domain Routing
	client
	common privilege grant
	common role
	common user
	confidentiality
	connect descriptor
	connect identifier
	connect string
	container
	container data object
	credentials
	CRL
	CRL Distribution Point
	CRL DP
	cryptography
	data dictionary
	Data Encryption Standard (DES)
	database administrator
	database alias
	Database Installation Administrator
	database link
	database password version
	Database Security Administrator
	decryption
	definer's rights procedure
	DES
	dictionary attack
	Diffie-Hellman key negotiation algorithm
	digital signature
	directory information tree (DIT)
	directory naming
	directory naming context
	distinguished name (DN)
	domain
	Domain Name System (DNS)
	denial-of-service (DoS) attack
	directly granted role
	encrypted text
	encryption
	enterprise domain
	Enterprise Domain Administrator
	enterprise role
	enterprise user
	entry
	external authentication
	Federal Information Processing Standard (FIPS)
	FIPS
	forced cleanup
	forest
	Forwardable Ticket Granting Ticket
	global role
	global application context
	grid computing
	HTTP
	HTTPS
	indirectly granted role
	identity
	identity management
	identity management realm
	initial ticket
	instance
	integrity
	invoker's rights procedure
	java code obfuscation
	Java Database Connectivity (JDBC)
	JDBC
	KDC
	Kerberos
	Kerberos ticket
	Key Distribution Center (KDC)
	key pair
	keytab file
	kinstance
	kservice
	last archive timestamp
	LDAP
	ldap.ora file
	Lightweight Directory Access Protocol (LDAP)
	listener
	listener.ora file
	lightweight user session
	local privilege grant
	local role
	local user
	man-in-the-middle
	mandatory auditing
	MD5
	message authentication code
	message digest
	CDB
	namespace
	naming method
	National Institute of Standards and Technology (NIST)
	net service alias
	net service name
	network authentication service
	network listener
	NIST
	non-CDB
	non-repudiation
	obfuscation
	obfuscator
	object class
	Oracle Context
	Oracle Virtual Private Database
	Oracle Net Services
	Oracle PKI certificate usages
	Password-Accessible Domains List
	PCMCIA cards
	PDB
	peer identity
	PEM
	PKCS #10
	PKCS #11
	PKCS #12
	PKI
	plaintext
	pluggable database
	principal
	private key
	proxy authentication
	public key
	public and private key pair
	public key infrastructure (PKI)
	PUBLIC role
	purge job
	RADIUS
	realm
	realm Oracle Context
	registry
	remote computer
	role
	root
	root key certificate
	salt
	schema
	schema mapping
	secure application role
	Secure Hash Algorithm (SHA)
	Secure Sockets Layer (SSL)
	separation of duty
	server
	service
	service name
	service principal
	service key table
	service ticket
	session key
	session layer
	SHA
	shared schema
	single key-pair wallet
	single password authentication
	single sign-on (SSO)
	smart card
	sniffer
	SSO
	System Global Area (SGA)
	system identifier (SID)
	ticket
	tnsnames.ora
	token card
	transport layer
	Transport Layer Security (TLS)
	trusted certificate
	trusted certificate authority
	trust point
	user name
	user-schema mapping
	user/schema separation
	user search base
	views
	wallet
	Windows native authentication
	X.509

	Index

